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Very rough overview

Azenhas’ procedure: LR(λ/µ, ν) ∼→ LR(λ/ν, µ), T 7→ T∨

(1999 or 2000)
She expressed hope to interpret her procedure using
R-modules of the following form (R: PID, p ∈ R prime):
R/(pλ1)⊕ R/(pλ2)⊕ · · · ⊕ R/(pλl ).
We give a possible answer for R = C[t ], p = t (an indet.).

Thm. (T)

Set M = C[t ]/(tλ1)⊕ C[t ]/(tλ2)⊕ · · · ⊕ C[t ]/(tλl ).
Then, for most submodules N yielding a given LR-tableau T ,
the submodule N⊥ ⊂ M∗ yields T∨.

A precise result is phrased using the irreducible
components of certain submodule varieties.
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Littlewood-Richardson (LR) tableaux

1 1
1

1 1 2
2 2 2 3

5

5 5
5 5 5

∧ ∧
∈ LR((8,6,2,1)

↑
outer shape

/
(6,5,2)
↑

inner shape

, (5,4,1)
↑

weight

)

Conditions: 5, ∧, lattice permutation condition (rephrased):

before row 1 row 1 rows 1-2 rows 1-3 rows 1-4

# 1 ’s 0 2 3 5 5

# 2 ’s 0 0 0 1 3

# 3 ’s 0 0 0 0 1

= = = =

= = = =
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Littlewood-Richardson sequences

1 1
1

1 1 2
2 2 2 3(

, , ,

)
Such a sequence of partitions is called a Littlewood-Richardson
(LR) sequence.
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Azenhas’ procedure

LR((8,6,2,1)/(6,5,2),(5,4,1)) LR((8,6,2,1)/(5,4,1),(6,5,2))

∈ ∈

T =

1 1
1

1 2 2
1 2 2 3

7−→
1 1 1

1 2
1 2 2 2

1 2 3 3

= T∨

7→

full 4-deletion

T (3) =
1 1 1

1 2
1 2 2 2 37→

full 3-deletion

T (2) = 1 1 1 1
1 2 2 2 27→

full 2-deletion

T (1) = 1 1 1 1 1
full 1-deletion7→ T (0) = ∅
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Hall varieties

Let C[t ] be the polynomial ring in t over C.
Consider C[t ]-modules only of the form
M = C[t ]/(tλ1)⊕ C[t ]/(tλ2)⊕ · · · ⊕ C[t ]/(tλl ),
λ = (λ1, λ2, . . . , λl) being a partition.
Call it a (nilpotent) C[t ]-module of type λ, write type M = λ.
dimC M = |λ| := λ1 + λ2 + · · ·+ λl .
A submodule or a quotient of M is also of that kind.
Fix partitions λ, µ, ν with |λ| = |µ|+ |ν|, and M of type λ.
Tentatively call
GM
µν := {N ⊂ M submodule | type M/N = µ, type N = ν } a

Hall variety.
It is a locally closed subvariety of a Grassmannian.
If C is replaced by Fq, then #GM

µν = gλµν(q), the Hall
polynomial evaluated at q. (P. Hall, T. Klein, I. G.
Macdonald)
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Green-Klein tableaux, Green-Klein varieties

Let ′ denote the conjugate partition, e.g.

′

= .

To each N ∈ GM
µν , J. A. Green associated a LR tableau

TM(N) ∈ LR(λ′
/
µ′, ν

′).
Setting µ(s) = type M/tsN for all s, he showed that
((µ(0))′, (µ(1))′, . . . , (µ(u))′) is a LR sequence (u = ν1).
TM(N) is the corresponding LR tableau.
Note µ(0) = µ, µ(u) = λ.
For each T ∈ LR(λ′

/
µ′, ν

′), set
GM

T := {N ∈ GM
µν | TM(N) = T }.

GM
µν =

∐
T∈LR(λ

′
/µ′,ν′)

GM
T .

Temporarily call each GM
T a Green-Klein variety.
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More facts about the Green-Klein varieties

Each GM
T is irreducible, nonsingular, locally closed in GM

µν .

dimGM
T = n(λ)− n(µ)− n(ν), where n(λ) =

l∑
i=1

(i − 1)λi .

dimGM
T is constant for fixed λ, µ and ν.

