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The hexagon H6,8,4





The cored hexagon C6,8,4(2)





The first lobe





The first two lobes





The S-cored hexagon SC6,8,4(3, 1, 2, 2)



Define

H(n) :=
n
∏

k=0

Γ(k),

H(n+
1

2
) :=

n
∏

k=0

Γ(k +
1

2
)



Theorem 1. Let x, y, z, a, b, c and m be nonnegative integers.

If y and z have the same parity, we have:

M(SCx,y,z(a, b, c,m)) =
H(m)3 H(a) H(b) H(c)

H(m+ a) H(m+ b) H(m+ c)
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How about symmetry classes?



How about symmetry classes?

Will talk about two:

• cyclically symmetric

• cyclically symmetric and transpose complementary



CSTC



CS: a even, m even

Use factorization theorem for perfect matchings

For a even and m even the cyclically symmetric case reduces to regions of these
two types (shown here is the region SCx,x,x(a, a, a,m) for x = 3, a = 4, m = 6)



CS: a odd, m odd

For a odd and m odd the cyclically symmetric case reduces to regions of these other
two types (shown here is the region SCx,x,x(a, a, a,m) for x = 3, a = 3, m = 5)



Polynomiality in m

α

β

Lemma. Set CS(x, a,m) = M(SCx,x,x(a, a, a,m)). Then

CS(x, a,m) = det

(

δi,a+j +

(

m+ a+ i+ j

a+ i

))

0≤i,j≤x−1

,

where δij is the Kronecker symbol.



Twelve families of regions

k
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Sn,k,x

n,k,x
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The contours Sn,k,x, Sn,k,x and S n,k,x for n = 3, k = 2, x = 9.



The four regions we need
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Cn,k,x, Dn,k,x, Cn,k,x and Dn,k,x (n = 3, k = 2, x = 9)



Four enumeration results we deduce these from

z

y m

xx+m−y

x−y+z

m+y+z

z

y m

xx+m−y

x−y+z

m+y+z

The regions Fx,y,z,m (left) and F ′
x,y,z,m (right) for x = 5, y = 3, z = 3, m = 4.

z xx+m−y

x−y+z

m+y+z

y m

z xx+m−y

x−y+z

m+y+z

y m

The regions Gx,y,z,m (left) and G′
x,y,z,m (right) for x = 5, y = 3, z = 3, m = 4.



Convention

n−1
∏

k=m

Expr(k) =



















∏n−1
k=m Expr(k) n > m,

1 n = m,
1

∏m−1
k=n Expr(k)

n < m.

Pochhammer symbol

(α)k :=











α(α+ 1) · · · (α+ k − 1) if k > 0,

1 if k = 0,

1/((α− 1)(α− 2) · · · (α+ k)) if k < 0.



For integers x, y, z and m define the function f(x, y, z,m) by

f(x, y, z,m) :=
1

2max(y,0)

y−1
∏

i=0

(2x+ 2z − i− y + 1)y−i

(i+ 1)i+1

m−1
∏

i=0

(2x− 2y + 2z + 2i+ 2)m−i

(i+ 2)i+1

×
m−z−1
∏

i=0

(2x+m+ 3z + 2i− y + 3)y−m(y + i− z + 1)z
(2x− 2y + 3z + i+ 2)y−z(i+ 1)z

×

⌊m/3−z/3−1/3⌋
∏

i=0

(2x+ y + 2z + 3i+ 3)3m−3z−2−9i

×

⌊m/3−z/3−2/3⌋
∏

i=0

(2x− 2y + 5z + 6i+ 5)3m−3z−5−9i

×

⌊m/3−z/3−2/3⌋
∏

i=0

1

(2x+ y − z + 3m− 6i− 1)

⌊m/3−z/3−1⌋
∏

i=0

1

(2x− 2y + 5z + 6i+ 6)
.



Theorem (C. and Fischer, 2015). Let x, y, z and m be non-negative integers

with 0 ≤ y − z ≤ x and z ≤ m. Then the number of lozenge tilings of the regions

Fx,y,z,m and F ′
x,y,z,m is given by

M(Fx,y,z,m) = f(x, y, z,m)

and

M(F ′
x,y,z,m) = f(x−

1

2
, y, z,m).



Theorem (C., 2017). Let x, y, z and m be non-negative integers with 0 ≤
y − z ≤ x and z ≤ m. Then the number of lozenge tilings of the regions Gx,y,z,m

and G′
x,y,z,m are given by

M(Gx,y,z,m) = g(x, y, z,m)

and

M(G′
x,y,z,m) = g(x−

1

2
, y, z,m),

where the function g is defined by

g(x, y, z,m) := f(x, y, z,m)
f(x+ 1, y − z − 1, 0,m− 1)

f(x, y − z, 0,m)

×
z
∏

k=1

(4k + 4y − 4z − 2)(2x+ 3k + y − z)

(2x+ k − 2y + 2z + 1)(2x+ 3k − 2y + 2z)
.



Enumeration of tilings of Cn,0,x and Dn,0,x follows from previous work

Proposition. For non-negative integers n and x we have

M(Cn,0,x) =
1

2n

n
∏

i=1

(2x+ 2i+ 2)i
(

x+ 2i+ 3
2

)

i−1

(i)i
(

x+ i+ 3
2

)

i−1

and

M(Dn,0,x) =
1

2n

n
∏

i=0

(

x+ 2i− 1
2

)

i+1
(2x+ 2i− 1)i

(i+ 1)i
(

x+ i− 1
2

)

i+1



The C-regions

zy( )2

y y

x

x y+z

M(Gx,y,z,y) = 2y−z M(Ay−z, z
2
,x−y+z+1)M(Cy−z−1, z

2
,x−y+z+1).

