On an involution on the set of Littlewood–Richardson tableaux A module model for Azenhas' bijection

Itaru Terada

Graduate School of Mathematical Sciences the University of Tokyo

Feb 21, 2018 / Algebraic and enumerative combinatorics in Okayama version with corrections in red, Feb 22, 2018

ヘロト ヘアト ヘヨト

크 > 크

Itaru Terada A module model

- Azenhas' procedure: $\mathcal{LR}(\lambda/\mu, \nu) \xrightarrow{\sim} \mathcal{LR}(\lambda/\nu, \mu), T \mapsto T^{\vee}$ (1999 or 2000)
- She expressed hope to interpret her procedure using *R*-modules of the following form (*R*: PID, p ∈ *R* prime): *R*/(p^{λ1}) ⊕ *R*/(p^{λ2}) ⊕ · · · ⊕ *R*/(p^{λ1}).
- We give a possible answer for $R = \mathbb{C}[t]$, p = t (an indet.).

Thm. (T)

Set $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l})$. Then, for most submodules N yielding a given LR-tableau T, the submodule $\mathbb{N}^+ \subset \mathbb{M}^+$ yields T'

- Azenhas' procedure: LR(λ/μ, ν) → LR(λ/ν, μ), T → T[∨] (1999 or 2000)
- She expressed hope to interpret her procedure using *R*-modules of the following form (*R*: PID, $p \in R$ prime): $R/(p^{\lambda_1}) \oplus R/(p^{\lambda_2}) \oplus \cdots \oplus R/(p^{\lambda_l}).$
- We give a possible answer for $R = \mathbb{C}[t]$, p = t (an indet.).

Thm. (T)

Set $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l})$. Then, for most submodules N yielding a given LR-tableau T, the submodule N^{+,} \subset M⁺ yields T⁺.

- Azenhas' procedure: LR(λ/μ, ν) → LR(λ/ν, μ), T → T[∨] (1999 or 2000)
- She expressed hope to interpret her procedure using *R*-modules of the following form (*R*: PID, $p \in R$ prime): $R/(p^{\lambda_1}) \oplus R/(p^{\lambda_2}) \oplus \cdots \oplus R/(p^{\lambda_l}).$
- We give a possible answer for $R = \mathbb{C}[t]$, p = t (an indet.).

Thm. (T)

Set $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l})$. Then, for most submodules N yielding a given LR-tableau T, the submodule $N^{\perp} \subset M^*$ yields T^{\vee} .

- Azenhas' procedure: LR(λ/μ, ν) → LR(λ/ν, μ), T → T[∨] (1999 or 2000)
- She expressed hope to interpret her procedure using *R*-modules of the following form (*R*: PID, $p \in R$ prime): $R/(p^{\lambda_1}) \oplus R/(p^{\lambda_2}) \oplus \cdots \oplus R/(p^{\lambda_l}).$
- We give a possible answer for $R = \mathbb{C}[t]$, p = t (an indet.).

Thm. (T)

Set $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l})$. Then, for most submodules N yielding a given LR-tableau T, the submodule $N^{\perp} \subset M^*$ yields T^{\vee} .

- Azenhas' procedure: LR(λ/μ, ν) → LR(λ/ν, μ), T → T[∨] (1999 or 2000)
- She expressed hope to interpret her procedure using *R*-modules of the following form (*R*: PID, $p \in R$ prime): $R/(p^{\lambda_1}) \oplus R/(p^{\lambda_2}) \oplus \cdots \oplus R/(p^{\lambda_l}).$
- We give a possible answer for $R = \mathbb{C}[t]$, p = t (an indet.).

Thm. (T)

Set $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l})$. Then, for most submodules N yielding a given LR-tableau T, the submodule $N^{\perp} \subset M^*$ yields T^{\vee} .

- Azenhas' procedure: LR(λ/μ, ν) → LR(λ/ν, μ), T → T[∨] (1999 or 2000)
- She expressed hope to interpret her procedure using *R*-modules of the following form (*R*: PID, $p \in R$ prime): $R/(p^{\lambda_1}) \oplus R/(p^{\lambda_2}) \oplus \cdots \oplus R/(p^{\lambda_l}).$
- We give a possible answer for $R = \mathbb{C}[t]$, p = t (an indet.).

Thm. (T)

Set $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l})$. Then, for most submodules N yielding a given LR-tableau T, the submodule $N^{\perp} \subset M^*$ yields T^{\vee} .

- Azenhas' procedure: LR(λ/μ, ν) → LR(λ/ν, μ), T → T[∨] (1999 or 2000)
- She expressed hope to interpret her procedure using *R*-modules of the following form (*R*: PID, $p \in R$ prime): $R/(p^{\lambda_1}) \oplus R/(p^{\lambda_2}) \oplus \cdots \oplus R/(p^{\lambda_l}).$
- We give a possible answer for $R = \mathbb{C}[t]$, p = t (an indet.).

Thm. (T)

Set $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l})$. Then, for most submodules N yielding a given LR-tableau T, the submodule $N^{\perp} \subset M^*$ yields T^{\vee} .