GM
T , T ∈ LR(λ′

/
µ′, ν

′), are the irreducible components of
GM
µν .

The above is sufficient to state the main theorem, but here are
some more facts useful for the proof.

N 7→ (N, tN, t2N, . . . ) embeds GM
T into a slightly larger

variety ĜM
T = { (N0,N1, . . . ,Nu) submodules | tNs−1 ⊂

Ns, type M/Ns = (µ(s))′ (∀s) } as an open subvariety.

ĜM
T has an open covering by subsets isomorphic to affine

spaces.
Itaru Terada A module model
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If M is a nilpotent C[t ]-module of type λ, so is
M∗ = HomC(M,C) (t y M∗ as the transpose of t y M).
N 7→ N⊥ = {α ∈ M∗ | α|N = 0 } gives an isomorphism of
varieties ⊥ : GM

µν
∼→ GM∗

νµ switching µ and ν.
⊥ induces a bijection between the irreducible components
of GM

µν and GM∗
νµ .

Thm. (T)

⊥(GM
T ) = GM∗

T∨ . In particular, for most N ∈ GM
T , i.e. for all N in

some dense open subset of GM
T , we have N⊥ ∈ GM∗

T∨ .

Lem.

Let T [ denote the result of applying the full λ1-deletion to T .
Then for most N ∈ GM

T , we have N ∩ ker tλ1−1 ∈ Gker tλ1−1

T [ .
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Coordinates

The isomorphism from an affine space to a piece of an open
covering of ĜM

T can be recursively given as follows.

Consider π : ĜM
T → Gν′u

(ker t), (Ns)
u
s=0 7→ Nu−1.

The condition type M/Nu−1 = (µ(u−1))′ can be specified by
dimensions of the intersections of Nu−1 with the various
components of the partial flag (ker t ∩ taM)r

a=0 (r = λ1).
The subvariety of Gν′u

(ker t) specified by such dimensions
has an open covering by certain affine spaces (Uα)α.
For each Uα and Nn−1 ∈ Uα, the isomorphism Ad → Uα

can be lifted to Ad × π−1(Nu−1)
∼→ π−1(Uα).

The fiber π−1(Nu−1) is isomorphic to
̂GM/Nu−1

T
, which allows

an open covering by affine spaces by induction
(T = T \ { u }).
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Coordinates, example

The pieces of the open covering of ĜM
T are parametrized by

the fillings Ξ of the Young diagram of λ′ which are column
increasing and rowwise permutations of T .

If T =
1

1 1 2
2 2

, then one such Ξ is
1

1 1 2
2 2

.

In this example the dimension is 4, and UΞ ∩ GM
T = UΞ .

The submodule corresponding to (a, x , y , z) ∈ A4 is the
one generated by the column vectors of the matrix product
in the next slide.
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Coordinate, example (continued)


t3

t3

t2

t2




1
1

1 a
1




t−1

t−1

1
t−1




1
1

x y 1 z
1




t−1

t−1

1
t−1



=


t

t
xt yt t2 zt + a

1

, Ñ1=

〈
t
0
xt
0

,


0
t
yt
0

,


0
0
t2

0

,


0
0

zt + a
1


〉
⊂C[t ]4

N1=Ñ1/

〈
t3

0
0
0

,


0
t3

0
0

,


0
0
t2

0

,


0
0
0
t2


〉
⊂C[t ]4/

〈
t3

0
0
0
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0
t3

0
0

,


0
0
t2

0
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0
0
0
t2


〉
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Remarks

Even though Lemma is an essential ingredient, the proof of
the Theorem still requires a technique similar to
Steinberg’s result on the Steinberg variety, showing that
T⊥ ≺ T∨ holds for a certain ordering ≺ on LR(λ′

/
ν ′, µ

′)
and then using the fact that both T 7→ T⊥ and T 7→ T∨ are
bijections.
The parametrization of the irreducible components of GM

µν

and their dimension were given by M. van Leeuwen (2000).
The affine coordinates of the open covering of GM

T was
given in the form of “generic vectors” by T. Maeda (2003
and later).
This also proves the involutiveness of Azenhas’ procedure.
(A combinatorial proof of the involutiveness has been given
by Azenhas, R. C. King and T (2017).)
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