1

y y

x y+z

x+

M(Gx+1,y,z−1,y) = 2y−z+1M(Ay−z, z
2
,x−y+z+1)M(Cy−z+1, z

2
−1,x−y+z+1)



=⇒

M(Cy−z−1, z
2
,x−y+z+1)

M(Cy−z+1, z
2
−1,x−y+z+1)

= 2
M(Gx,y,z,y)

M(Gx+1,y,z−1,y)



Theorem (C., 2017). For non-negative integers n, k and x we have

M(Cn,k,x) =
1

2n

(

2k + x

2k

) 2k−1
∏

i=1

2k−1
∏

j=i

2x+ i+ j + 1

i+ j + 1

n
∏

i=1

(6k + 2i+ 2)i(3k + 2i+ 3/2)i−1

(i)i(3k + i+ 3/2)i−1

×

n
∏

i=1

(x+ i+ k + 1)k(x+ 2i+ 3k + 3/2)i−1(x+ i+ k + 1/2)k(x+ i+ 3k + 1)⌈i/2⌉

(x+ 2i+ 3k − 1/2)⌈i/2⌉−1,ց

(i+ k + 1)k(2i+ 3k + 3/2)i−1(i+ k + 1/2)k(i+ 3k + 1)⌈i/2⌉

(2i+ 3k − 1/2)⌈i/2⌉−1,ց

,

where

(a)k,ց := a(a− 1) · · · (a− k + 1).



The D-, C- and D-regions work out similarly.



SYMMETRIES OF SHAMROCKS, PART I

Mihai Ciucu

Department of Mathematics, Indiana University
Bloomington, Indiana 47405

Abstract. Hexagons with four-lobed regions called shamrocks removed from their center
were introduced in their 2013 paper by Ciucu and Krattenthaler, where product formulas
for the number of their lozenge tilings were provided. In analogy with the plane partitions
which they generalize, we consider the problem of enumerating the lozenge tilings which are
invariant under some symmetries of the underlying region. This leads to six symmetry classes
besides the base case of requiring no symmetry. In this paper we provide product formulas
for two of these symmetry classes (namely, the ones generalizing cyclically symmetric, and
cyclically symmetric and transpose complementary plane partitions).

1. Introduction

In [7] we presented a generalization of MacMahon’s classical counting of boxed plane
partitions [17, Sect. 495] — which is equivalent to enumerating lozenge tilings of hexagons
on the triangular lattice — by providing product formulas for the number of lozenge tilings
of hexagons from whose centers four-lobed structures called shamrocks were removed (such
regions are called S-cored hexagons; see Figure 1.1 for an example).

Motivated by the case of plane partitions (see [1][19][16][20][12] and the surveys [2] and
[13] for more recent developments) we consider in this paper the symmetry classes of tilings
of S-cored hexagons. More precisely, for any subgroup G of the group of symmetries of an
S-cored hexagon, we seek to find how many of its lozenge tilings are invariant under G.

This leads to six non-trivial symmetry classes, named after the corresponding sym-
metries of plane partitions (see [19]): (i) cyclically symmetric, (ii) transpose comple-
mentary, (iii) cyclically symmetric and transpose complementary, (iv) symmetric, (v)
self-complementary and (vi) symmetric and self-complementary.

In this paper we provide product formulas for the first and third of these symmetry
classes. The remaining ones require different methods and will be treated in subsequent
work.

Research supported in part by NSF grant DMS-1501052.



Figure 1.1. The S-cored hexagon SC6,8,4(3, 1, 2, 2) (see [7] for details of its definition).

We point out that Kuo’s graphical condensation method [14][15], which has been
very fruitful in previous related work on enumerating tilings of lattice regions (see e.g.
[6][7][8][9][10]), does not seem to provide the proofs here (the method can be applied
to our regions, and it does lead to interesting recurrences, but they involve two different
types of regions, and it does not seem possible to prove our formulas using them). Instead,
we deduce our enumerations from two results we proved in [8] and two counterparts we
present in this paper (we note that we need the full generality of the results in [8], and
not just the special cases of [5] they extend). This constitutes an unforeseen and wel-
come application of the results of [8], which involve regions that did not seem particularly
natural to consider, other than the fact that they extended certain regions of [5] in a
general enough way so that conjectures concerning those regions could be proved by Kuo
condensation.

2. Twelve families of regions

In this section we define twelve closely related families of regions on the triangular
lattice. The enumeration of tilings of both cyclically symmetric and cyclically-symmetric-
and-transpose-complementary S-cored hexagons will follow from the enumeration of tilings
of four of these regions. Four more also come up in our proofs (as a result of applying
the factorization theorem [3]), but the enumeration of tilings of these regions (which also
follow from our arguments) is not necessary for our purposes. Interestingly, the remaining
four families do not come up in our arguments; nevertheless, it would be worth finding
enumeration formulas for their tilings (even though, cf. the last paragraph of this section,
it seems that these will not be simple product formulas), given how closely they are related

2



k
2k

x

n

S
S

Sn,k,x

n,k,x

n,k,x

ρ

Figure 2.1. The contours Sn,k,x, Sn,k,x and S n,k,x for n = 3, k = 2, x = 9.

to the other eight.
Our twelve families are determined by three types of contours, each of which will be

weighted in one of four ways. The three types of contours, denoted Sn,k,x, Sn,k,x and
S n,k,x, are shown in Figure 2.1. The portion cut out by the thick solid line is Sn,k,x;
the dotted ray ρ starting from the indicated solid dot in the polar direction −π/6 cuts
in half the n lozenges that would fit in the folds of the northeastern zig-zag boundary.
The outermost contour is Sn,k,x; its notation records the fact that the analogous ray for
it is half a lattice spacing above ρ. Finally, the region cut out by the thick dotted line1 is
S n,k,x; the notation refers to the fact that the analogous ray in it is half a lattice spacing
below ρ. The four different weightings concern two sets of lozenge positions — the set
of n lozenge positions that fit in the folds of the northeastern boundary, and the set of
lozenge positions that fit in the folds of the western boundary (the latter consists of n+2k,
n + 2k + 1, resp. 2k − 1 lozenge positions, according as the region is Sn,k,x, Sn,k,x, resp.
S n,k,x). Each of these two sets of lozenge positions will be given weights of 1 or 1/2.