Littlewood-Richardson (LR) tableaux

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8,6,2,1)/(6,5,2),(5,4,1))$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

Conditions: \leq , \wedge , lattice permutation condition (rephrased):

before row 1 row 1 rows 1-2 rows 1-3 rows 1-4

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8, 6, 2, 1) / (6, 5, 2), (5, 4, 1)) \\ \stackrel{\uparrow}{\underset{\text{outer shape inner shape weight}}{\uparrow}} (6, 5, 2), (5, 4, 1))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8,6,2,1)/(6,5,2),(5,4,1))$$

outer shape \uparrow weight

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

Conditions: \leq , \land , lattice permutation condition (rephrased):

before row 1 row 1 rows 1-2 rows 1-3 rows 1-4

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8,6,2,1)/(6,5,2),(5,4,1))$$

outer shape \uparrow the shape \uparrow weight \uparrow

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8,6,2,1)/(6,5,2),(5,4,1))$$

outer shape \uparrow inner shape \uparrow weight

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8,6,2,1)/(6,5,2),(5,4,1))$$

outer shape \uparrow inner shape \uparrow weight

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8, 6, 2, 1) / (6, 5, 2), (5, 4, 1))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8, 6, 2, 1) / (6, 5, 2), (5, 4, 1))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8,6,2,1)/(6,5,2),(5,4,1))$$

outer shape \uparrow the shape \uparrow weight \uparrow

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson (LR) tableaux

$$\in \mathcal{LR}((8,6,2,1)/(6,5,2),(5,4,1))$$

outer shape \uparrow the shape \uparrow weight \uparrow

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conditions: \leq , \land , lattice permutation condition (rephrased):

Littlewood-Richardson sequences

ヘロン ヘアン ヘビン ヘビン

Littlewood-Richardson sequences

ヘロト 人間 ト ヘヨト ヘヨト

Littlewood-Richardson sequences

프 > 프

- ∢ ⊒ →

< < >> < </>

Azenhas' procedure

Itaru Terada A module model

Hall varieties

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form
 - $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$
 - $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.

• dim_C
$$M = |\lambda| := \lambda_1 + \lambda_2 + \dots + \lambda_l$$
.

- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call
 - $\mathcal{G}^{M}_{\mu\nu} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$
- It is a locally closed subvariety of a Grassmannian.
- If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}^M_{\mu\nu} = g^{\lambda}_{\mu\nu}(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

3

Hall varieties

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form
 - $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_j}),$
 - $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.

• dim_C
$$M = |\lambda| := \lambda_1 + \lambda_2 + \dots + \lambda_l$$
.

- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call
 - $\mathcal{G}^{M}_{\mu\nu} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$
- It is a locally closed subvariety of a Grassmannian.
- If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}^M_{\mu\nu} = g^{\lambda}_{\mu\nu}(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

3

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$ $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.

• dim_C
$$M = |\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_l$$
.

- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call
 - $\mathcal{G}^{M}_{\mu\nu} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$
- It is a locally closed subvariety of a Grassmannian.
- If C is replaced by F_q, then #G^M_{μν} = g^λ_{μν}(q), the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$
 - $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.
- dim_{\mathbb{C}} $M = |\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_l$.
- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call
 - $\mathcal{G}^{M}_{\mu\nu} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$
- It is a locally closed subvariety of a Grassmannian.
- If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}_{\mu\nu}^M = g_{\mu\nu}^\lambda(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$
 - $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.

• dim_{$$\mathbb{C}$$} $M = |\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_l$.

- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call
 - $\mathcal{G}^{M}_{\mu\nu} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$
- It is a locally closed subvariety of a Grassmannian.
- If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}_{\mu\nu}^M = g_{\mu\nu}^\lambda(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$ $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.
- dim_{\mathbb{C}} $M = |\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_l$.
- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call
 - $\mathcal{G}^{M}_{\mu\nu} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$
- It is a locally closed subvariety of a Grassmannian.
- If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}_{\mu\nu}^M = g_{\mu\nu}^\lambda(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$ $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.
- dim_{\mathbb{C}} $M = |\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_l$.
- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call $\mathcal{G}^{M}_{\mu\nu} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$
- It is a locally closed subvariety of a Grassmannian.
- If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}_{\mu\nu}^M = g_{\mu\nu}^\lambda(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

Hall varieties

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$ $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.

• dim_{$$\mathbb{C}$$} $M = |\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_l$.

- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call

 $\mathcal{G}_{\mu\nu}^{M} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$

- It is a locally closed subvariety of a Grassmannian.
- If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}_{\mu\nu}^M = g_{\mu\nu}^\lambda(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$ $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.
- dim_{\mathbb{C}} $M = |\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_l$.
- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call
 - $\mathcal{G}^{M}_{\mu\nu} := \{ N \subset M \text{ submodule } | \text{ type } M / N = \mu, \text{ type } N = \nu \} \text{ a Hall variety.}$
 - It is a locally closed subvariety of a Grassmannian.
 - If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}_{\mu\nu}^M = g_{\mu\nu}^\lambda(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