We are now ready to define our twelve families of regions. They are illustrated in
Figures 2.2–2.4 (which list them in the order of future use).

We define2 An,k,x (resp., An,k,x, and An,k,x) to be the region inside the contour Sn,k,x

(resp., Sn,k,x, and Sn,k,x), in which the n tile positions that fit in the folds of the north-

1The case k = 0 needs special consideration here, as the distance 2k − 1 we need to travel from the
solid dot in polar direction −π/3 (before we turn and travel distance k in polar direction π/3; see the
region cut out by the thick dotted line in Figure 2.1) is, for k = 0, equal to −1. What we do in this case
is to travel instead a distance of 1 in the opposite direction (polar direction 2π/3).

2The choice of the capital letter here, as well as for the B-regions, is so as to be in agreement with the
related families of regions considered in [4].
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n

n,k,x

x

2k
k

C

n

n,k,x

x

2k
k

D

k
2k

x

n
+1

Cn,k,x

k n

x
2k 1

D n,k,x

Figure 2.2. The four regions we need: Cn,k,x (top left), Dn,k,x (top right),

Cn,k,x (bottom left) and Dn,k,x (bottom right), for n = 3, k = 2, x = 9.

eastern boundary are weighted by 1/2 (see Figures 2.3 and 2.4).

Define the regions Bn,k,x, Bn,k,x and Bn,k,x to be given by precisely the same contours
as their A-type counterparts, but now weighting by 1/2 the n + 2k (resp., n + 2k + 1 and
n + 2k − 1) westernmost tile positions instead.

The regions Cn,k,x, Cn,k,x and Cn,k,x are the regions inside the contours Sn,k,x, Sn,k,x

and Sn,k,x, with no specially weighted tile positions. Finally, Dn,k,x, Dn,k,x and Dn,k,x

are the regions inside the contours Sn,k,x, Sn,k,x and Sn,k,x, with all the tile positions
considered in their A- or B-counterparts weighted by 1/2.

We note that for our purposes we only need to enumerate the tilings of the four families
shown in Figure 2.2. It turns out that four more families — the ones shown in Figure 2.3
— arise in our arguments, and simple product formulas for the number of their tilings
also follow from our results. The remaining four families (included for completeness in
Figure 2.4) turn out, somewhat unexpectedly, to have a number of tilings that does not
seem to be “round” — large prime factors show up in the integer factorization of such
numbers even for fairly small regions that belong to these families. However, it would still
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n,k,x

x

2k
k
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n
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x

2k
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x
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n
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Figure 2.3. Four other regions that arise: An,k,x (top left), Bn,k,x (top right),

An,k,x (bottom left) and Bn,k,x (bottom right), for n = 3, k = 2, x = 9.

be interesting to find enumeration formulas for their lozenge tilings.

3. Four enumeration results

In our arguments we employ two results from [8], as well as two new counterparts to
them, which we present in this section. For completeness, we recall the two results of [8]
that we will need.

Let x, y, z and m be non-negative integers with 0 ≤ y− z ≤ x and z ≤ m, and consider
the region Fx,y,z,m pictured on the left in Figure 3.1; denote by F ′

x,y,z,m the region obtained
from Fx,y,z,m by weighting the tile positions in the folds of the two zig-zag portions of the
boundary by 1/2 (see the picture on the right in Figure 3.1)3.

3In [8] we denoted these regions by Dx,y,z,m and D′
x,y,z,m; we change here the notation to Fx,y,z,m

and F ′
x,y,z,m in order to distinguish them from the D-regions defined in the previous section.
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k n

x
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k n

x
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k
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Figure 2.4. The four remaining regions: An,k,x (top left), Bn,k,x (top right),

Cn,k,x (bottom left) and Dn,k,x (bottom right), for n = 3, k = 2, x = 9.

z

y m

xx+m−y

x−y+z

m+y+z

z

y m

xx+m−y

x−y+z

m+y+z

Figure 3.1. The regions Fx,y,z,m (left) and F ′
x,y,z,m (right) for x = 5, y = 3, z = 3, m = 4.
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z xx+m−y

x−y+z

m+y+z

y m

z xx+m−y

x−y+z

m+y+z

y m

Figure 3.2. The regions Gx,y,z,m (left) and G′
x,y,z,m (right) for x = 5, y = 3, z = 3, m = 4.

Throughout this paper we define products according to the convention

n−1
∏

k=m

Expr(k) =



















∏n−1
k=m Expr(k) n > m,

1 n = m,
1

∏m−1
k=n Expr(k)

n < m.

(3.1)

We recall that the Pochhammer symbol (α)k is defined for any integer k to be (α)k :=
∏k−1

i=0 (α + i), thus according to (3.1)

(α)k :=











α(α + 1) · · · (α + k − 1) if k > 0,

1 if k = 0,

1/((α − 1)(α − 2) · · · (α + k)) if k < 0.

(3.2)

For integers x, y, z and m define the function f(x, y, z, m) by

f(x, y, z, m) :=
1

2max(y,0)

y−1
∏

i=0

(2x + 2z − i − y + 1)y−i

(i + 1)i+1

m−1
∏

i=0

(2x − 2y + 2z + 2i + 2)m−i

(i + 2)i+1

×

m−z−1
∏

i=0

(2x + m + 3z + 2i− y + 3)y−m(y + i − z + 1)z

(2x − 2y + 3z + i + 2)y−z(i + 1)z

×

bm/3−z/3−1/3c
∏

i=0

(2x + y + 2z + 3i + 3)3m−3z−2−9i

×

bm/3−z/3−2/3c
∏

i=0

(2x − 2y + 5z + 6i + 5)3m−3z−5−9i

×

bm/3−z/3−2/3c
∏

i=0

1

(2x + y − z + 3m − 6i− 1)

bm/3−z/3−1c
∏

i=0

1

(2x − 2y + 5z + 6i + 6)
.
(3.3)
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Denote by M(R) the weighted count4 of the lozenge tilings of the region R on the
triangular lattice.

In [8] we proved the following results.

Theorem 3.1(Ciucu and Fischer [8]). Let x, y, z and m be non-negative integers with

0 ≤ y − z ≤ x and z ≤ m. Then the number of lozenge tilings of the regions Fx,y,z,m and

F ′
x,y,z,m is given by

M(Fx,y,z,m) = f(x, y, z, m) (3.4)

and

M(F ′
x,y,z,m) = f(x −

1

2
, y, z, m), (3.5)

where f is given by (3.3).

In order to prove the results in the current paper, we will also need the following two
results, concerning the enumeration of tilings of the regions Gx,y,z,m and G′

x,y,z,m shown
in Figure 3.2, which are obtained from the regions Fx,y,z,m and F ′

x,y,z,m by adding strips
of unit triangles above the zig-zag portions of their boundaries as indicated in Figure 3.2.
The proofs of these counterpart results follow in precisely the same way (via Kuo’s graph-
ical condensation method [14]) as the proofs of the formulas in the above theorem that
were presented in [8] (remove the forced strips of lozenges along the southwestern and
southeastern boundaries of the G- and G′-regions, and apply Kuo condensation with the
four unit triangles chosen precisely as in Figure 3.1 of [8]).

Theorem 3.2. Let x, y, z and m be non-negative integers with 0 ≤ y− z ≤ x and z ≤ m.

Then the number of lozenge tilings of the regions Gx,y,z,m and G′
x,y,z,m shown in Figure 3.2

are given by

M(Gx,y,z,m) = g(x, y, z, m) (3.6)

and

M(G′
x,y,z,m) = g(x −

1

2
, y, z, m), (3.7)

where the function g is defined by

g(x, y, z, m) := f(x, y, z, m)
f(x + 1, y − z − 1, 0, m − 1)

f(x, y − z, 0, m)

×

z
∏

k=1

(4k + 4y − 4z − 2)(2x + 3k + y − z)

(2x + k − 2y + 2z + 1)(2x + 3k − 2y + 2z)
. (3.8)

4We weight all lozenge tile positions with positive weights. The weight of a lozenge tiling of a region
on the triangular lattice is defined to be the product of the weights of the lozenges that make up that
tiling. The weighted count of the tilings of the region R is then the sum of the weights of all the lozenge
tilings of R. All tile positions of the regions in this paper have weight 1, except the tile positions marked
by shaded ellipses, which have weight 1/2.
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4. The enumeration of tilings of Cn,0,x and Dn,0,x

The enumeration of tilings of the two special cases of the C- and D-regions presented
in this section follow from our earlier results in [4], [5] and [3]. We will use them in the
next section.

Theorem 4.1. For any non-negative integers n and x we have

M(Cn,0,x) =
1

2n

n
∏

i=1

(2x + 2i + 2)i

(

x + 2i + 3
2

)

i−1

(i)i

(

x + i + 3
2

)

i−1

(4.1)

and

M(Dn,0,x) =
1

2n

n
∏

i=0

(

x + 2i − 1
2

)

i+1
(2x + 2i − 1)i

(i + 1)i

(

x + i − 1
2

)

i+1

(4.2)

Proof. Formula (4.1) follows directly from [6, (3.3)] — simply note that our current
region Cn,0,x is the same as the region Gn,x+1 of [6].

To obtain (4.2), apply the factorization theorem of [3] to the special case a = c of the
region in [5, Theorem1.7]. One of the regions resulting by the application of the factor-
ization theorem is of the type Dn,0,x we want to enumerate, while the other is an instance
of the regions An,x of [4, §2]. The desired enumeration follows then by [5, Theorem1.7]
and [4, (2.4), (2.2)]. It is straightforward to check that the resulting product formula for
M(Dn,0,x) agrees with (4.2). �

5. The number of tilings of regions of type C, D, C and D

We deduce the numbers mentioned in the title of this section from the special case of
Theorems 3.1 and 3.2 when the involved regions are symmetric about a vertical axis. We
note that even though this special, symmetric case of Theorems 3.1 and 3.2 is enough
for our purposes, proving the formulas in these theorems requires the general form of the
regions (as Kuo’s graphical condensation, when applied to a symmetric region belonging
to this family, always gives rise to some regions that are not symmetric).