- Let $\mathbb{C}[t]$ be the polynomial ring in t over \mathbb{C} .
- Consider $\mathbb{C}[t]$ -modules only of the form $M = \mathbb{C}[t]/(t^{\lambda_1}) \oplus \mathbb{C}[t]/(t^{\lambda_2}) \oplus \cdots \oplus \mathbb{C}[t]/(t^{\lambda_l}),$ $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ being a partition.
- Call it a (nilpotent) $\mathbb{C}[t]$ -module of type λ , write type $M = \lambda$.
- dim_{\mathbb{C}} $M = |\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_l$.
- A submodule or a quotient of *M* is also of that kind.
- Fix partitions λ, μ, ν with $|\lambda| = |\mu| + |\nu|$, and *M* of type λ .
- Tentatively call
 G^M_{μν} := { *N* ⊂ *M* submodule | type *M*/_{*N*} = μ, type *N* = ν } a
 Hall variety.
- It is a locally closed subvariety of a Grassmannian.
- If \mathbb{C} is replaced by \mathbb{F}_q , then $\#\mathcal{G}_{\mu\nu}^M = g_{\mu\nu}^\lambda(q)$, the Hall polynomial evaluated at q. (P. Hall, T. Klein, I. G. Macdonald)

- To each $N \in \mathcal{G}_{\mu\nu}^{M}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu').$
- Setting $\mu^{(s)} = \text{type } M/t^s N$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \ \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, set $\mathcal{G}_T^M := \{ N \in \mathcal{G}_{-}^M \mid T_M(N) = T \},\$
- $\mathcal{G}_{\mu\nu}^{M} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}_{T}^{M}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- To each $N \in \mathcal{G}^{M}_{\mu\nu}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu')$.
- Setting $\mu^{(s)} = \text{type } M/_{t^sN}$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \ \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, set $\mathcal{G}_{T}^{M} := \{ N \in \mathcal{G}^{M} \mid T_{M}(N) = T \}.$
- $\mathcal{G}_{\mu\nu}^{M} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}_{T}^{M}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- To each $N \in \mathcal{G}_{\mu\nu}^{M}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu')$.
- Setting $\mu^{(s)} = \text{type } M/t^s N$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \ \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, set $\mathcal{G}_{\mathcal{T}}^{\mathcal{M}} := \{ N \in \mathcal{G}^{\mathcal{M}} \mid T_{\mathcal{M}}(N) = T \}.$
- $\mathcal{G}_{\mu\nu}^{M} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}_{T}^{M}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- To each $N \in \mathcal{G}_{\mu\nu}^{M}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu')$.
- Setting $\mu^{(s)} = \text{type } M/t^s N$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \, \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, set $\mathcal{G}_{T}^{M} := \{ N \in \mathcal{G}_{\mu\nu}^{M} \mid T_{M}(N) = T \}.$
- $\mathcal{G}^{M}_{\mu\nu} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}^{M}_{T}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- To each $N \in \mathcal{G}_{\mu\nu}^{M}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu')$.
- Setting $\mu^{(s)} = \text{type } M/t^s N$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \, \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, set $\mathcal{G}_T^M := \{ N \in \mathcal{G}_{\mu\nu}^M \mid T_M(N) = T \}.$
- $\mathcal{G}^{M}_{\mu\nu} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}^{M}_{T}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- To each $N \in \mathcal{G}_{\mu\nu}^{M}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu')$.
- Setting $\mu^{(s)} = \text{type } M/t^s N$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \ \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, set $\mathcal{G}^{M} := \{N \in \mathcal{G}^{M} \mid T_{M}(N) = T\}$
- $\mathcal{G}_{\mu\nu}^{M} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}_{T}^{M}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- To each $N \in \mathcal{G}_{\mu\nu}^{M}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu')$.
- Setting $\mu^{(s)} = \text{type } M/t^s N$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \ \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, set $\mathcal{G}_T^M := \{ N \in \mathcal{G}_{\mu\nu}^M \mid T_M(N) = T \}.$
- $\mathcal{G}^{M}_{\mu\nu} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}^{M}_{T}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- To each $N \in \mathcal{G}_{\mu\nu}^{M}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu')$.
- Setting $\mu^{(s)} = \text{type } M/t^s N$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \ \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu',\nu')$, set

$$\mathcal{G}_T^M := \{ N \in \mathcal{G}_{\mu\nu}^M \mid T_M(N) = T \}.$$

- $\mathcal{G}_{\mu\nu}^{M} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}_{T}^{M}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- To each $N \in \mathcal{G}_{\mu\nu}^{M}$, J. A. Green associated a LR tableau $T_{M}(N) \in \mathcal{LR}(\lambda'/\mu', \nu')$.
- Setting $\mu^{(s)} = \text{type } M/t^s N$ for all s, he showed that $((\mu^{(0)})', (\mu^{(1)})', \dots, (\mu^{(u)})')$ is a LR sequence $(u = \nu_1)$.
- $T_M(N)$ is the corresponding LR tableau.
- Note $\mu^{(0)} = \mu, \ \mu^{(u)} = \lambda.$
- For each $T \in \mathcal{LR}(\lambda'/\mu',\nu')$, set
 - $\mathcal{G}_T^M := \{ N \in \mathcal{G}_{\mu\nu}^M \mid T_M(N) = T \}.$
- $\mathcal{G}_{\mu\nu}^{M} = \coprod_{T \in \mathcal{LR}(\lambda'/\mu',\nu')} \mathcal{G}_{T}^{M}.$
- Temporarily call each \mathcal{G}_T^M a Green-Klein variety.