Let z be even. Consider the region Gx,y,z,y, and apply to it the factorization theorem
of [3] (see Figure 5.1). The resulting regions on the left and right are of type A and type
C, respectively. We obtain

M(Gx,y,z,y) = 2y−z M(Ay−z, z

2
,x−y+z+1) M(Cy−z−1, z

2
,x−y+z+1). (5.1)

Doing the same for the region Gx+1,y,z−1,y (see Figure 5.2), we again obtain regions of
type A and C on the two sides of the symmetry axis. Crucially, the region of type A turns
out to be precisely the same as before! Therefore, equation (5.1) and its analog

M(Gx+1,y,z−1,y) = 2y−z+1 M(Ay−z, z

2
,x−y+z+1) M(Cy−z+1, z

2
−1,x−y+z+1), (5.2)
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zy( )2

y y

x

x y+z

Figure 5.1. Regions Ay−z, z

2
,x−y+z+1 and Cy−z−1, z

2
,x−y+z+1 arise when applying

the factorization theorem to the region Gx,y,z,y (here x = 7, y = 4, z = 2).

1

y y

x y+z

x+

Figure 5.2. Regions Ay−z, z

2
,x−y+z+1 and Cy−z+1, z

2
−1,x−y+z+1 arise when applying

the factorization theorem to the region Gx+1,y,z−1,y (here x = 7, y = 4, z = 2).

which follows from applying the factorization theorem as shown in Figure 5.2, can be
combined to obtain

M(Cy−z−1, z

2
,x−y+z+1)

M(Cy−z+1, z

2
−1,x−y+z+1)

= 2
M(Gx,y,z,y)

M(Gx+1,y,z−1,y)
. (5.3)

Using (3.6), changing the parameters (x, y, z) to (n + x, n + 2k + 1, 2k) and writing for
brevity

g0(x, y, z) := g(x, y, z, y), (5.4)

we can rewrite (5.3) as

M(Cn,k,x)

M(Cn+2,k−1,x)
= 2

g0(n + x, n + 2k + 1, 2k)

g0(n + x + 1, n + 2k + 1, 2k − 1)
. (5.5)

10



Repeated application of (5.5) gives

M(Cn,k,x)

M(Cn+2k,0,x)
= 2k

k−1
∏

i=0

g0(n + x + 2i, n + 2k + 1, 2k − 2i)

g0(n + x + 2i + 1, n + 2k + 1, 2k − 2i − 1)
. (5.6)

Using formula (4.1) for M(Cn+2k,0,x), we obtain from (5.6) that

M(Cn,k,x) =
1

2n+k

n+2k
∏

i=1

(2x + 2i + 2)i

(

x + 2i + 3
2

)

i−1

(i)i

(

x + i + 3
2

)

i−1

×

k−1
∏

i=0

g0(n + x + 2i, n + 2k + 1, 2k − 2i)

g0(n + x + 2i + 1, n + 2k + 1, 2k − 2i− 1)
, (5.7)

where g0 is given by (5.4), (3.8) and (3.3).
After some straightforward manipulations of the expression on the right hand side above

we obtain the following result.

Theorem 5.1. For non-negative integers n, k and x we have5

M(Cn,k,x) =
1

2n

(

2k + x

2k

) 2k−1
∏

i=1

2k−1
∏

j=i

2x + i + j + 1

i + j + 1

n
∏

i=1

(6k + 2i + 2)i(3k + 2i + 3/2)i−1

(i)i(3k + i + 3/2)i−1

×

n
∏

i=1

(x + i + k + 1)k(x + 2i + 3k + 3/2)i−1(x + i + k + 1/2)k(x + i + 3k + 1)di/2e

(x + 2i + 3k − 1/2)di/2e−1,↘

(i + k + 1)k(2i + 3k + 3/2)i−1(i + k + 1/2)k(i + 3k + 1)di/2e

(2i + 3k − 1/2)di/2e−1,↘

.
(5.8)

Similar reasoning leads to a formula for M(Dn,k,x). Indeed, consider the region F ′
x,y,z,y,

and apply to it the factorization theorem of [3]. The resulting regions turn out to be
precisely Dy−z, z

2
,x−y+z and By−z−1, z

2
,x−y+z (see Figure 5.3). The factorization theorem

then gives
M(F ′

x,y,z,y) = 2y−z M(Dy−z, z

2
,x−y+z) M(By−z−1, z

2
,x−y+z). (5.9)

On the other hand, by applying the factorization theorem to F ′
x−1,y,z+1,y (see Figure 5.4),

we obtain in the same way

M(F ′
x−1,y,z+1,y) = 2y−z−1 M(Dy−z−2, z

2
+1,x−y+z) M(By−z−1, z

2
,x−y+z). (5.10)

Combining the above two equations, replacing (x, y, z) by (n+x+2, n+2k, 2k− 2), using
Theorem 3.1 and setting for brevity

f0(x, y, z) := f(x, y, z, y), (5.11)

5We denote by (a)k,↘ the “descending factorial” a(a − 1) · · · (a − k + 1), and set (a)0,↘ = 1.
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zy( )2 x

x y+z

y y

Figure 5.3. Regions Dy−z, z

2
,x−y+z and By−z−1, z

2
,x−y+z arise when applying

the factorization theorem to the region F ′
x,y,z,y (here x = 7, y = 4, z = 2).

x y+z

y y

x 1

Figure 5.4. Regions Dy−z−2, z

2
+1,x−y+z and By−z−1, z

2
,x−y+z arise when applying

the factorization theorem to the region F ′
x−1,y,z+1,y (here x = 7, y = 4, z = 2).

we obtain

M(Dn,k,x)

M(Dn+2,k−1,x)
= 2

f0

(

n + x + 1
2 , n + 2k, 2k − 1

)

f0

(

n + x + 3
2 , n + 2k, 2k − 2

) . (5.12)