- Each \mathcal{G}_T^M is irreducible, nonsingular, locally closed in $\mathcal{G}_{\mu\nu}^M$.
- dim $\mathcal{G}_T^M = n(\lambda) n(\mu) n(\nu)$, where $n(\lambda) = \sum_{i=1}^r (i-1)\lambda_i$.
- dim \mathcal{G}_T^M is constant for fixed λ, μ and ν .
- $\overline{\mathcal{G}_T^M}$, $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, are the irreducible components of $\mathcal{G}_{\mu\nu}^M$.

- $N \mapsto (N, tN, t^2N, ...)$ embeds \mathcal{G}_T^M into a slightly larger variety $\widehat{\mathcal{G}_T^M} = \{ (N_0, N_1, ..., N_u) \text{ submodules } | tN_{s-1} \subset N_s, \text{ type } M/N_s = (\mu^{(s)})' (\forall s) \}$ as an open subvariety.
- \mathcal{G}_T^M has an open covering by subsets isomorphic to affine spaces.

- Each \mathcal{G}_T^M is irreducible, nonsingular, locally closed in $\mathcal{G}_{\mu\nu}^M$.
- dim $\mathcal{G}_T^M = n(\lambda) n(\mu) n(\nu)$, where $n(\lambda) = \sum_{i=1}^{n} (i-1)\lambda_i$.
- dim \mathcal{G}_T^M is constant for fixed λ, μ and ν .
- $\overline{\mathcal{G}_T^M}$, $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, are the irreducible components of $\mathcal{G}_{\mu\nu}^M$.

- $N \mapsto (N, tN, t^2N, ...)$ embeds \mathcal{G}_T^M into a slightly larger variety $\widehat{\mathcal{G}_T^M} = \{ (N_0, N_1, ..., N_u) \text{ submodules } | tN_{s-1} \subset N_s, \text{ type } M/N_s = (\mu^{(s)})' (\forall s) \}$ as an open subvariety.
- \mathcal{G}_T^M has an open covering by subsets isomorphic to affine spaces.

• Each \mathcal{G}_{T}^{M} is irreducible, nonsingular, locally closed in $\mathcal{G}_{\mu\nu}^{M}$.

• dim
$$\mathcal{G}_T^M = n(\lambda) - n(\mu) - n(\nu)$$
, where $n(\lambda) = \sum_{i=1}^{\prime} (i-1)\lambda_i$.

- dim \mathcal{G}_T^M is constant for fixed λ, μ and ν .
- $\overline{\mathcal{G}_T^M}$, $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, are the irreducible components of $\mathcal{G}_{\mu\nu}^M$.

- $N \mapsto (N, tN, t^2N, ...)$ embeds \mathcal{G}_T^M into a slightly larger variety $\widehat{\mathcal{G}_T^M} = \{ (N_0, N_1, ..., N_u) \text{ submodules } | tN_{s-1} \subset N_s, \text{ type } M/N_s = (\mu^{(s)})' (\forall s) \}$ as an open subvariety.
- \mathcal{G}_T^M has an open covering by subsets isomorphic to affine spaces.

- Each \mathcal{G}_{T}^{M} is irreducible, nonsingular, locally closed in $\mathcal{G}_{\mu\nu}^{M}$.
- dim $\mathcal{G}_T^M = n(\lambda) n(\mu) n(\nu)$, where $n(\lambda) = \sum_{i=1}^{r} (i-1)\lambda_i$.
- dim \mathcal{G}_T^M is constant for fixed λ, μ and ν .
- $\overline{\mathcal{G}_T^M}$, $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, are the irreducible components of $\mathcal{G}_{\mu\nu}^M$.

- $N \mapsto (N, tN, t^2N, ...)$ embeds \mathcal{G}_T^M into a slightly larger variety $\widehat{\mathcal{G}_T^M} = \{ (N_0, N_1, ..., N_u) \text{ submodules } | tN_{s-1} \subset N_s, \text{ type } M/N_s = (\mu^{(s)})' (\forall s) \}$ as an open subvariety.
- \mathcal{G}_T^M has an open covering by subsets isomorphic to affine spaces.

• Each \mathcal{G}_{T}^{M} is irreducible, nonsingular, locally closed in $\mathcal{G}_{\mu\nu}^{M}$.

• dim
$$\mathcal{G}_T^M = n(\lambda) - n(\mu) - n(\nu)$$
, where $n(\lambda) = \sum_{i=1}^{\prime} (i-1)\lambda_i$.

- dim $\mathcal{G}_{\mathcal{T}}^{\mathcal{M}}$ is constant for fixed λ, μ and ν .
- $\overline{\mathcal{G}_T^M}$, $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, are the irreducible components of $\mathcal{G}_{\mu\nu}^M$.

- $N \mapsto (N, tN, t^2N, ...)$ embeds \mathcal{G}_T^M into a slightly larger variety $\widehat{\mathcal{G}_T^M} = \{ (N_0, N_1, ..., N_u) \text{ submodules } | tN_{s-1} \subset N_s, \text{ type } M/N_s = (\mu^{(s)})' (\forall s) \}$ as an open subvariety.
- \mathcal{G}_T^M has an open covering by subsets isomorphic to affine spaces.

• Each \mathcal{G}_T^M is irreducible, nonsingular, locally closed in $\mathcal{G}_{\mu\nu}^M$.

• dim
$$\mathcal{G}_T^M = n(\lambda) - n(\mu) - n(\nu)$$
, where $n(\lambda) = \sum_{i=1}^{r} (i-1)\lambda_i$.

- dim $\mathcal{G}_{\mathcal{T}}^{\mathcal{M}}$ is constant for fixed λ, μ and ν .
- $\overline{\mathcal{G}_T^M}$, $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, are the irreducible components of $\mathcal{G}_{\mu\nu}^M$.

- $N \mapsto (N, tN, t^2N, ...)$ embeds \mathcal{G}_T^M into a slightly larger variety $\widehat{\mathcal{G}_T^M} = \{ (N_0, N_1, ..., N_u) \text{ submodules } | tN_{s-1} \subset N_s, \text{ type } M/N_s = (\mu^{(s)})' (\forall s) \}$ as an open subvariety.
- \mathcal{G}_T^M has an open covering by subsets isomorphic to affine spaces.

• Each \mathcal{G}_{T}^{M} is irreducible, nonsingular, locally closed in $\mathcal{G}_{\mu\nu}^{M}$.

• dim
$$\mathcal{G}_T^M = n(\lambda) - n(\mu) - n(\nu)$$
, where $n(\lambda) = \sum_{i=1}^{r} (i-1)\lambda_i$.

- dim \mathcal{G}_T^M is constant for fixed λ, μ and ν .
- $\overline{\mathcal{G}_T^M}$, $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, are the irreducible components of $\mathcal{G}_{\mu\nu}^M$.

- $N \mapsto (N, tN, t^2N, ...)$ embeds \mathcal{G}_T^M into a slightly larger variety $\widehat{\mathcal{G}_T^M} = \{ (N_0, N_1, ..., N_u) \text{ submodules } | tN_{s-1} \subset N_s, \text{ type } M/N_s = (\mu^{(s)})' (\forall s) \}$ as an open subvariety.
- *G*^M_T has an open covering by subsets isomorphic to affine spaces.

More facts about the Green-Klein varieties

• Each \mathcal{G}_{T}^{M} is irreducible, nonsingular, locally closed in $\mathcal{G}_{\mu\nu}^{M}$.

• dim
$$\mathcal{G}_T^M = n(\lambda) - n(\mu) - n(\nu)$$
, where $n(\lambda) = \sum_{i=1}^{\prime} (i-1)\lambda_i$.

- dim $\mathcal{G}_{\mathcal{T}}^{\mathcal{M}}$ is constant for fixed λ, μ and ν .
- $\overline{\mathcal{G}_T^M}$, $T \in \mathcal{LR}(\lambda'/\mu', \nu')$, are the irreducible components of $\mathcal{G}_{\mu\nu}^M$.

The above is sufficient to state the main theorem, but here are some more facts useful for the proof.

- N → (N, tN, t²N,...) embeds G^M_T into a slightly larger variety G^M_T = { (N₀, N₁,..., N_u) submodules | tN_{s-1} ⊂ N_s, type M/N_s = (µ^(s))' (∀s) } as an open subvariety.
 G^M_T has an open covering by subsets isomorphic to affine
- *G*^M_T has an open covering by subsets isomorphic to affine spaces.

Main Theorem

- If *M* is a nilpotent C[*t*]-module of type λ, so is
 M^{*} = Hom_C(*M*, C) (*t* ∩ *M*^{*} as the transpose of *t* ∩ *M*).
- N → N[⊥] = { α ∈ M* | α|_N = 0 } gives an isomorphism of varieties ⊥: G^M_{µν} → G^{M*}_{νµ} switching µ and ν.
- \perp induces a bijection between the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and $\mathcal{G}^{M^*}_{\nu\mu}$.

Thm. (T)

 $\bot(\overline{\mathcal{G}_T^M}) = \overline{\mathcal{G}_{T^\vee}^{M^*}}. \text{ In particular, for most } N \in \mathcal{G}_T^M, \text{ i.e. for all } N \text{ in some dense open subset of } \mathcal{G}_T^M, \text{ we have } N^\perp \in \mathcal{G}_{T^\vee}^{M^*}.$

_em.

Main Theorem

- If *M* is a nilpotent C[*t*]-module of type λ, so is
 M^{*} = Hom_C(*M*, C) (*t* ∩ *M*^{*} as the transpose of *t* ∩ *M*).
- N → N[⊥] = { α ∈ M* | α|_N = 0 } gives an isomorphism of varieties ⊥: G^M_{µν} → G^{M*}_{νµ} switching µ and ν.
- \perp induces a bijection between the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and $\mathcal{G}^{M^*}_{\nu\mu}$.

Thm. (T)

 $\bot(\overline{\mathcal{G}_T^M}) = \overline{\mathcal{G}_{T^\vee}^{M^*}}. \text{ In particular, for most } N \in \mathcal{G}_T^M, \text{ i.e. for all } N \text{ in some dense open subset of } \mathcal{G}_T^M, \text{ we have } N^\perp \in \mathcal{G}_{T^\vee}^{M^*}.$

_em.

Main Theorem

- If *M* is a nilpotent C[*t*]-module of type λ, so is
 M^{*} = Hom_C(*M*, C) (*t* ∩ *M*^{*} as the transpose of *t* ∩ *M*).
- N → N[⊥] = { α ∈ M^{*} | α|_N = 0 } gives an isomorphism of varieties ⊥: G^M_{µν} → G^{M*}_{νµ} switching µ and ν.
- \perp induces a bijection between the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and $\mathcal{G}^{M*}_{\nu\mu}$.