Repeated application of (5.12) gives

M(Dn,k,x)

M(Dn+2k,0,x)
= 2k

k−1
∏

i=0

f0

(

n + x + 2i + 1
2 , n + 2k, 2k − 2i− 1

)

f0

(

n + x + 2i + 3
2 , n + 2k, 2k − 2i− 2

) . (5.13)

Replacing the denominator in the left hand side above with the formula given in The-
orem 4.1, we obtain after some manipulation the following result.
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Theorem 5.2. For non-negative integers n, k and x we have6

M(Dn,k,x) =

1

2n+2k

(

2k+x+2
2k+1

)

(

2k+2
2k+1

)

(k + 2)2k

(

x + 1
2

)

k

(

x + 2n + 3k + 1
2

)

n

(

x + 3
2

)

k
(x + 1)k(x + n + 3k)k,↘

(x + k + 2)2k

(

1
2

)

k

(

2n + 3k + 1
2

)

n

(

3
2

)

k
(1)k(n + 3k)k,↘

×

2k
∏

i=1

2k
∏

j=i

2x + i + j + 3

i + j + 3

n
∏

i=0

(

3k + 2i − 1
2

)

i+1
(6k + 2i− 1)i

(i + 1)i

(

3k + i − 1
2

)

i+1

×

n−2
∏

i=1

(

x + i + k + 5
2

)

k

(

x + 2i + 3k + 7
2

)

i
(x + i + k + 2)k+1(x + i + 3k + 3)bi/2c

(

x + 2i + 3k + 3
2

)

bi/2c,↘
(

i + k + 5
2

)

k

(

2i + 3k + 7
2

)

i
(i + k + 2)k+1(i + 3k + 3)bi/2c

(

2i + 3k + 3
2

)

bi/2c,↘

.
(5.14)

The formulas for the remaining regions (those of type C and D) are obtained in a
similar fashion. More precisely, application of the factorization theorem to the regions
Fx,y,z,y and Fx+1,y,z−1,y as indicated in Figures 5.5 and 5.6 leads, after combining the two
resulting equalities, to the equation

M(Cn,k,x)

M(Cn+2,k−1,x)
= 2

f0 (n + x + 1, n + 2k + 1, 2k)

f0 (n + x + 2, n + 2k + 1, 2k − 1)
. (5.15)

Repeated application of this gives

M(Cn,k,x)

M(Cn+2k,0,x)
= 2k

k−1
∏

i=0

f0(n + x + 2i + 1, n + 2k + 1, 2k − 2i)

f0(n + x + 2i + 2, n + 2k + 1, 2k − 2i− 1)
. (5.16)

However, by definitions the region Cn,0,x is precisely the same as the region Cn+1,0,x−1.
Therefore, we obtain from (5.16) and Theorem 4.1, after some simplifications in the re-
sulting formula, the following result.

Theorem 5.3. For non-negative integers n, k and x we have

M(Cn,k,x) =
1

2n+2k+1

(

2k+x+1
2k+1

)

(2k+ 1

2

2k+1

)

2k
∏

i=1

2k
∏

j=i

2x + i + j + 1

i + j

n
∏

i=0

(6k + 2i + 2)i(3k + 2i + 1)i+1

(i + 1)i(3k + i + 1)i+1

×

n
∏

i=1

(x + i + k + 3/2)k(x + 2i + 3k + 5/2)i(x + i + k + 1)k+1(x + i + 3k + 2)bi/2c

(x + 2i + 3k + 1/2)bi/2c,↘

(i + k + 1)k(2i + 3k + 2)i(i + k + 1/2)k+1(i + 3k + 3/2)bi/2c

(2i + 3k)bi/2c,↘

.
(5.17)

6Recall that when the limits of the product index are out of order (this is possible in the last product)
we interpret products according to (3.1).
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zy( )2 x

x y+z

y y

Figure 5.5. Regions Ay−z, z

2
,x−y+z and Cy−z−1, z

2
,x−y+z arise when applying

the factorization theorem to the region Fx,y,z,y (here x = 7, y = 4, z = 2).

x y+z

y y

x + 1

Figure 5.6. Regions Ay−z, z

2
,x−y+z and Cy−z+1, z

2
−1,x−y+z arise when applying

the factorization theorem to the region Fx+1,y,z−1,y (here x = 7, y = 4, z = 2).

Finally, in order to enumerate tilings of the D-regions, apply the factorization theorem
to the regions G′

x,y,z,y and G′
x−1,y,z+1,y as indicated in Figures 5.7 and 5.8. Combining

the resulting equations and applying repeatedly the resulting equation we obtain

M(Dn,k,x)

M(Dn+2k,0,x)
= 2k

k−1
∏

i=0

g0

(

n + x + 2i− 1
2 , n + 2k, 2k − 2i − 1

)

g0

(

n + x + 2i + 1
2 , n + 2k, 2k − 2i − 2

) . (5.18)

However, by definition (see footnote 1) the region Dn,0,x becomes, after removing its one
forced lozenge (which is weighted 1/2), precisely the region Dn−1,0,x+1, so in particular

M(Dn,0,x) =
1

2
M(Dn−1,0,x+1). (5.19)

Using (5.18), (5.19) and Theorem 4.1 we obtain after some simplifications the following
result.
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zy( )2

y y

x

x y+z

Figure 5.7. Regions Dy−z, z

2
,x−y+z+1 and By−z−1, z

2
,x−y+z+1 arise when applying

the factorization theorem to the region G′
x,y,z,y (here x = 7, y = 4, z = 2).

y y

x y+z

x 1

Figure 5.8. Regions Dy−z−2, z

2
+1,x−y+z+1 and By−z−1, z

2
,x−y+z+1 arise when applying

the factorization theorem to the region G′
x−1,y,z+1,y (here x = 7, y = 4, z = 2).