Thm. (T)

 $\bot(\overline{\mathcal{G}_T^M}) = \overline{\mathcal{G}_{T^\vee}^{M^*}}. \text{ In particular, for most } N \in \mathcal{G}_T^M, \text{ i.e. for all } N \text{ in some dense open subset of } \mathcal{G}_T^M, \text{ we have } N^\perp \in \mathcal{G}_{T^\vee}^{M^*}.$

_em.

Main Theorem

- If *M* is a nilpotent C[*t*]-module of type λ, so is
 M^{*} = Hom_C(*M*, C) (*t* ∩ *M*^{*} as the transpose of *t* ∩ *M*).
- N → N[⊥] = { α ∈ M* | α|_N = 0 } gives an isomorphism of varieties ⊥: G^M_{µν} → G^{M*}_{νµ} switching µ and ν.
- \perp induces a bijection between the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and $\mathcal{G}^{M^*}_{\nu\mu}$.

Thm. (T)

 $\bot(\overline{\mathcal{G}_T^M}) = \overline{\mathcal{G}_{T^\vee}^{M^*}}. \text{ In particular, for most } N \in \mathcal{G}_T^M, \text{ i.e. for all } N \text{ in some dense open subset of } \mathcal{G}_T^M, \text{ we have } N^\perp \in \mathcal{G}_{T^\vee}^{M^*}.$

_em.

Main Theorem

- If *M* is a nilpotent C[*t*]-module of type λ, so is
 M^{*} = Hom_C(*M*, C) (*t* ∩ *M*^{*} as the transpose of *t* ∩ *M*).
- N → N[⊥] = { α ∈ M* | α|_N = 0 } gives an isomorphism of varieties ⊥: G^M_{µν} → G^{M*}_{νµ} switching µ and ν.
- \perp induces a bijection between the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and $\mathcal{G}^{M^*}_{\nu\mu}$.

Thm. (T)

 $\perp(\overline{\mathcal{G}_T^M}) = \overline{\mathcal{G}_{T^\vee}^{M^*}}$. In particular, for most $N \in \mathcal{G}_T^M$, i.e. for all N in some dense open subset of \mathcal{G}_T^M , we have $N^{\perp} \in \mathcal{G}_{T^\vee}^{M^*}$.

_em.

Main Theorem

- If *M* is a nilpotent C[*t*]-module of type λ, so is
 M^{*} = Hom_C(*M*, C) (*t* ∩ *M*^{*} as the transpose of *t* ∩ *M*).
- N → N[⊥] = { α ∈ M* | α|_N = 0 } gives an isomorphism of varieties ⊥: G^M_{µν} → G^{M*}_{νµ} switching µ and ν.
- \perp induces a bijection between the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and $\mathcal{G}^{M^*}_{\nu\mu}$.

Thm. (T)

 $\perp(\overline{\mathcal{G}_T^M}) = \overline{\mathcal{G}_{T^{\vee}}^{M^*}}$. In particular, for most $N \in \mathcal{G}_T^M$, i.e. for all N in some dense open subset of \mathcal{G}_T^M , we have $N^{\perp} \in \mathcal{G}_{T^{\vee}}^{M^*}$.

_em.

Main Theorem

- If *M* is a nilpotent C[*t*]-module of type λ, so is
 M^{*} = Hom_C(*M*, C) (*t* ∩ *M*^{*} as the transpose of *t* ∩ *M*).
- N → N[⊥] = { α ∈ M* | α|_N = 0 } gives an isomorphism of varieties ⊥: G^M_{µν} → G^{M*}_{νµ} switching µ and ν.
- \perp induces a bijection between the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and $\mathcal{G}^{M^*}_{\nu\mu}$.

Thm. (T)

 $\perp(\overline{\mathcal{G}_T^M}) = \overline{\mathcal{G}_{T^{\vee}}^{M^*}}$. In particular, for most $N \in \mathcal{G}_T^M$, i.e. for all N in some dense open subset of \mathcal{G}_T^M , we have $N^{\perp} \in \mathcal{G}_{T^{\vee}}^{M^*}$.

Lem.

Main Theorem

- If *M* is a nilpotent C[*t*]-module of type λ, so is
 M^{*} = Hom_C(*M*, C) (*t* ∩ *M*^{*} as the transpose of *t* ∩ *M*).
- N → N[⊥] = { α ∈ M* | α|_N = 0 } gives an isomorphism of varieties ⊥: G^M_{µν} → G^{M*}_{νµ} switching µ and ν.
- \perp induces a bijection between the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and $\mathcal{G}^{M^*}_{\nu\mu}$.

Thm. (T)

 $\perp(\overline{\mathcal{G}_T^M}) = \overline{\mathcal{G}_{T^{\vee}}^{M^*}}$. In particular, for most $N \in \mathcal{G}_T^M$, i.e. for all N in some dense open subset of \mathcal{G}_T^M , we have $N^{\perp} \in \mathcal{G}_{T^{\vee}}^{M^*}$.

Lem.