Theorem 5.4. For any non-negative integers n, k and x we have

M(Dn,k,x) =
1

2n+1

(

2k+x
2k+1

)

(2k+ 1

2

2k+1

)

(x + 3k + n − 1)k,↘

(

1
2

)

n+k

(

k + 1
2

)

2k

(x)n+k(x + k)2k

(

3k + n − 1
2

)

k,↘

×

n
∏

i=0

(6k + 2i− 2)i+1(3k + 2i − 1)i

(3k + i − 1)i+1(i + 1)i

2k
∏

i=1

(2x + i + 1)2k

(i + 1)2k

×

n−1
∏

i=1

(

x + i + k + 1
2

)

k

(

x + 2i + 3k + 3
2

)

i
(x + i + k)k+1(x + i + 3k + 1)bi/2c

(

x + 2i + 3k − 1
2

)

bi/2c,↘

(i + k + 1)k (2i + 3k + 2)i

(

i + k + 1
2

)

k+1

(

i + 3k + 3
2

)

bi/2c

(2i + 3k)bi/2c,↘

.
(5.20)
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α

β

Figure 6.1. SC5,5,5(3, 3, 3, 4). Figure 6.2. Paths of lozenges in a fundamental region.

6. The cyclically symmetric case

In order for cyclically symmetric (i.e., invariant under rotation by 120◦) tilings of the S-
cored hexagon SCx,y,z(a, b, c, m) to exist we clearly need to have x = y = z and a = b = c
(recall that m is the side-length of the triangular core, and a, b and c are the sidelengths
of the triangular lobes, counterclockwise from top; see [7] for the precise definition of
SCx,y,z(a, b, c, m)). Let us denote by CS(x, a, m) the number of cyclically symmetric
tilings of SCx,x,x(a, a, a, m).

We will make use of the following extension of [4, Lemma 3.1].

Lemma 6.1.

CS(x, a, m) = det

(

δi,a+j +

(

m + a + i + j

a + i

))

0≤i,j≤x−1

, (6.1)

where δij is the Kronecker symbol.

Proof. The proof of [4, Lemma 3.1] readily extends to the current set-up (compare Fig-
ures 6.1 and 6.2 to [4, Figures 3.1 and 3.2]). The only new point is that in the present
context the number of cyclically-symmetric lozenge tilings arises as the sum of minors
of the Gessel-Viennot matrix that are not principal, but instead the column indices are
obtained by increasing each row index by a units. This explains the shift at the index of
the Kronecker symbol on the right hand side of (6.1). �

Let G be the planar dual graph of the region SCx,x,x(a, a, a, m) (i.e., the graph whose
vertices are the unit triangles contained in the region, and whose edges connect pairs of
triangles that share an edge). Since tilings of a region can be viewed as perfect matchings of
the planar dual of the region, the lozenge tilings of SCx,x,x(a, a, a, m) can be identified with
perfect matchings of G. Furthermore, cyclically symmetric tilings of SCx,x,x(a, a, a, m)
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Figure 6.3. For a even and m even the cyclically symmetric case reduces to regions
of type C and D; shown here is the region SCx,x,x(a, a, a, m) for x = 3, a = 4, m = 6.

correspond to perfect matchings of G invariant under rotation by 120◦. In turn, these are
identified with perfect matchings of the orbit graph of G under the action of this rotation.

Proceeding in a way analogous to the arguments in [4, §3], we apply the factorization
theorem of [3] to this orbit graph and rephrase the result in terms of the regions to which
the resulting subgraphs are dual. The details of the resulting regions depend on the parities
of a and m. As we will see, by Lemma 6.1 it suffices to solve the problem for one parity
of m, and the case of the other parity of m will follow.

When a + m is even, it turns out that one of the families of regions that results from
the factorization theorem is precisely the one whose tiling enumeration we need in order
to solve the cyclically symmetric and transpose complementary case (which we treat in
Section 7). For this reason, we work out first the cases a even, m even and a odd, m odd;
we then deduce the general case from these using Lemma 6.1.

Writing the arguments in a way that shows their parity, we obtain this way (see Fig-
ure 6.3)

CS(2x + 1, 2a, 2m) = 22x+2a+1 M(Cx,a,m) M(Dx,a,m), (6.2)

where the families of regions Cn,k,x and Dn,k,x are described in Section 2 (see top half of
Figure 2.2).

A figure similar to Figure 3.3 but with the x-parameter even shows that

CS(2x + 2, 2a, 2m) = 22x+2a+2 M(Cx,a,m) M(Dx+1,a,m). (6.3)
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Figure 6.4. For a odd and m odd the cyclically symmetric case reduces to regions
of type C and D; shown here is the region SCx,x,x(a, a, a, m) for x = 3, a = 3, m = 5.

In the same fashion, Figure 6.4 and the bottom half of Figure 2.2 show that

CS(2x + 1, 2a + 1, 2m + 1) = 22x+2a+2 M(Cx,a,m) M(Dx,a+1,m+1) (6.4)

and a figure analogous to Figure 6.4 but with the x-parameter even yields

CS(2x + 2, 2a + 1, 2m + 1) = 22x+2a+3 M(Cx+1,a,m+1) M(Dx,a+1,m+1). (6.5)

We have thus proved the following result.