- Consider $\pi \colon \widehat{\mathcal{G}_T^M} \to \mathcal{G}_{\nu'_u}(\ker t), (N_s)_{s=0}^u \mapsto N_{u-1}.$
- The condition type M/_{Nu-1} = (μ^(u-1))' can be specified by dimensions of the intersections of N_{u-1} with the various components of the partial flag (ker t ∩ t^aM)^r_{a=0} (r = λ₁).
- The subvariety of G_{ν'}(ker t) specified by such dimensions has an open covering by certain affine spaces (U_α)_α.
- For each U_α and N_{n-1} ∈ U_α, the isomorphism A^d → U_α can be lifted to A^d × π⁻¹(N_{u-1}) → π⁻¹(U_α).
- The fiber π⁻¹(N_{u-1}) is isomorphic to G^{M/N_{u-1}}, which allows an open covering by affine spaces by induction (T̄ = T \ {[u]}).

- Consider $\pi \colon \widehat{\mathcal{G}}_T^{\widetilde{M}} \to \mathcal{G}_{\nu'_u}(\ker t), (N_s)_{s=0}^u \mapsto N_{u-1}.$
- The condition type $M/N_{u-1} = (\mu^{(u-1)})'$ can be specified by dimensions of the intersections of N_{u-1} with the various components of the partial flag (ker $t \cap t^a M)_{a=0}^r$ ($r = \lambda_1$).
- The subvariety of $G_{\nu'_u}(\ker t)$ specified by such dimensions has an open covering by certain affine spaces $(U_{\alpha})_{\alpha}$.
- For each U_{α} and $N_{n-1} \in U_{\alpha}$, the isomorphism $\mathbb{A}^d \to U_{\alpha}$ can be lifted to $\mathbb{A}^d \times \pi^{-1}(N_{u-1}) \xrightarrow{\sim} \pi^{-1}(U_{\alpha})$.
- The fiber π⁻¹(N_{u-1}) is isomorphic to G^{M/N_{u-1}}, which allows an open covering by affine spaces by induction
 (T = T \ {[u]}).

- Consider $\pi \colon \widehat{\mathcal{G}_T^M} \to \mathcal{G}_{\nu'_u}(\ker t), (N_s)_{s=0}^u \mapsto N_{u-1}.$
- The condition type $M/N_{u-1} = (\mu^{(u-1)})'$ can be specified by dimensions of the intersections of N_{u-1} with the various components of the partial flag (ker $t \cap t^a M)_{a=0}^r$ ($r = \lambda_1$).
- The subvariety of G_{ν'}(ker t) specified by such dimensions has an open covering by certain affine spaces (U_α)_α.
- For each U_{α} and $N_{n-1} \in U_{\alpha}$, the isomorphism $\mathbb{A}^d \to U_{\alpha}$ can be lifted to $\mathbb{A}^d \times \pi^{-1}(N_{u-1}) \xrightarrow{\sim} \pi^{-1}(U_{\alpha})$.
- The fiber π⁻¹(N_{u-1}) is isomorphic to G^{M/N_{u-1}}, which allows an open covering by affine spaces by induction
 (T = T \ {[u]}).

- Consider $\pi \colon \widehat{\mathcal{G}_T^M} \to \mathcal{G}_{\nu'_u}(\ker t), (N_s)_{s=0}^u \mapsto N_{u-1}.$
- The condition type M/_{Nu-1} = (μ^(u-1))' can be specified by dimensions of the intersections of N_{u-1} with the various components of the partial flag (ker t ∩ t^aM)^r_{a=0} (r = λ₁).
- The subvariety of G_{ν'}(ker t) specified by such dimensions has an open covering by certain affine spaces (U_α)_α.
- For each U_α and N_{n-1} ∈ U_α, the isomorphism A^d → U_α can be lifted to A^d × π⁻¹(N_{u-1}) → π⁻¹(U_α).
- The fiber π⁻¹(N_{u-1}) is isomorphic to G^{M/N_{u-1}}, which allows an open covering by affine spaces by induction
 (T = T \ {u}}).

- Consider $\pi \colon \widehat{\mathcal{G}_T^M} \to \mathcal{G}_{\nu'_u}(\ker t), (N_s)_{s=0}^u \mapsto N_{u-1}.$
- The condition type M/_{Nu-1} = (μ^(u-1))' can be specified by dimensions of the intersections of N_{u-1} with the various components of the partial flag (ker t ∩ t^aM)^r_{a=0} (r = λ₁).
- The subvariety of G_{ν'}(ker t) specified by such dimensions has an open covering by certain affine spaces (U_α)_α.
- For each U_{α} and $N_{n-1} \in U_{\alpha}$, the isomorphism $\mathbb{A}^{d} \to U_{\alpha}$ can be lifted to $\mathbb{A}^{d} \times \pi^{-1}(N_{u-1}) \xrightarrow{\sim} \pi^{-1}(U_{\alpha})$.
- The fiber π⁻¹(N_{u-1}) is isomorphic to G^{M/Nu-1}, which allows an open covering by affine spaces by induction
 (T = T \ {U}).

- Consider $\pi \colon \widehat{\mathcal{G}_T^M} \to \mathcal{G}_{\nu'_u}(\ker t), (N_s)_{s=0}^u \mapsto N_{u-1}.$
- The condition type M/_{Nu-1} = (μ^(u-1))' can be specified by dimensions of the intersections of N_{u-1} with the various components of the partial flag (ker t ∩ t^aM)^r_{a=0} (r = λ₁).
- The subvariety of G_{ν'}(ker t) specified by such dimensions has an open covering by certain affine spaces (U_α)_α.
- For each U_{α} and $N_{n-1} \in U_{\alpha}$, the isomorphism $\mathbb{A}^d \to U_{\alpha}$ can be lifted to $\mathbb{A}^d \times \pi^{-1}(N_{u-1}) \xrightarrow{\sim} \pi^{-1}(U_{\alpha})$.
- The fiber π⁻¹(N_{u-1}) is isomorphic to G^{M/Nu-1}, which allows an open covering by affine spaces by induction
 (T = T \ {U}}).