Theorem 6.2. For non-negative integers x, a and m we have

CS(2x + 1, 2a, 2m) = 22x+2a+1 M(Cx,a,m) M(Dx,a,m) (6.6)

CS(2x + 2, 2a, 2m) = 22x+2a+2 M(Cx,a,m) M(Dx+1,a,m) (6.7)

CS(2x + 1, 2a + 1, 2m + 1) = 22x+2a+2 M(Cx,a,m) M(Dx,a+1,m+1) (6.8)

CS(2x + 2, 2a + 1, 2m + 1) = 22x+2a+3 M(Cx+1,a,m+1) M(Dx,a+1,m+1),
(6.9)
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Figure 6.5. The region SC0,0,0(a, a, a, m) is the union of three independent hexagons.

where the quantities on the right hand sides are given by the formulas of Theorems 5.1–5.4.

By Lemma 6.1, for fixed x and a, the expressions on the right hand side in (6.6)–(6.9)
are polynomials in m. Define P2x+1,2a(m) and P2x+2,2a(m) to be the polynomials obtained
from the expressions on the right hand sides of (6.6) and (6.7), respectively, by replacing
m with m/2. Similarly, define P2x+1,2a+1(m) and P2x+2,2a+1(m) to be the polynomials
obtained from the expressions on the right hand sides of (6.8) and (6.9), respectively, by
replacing m with (m − 1)/2.

Corollary 6.3. With the above definition of the polynomials Px,a(m), for non-negative

integers a, m and x with x ≥ 1 we have

CS(x, a, m) = Px,a(m). (6.10)

Proof. By Theorem 6.2, when a is even, (6.10) holds if m is even and m ≥ 0. Since the
two sides of (6.10) are polynomials in m (the left hand side by Lemma 6.1), they must be
equal. The case when a is odd follows in the same way, since according to Theorem 6.2,
(6.10) holds if m is odd and m ≥ 1. �

The case of cyclically symmetric tilings of the S-cored hexagon SCx,x,x(a, a, a, m) is
covered by Theorem 6.2 and Corollary 6.3, provided x ≥ 1. The remaining case of x = 0
follows directly, due to the fact that the region SC0,0,0(a, a, a, m) is the union of three
independent hexagons, each of sides a, a, m, a, a, m (see Figure 6.5), and thus its number
of 120◦-rotation invariant tilings is simply the number of tilings of one of those hexagons.
By MacMahon’s classical theorem [17, Sect. 495] that enumerates tilings of such hexagons,
we thus obtain

CS(0, a, m) =
H(a)2 H(m) H(2a + m)

H(a + m)2 H(2a)
, (6.11)
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Figure 7.1. Reduction of the CSTC case to a C-region.

where the hyperfactorials H(n) are defined by

H(n) := 0! 1! · · · (n − 1)!. (6.12)

This completes the case of cyclically symmetric tilings.

7. The cyclically symmetric and transpose complementary case

This case turns out to reduce to the enumeration of tilings of the regions of type C
defined in Section 2.

In order for the S-cored hexagon SCx,y,z(a, b, c, m) to have tilings that are both cycli-
cally symmetric and transpose complementary, we need to have x = y = z, a = b = c,
and all of x, a and m must be even. Let us denote by CSTC(2x, 2a, 2m) the number
of tilings of SC2x,2x,2x(2a, 2a, 2a, 2m) that are both cyclically symmetric and transpose
complementary.

Theorem 7.1. For non-negative integers x, a and m with x ≥ 1 we have

CSTC(2x, 2a, 2m) = M(Cx−1,a,m), (7.1)

where the quantity on the right hand side is given by the product formula of Theorem 5.1.

Proof. Consider the region SC2x,2x,2x(2a, 2a, 2a, 2m), illustrated in Figure 7.1 for x = 2,
a = 2 and m = 3. In any tiling of it that is transpose complementary, all vertical lozenge
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positions along its vertical symmetry axis must be occupied by lozenges (see Figure 7.1).
Moreover, the lozenges obtained from these by rotating them 120◦ and 240◦ must be
part of any tiling that is in addition also cyclically symmetric. Upon removal of all these
forced lozenges from SC2x,2x,2x(2a, 2a, 2a, 2m), the leftover region becomes the union of
six independent and congruent regions. Clearly, the tilings of any one of these are in
one to one correspondence with the tilings of SC2x,2x,2x(2a, 2a, 2a, 2m) that are cyclically
symmetric and transpose complementary. However, after removing the forced lozenges
from this fundamental region, one obtains precisely the region Cx−1,a,m. This completes
the proof. �

As seen at the end of the previous section (see Figure 6.5), when x = 0 the S-cored
hexagon reduces to three independent hexagons, each of side-lengths 2a, 2a, 2m, 2a, 2a,
2m (in cyclic order). Thus CSTC(0, 2a, 2m) is just the number of tilings of such a hexagon
that are invariant under reflection across its symmetry axis perpendicular to the sides of
length 2m. However, the latter can be identified (for example, via the bijection described
in [11]) with the transpose complementary plane partitions fitting inside a 2a × 2a × 2m
box. Therefore, by Proctor’s formula [18] we obtain

CSTC(0, 2a, 2m) =

(

2a + m − 1

2a − 1

) 2a−2
∏

i=1

2a−2
∏

j=i

2m + i + j + 1

i + j + 1
. (7.2)

This completes the cyclically symmetric and transpose complementary case.

8. Concluding remarks

In this paper we considered the problem of enumerating the symmetry classes of lozenge
tilings of the S-cored hexagons introduced in [7], and solved two of the six new cases
that arise. Our solution is based on previous results we obtained in [8], as well as new
counterparts to them presented in the current paper.

The remaining cases require different techniques and will be addressed in subsequent
papers.
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