- Consider $\pi \colon \widehat{\mathcal{G}_T^M} \to \mathcal{G}_{\nu'_u}(\ker t), (N_s)_{s=0}^u \mapsto N_{u-1}.$
- The condition type M/_{Nu-1} = (μ^(u-1))' can be specified by dimensions of the intersections of N_{u-1} with the various components of the partial flag (ker t ∩ t^aM)^r_{a=0} (r = λ₁).
- The subvariety of G_{ν'}(ker t) specified by such dimensions has an open covering by certain affine spaces (U_α)_α.
- For each U_{α} and $N_{n-1} \in U_{\alpha}$, the isomorphism $\mathbb{A}^d \to U_{\alpha}$ can be lifted to $\mathbb{A}^d \times \pi^{-1}(N_{u-1}) \xrightarrow{\sim} \pi^{-1}(U_{\alpha})$.
- The fiber π⁻¹(N_{u-1}) is isomorphic to G^{M/N_{u-1}}, which allows an open covering by affine spaces by induction
 (T̄ = T \ {[u]}).

• The pieces of the open covering of \mathcal{G}_T^M are parametrized by the fillings Ξ of the Young diagram of λ' which are column increasing and rowwise permutations of \mathcal{T} .

• If
$$T = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, then one such Ξ is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- In this example the dimension is 4, and $U_{\Xi} \cap \mathcal{G}_{T}^{M} = U_{\Xi}$.
- The submodule corresponding to (a, x, y, z) ∈ A⁴ is the one generated by the column vectors of the matrix product in the next slide.

• The pieces of the open covering of $\widehat{\mathcal{G}_T^M}$ are parametrized by the fillings \varXi of the Young diagram of λ' which are column increasing and rowwise permutations of T.

• If
$$T = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 \end{bmatrix}$$
, then one such Ξ is $\begin{bmatrix} 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 \end{bmatrix}$

- In this example the dimension is 4, and $U_{\Xi} \cap \mathcal{G}_T^M = U_{\Xi}$.
- The submodule corresponding to (a, x, y, z) ∈ A⁴ is the one generated by the column vectors of the matrix product in the next slide.

ヘロト ヘアト ヘヨト

 The pieces of the open covering of G_T^M are parametrized by the fillings Ξ of the Young diagram of X' which are column increasing and rowwise permutations of T.

• If
$$T = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 \end{bmatrix}$$
, then one such Ξ is $\begin{bmatrix} 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 \end{bmatrix}$

• In this example the dimension is 4, and $U_{\Xi} \cap \mathcal{G}_{T}^{M} = U_{\Xi}$.

The submodule corresponding to (a, x, y, z) ∈ A⁴ is the one generated by the column vectors of the matrix product in the next slide.

A B > A B >

 The pieces of the open covering of G_T^M are parametrized by the fillings Ξ of the Young diagram of X' which are column increasing and rowwise permutations of T.

• If
$$T = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 \end{bmatrix}$$
, then one such Ξ is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 \end{bmatrix}$.

- In this example the dimension is 4, and $U_{\Xi} \cap \mathcal{G}_{T}^{M} = U_{\Xi}$.
- The submodule corresponding to (a, x, y, z) ∈ A⁴ is the one generated by the column vectors of the matrix product in the next slide.

ヘロト ヘアト ヘヨト

 The pieces of the open covering of G_T^M are parametrized by the fillings Ξ of the Young diagram of X' which are column increasing and rowwise permutations of T.

• If
$$T = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 \end{bmatrix}$$
, then one such Ξ is $\begin{bmatrix} 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 \end{bmatrix}$.

- In this example the dimension is 4, and $U_{\Xi} \cap \mathcal{G}_{T}^{M} = U_{\Xi}$.
- The submodule corresponding to (a, x, y, z) ∈ A⁴ is the one generated by the column vectors of the matrix product in the next slide.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Coordinate, example (continued)

ヨト イヨト

э

- Even though Lemma is an essential ingredient, the proof of the Theorem still requires a technique similar to Steinberg's result on the Steinberg variety, showing that *T[⊥] ≺ T[∨]* holds for a certain ordering *≺* on *LR*(*λ'*/_{ν'}, *μ'*) and then using the fact that both *T* → *T[⊥]* and *T* → *T[∨]* are bijections.
- The parametrization of the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and their dimension were given by M. van Leeuwen (2000).
- The affine coordinates of the open covering of \mathcal{G}_T^M was given in the form of "generic vectors" by T. Maeda (2003 and later).
- This also proves the involutiveness of Azenhas' procedure. (A combinatorial proof of the involutiveness has been given by Azenhas, R. C. King and T (2017).)

- Even though Lemma is an essential ingredient, the proof of the Theorem still requires a technique similar to Steinberg's result on the Steinberg variety, showing that *T[⊥] ≺ T[∨]* holds for a certain ordering *≺* on *LR*(*λ'*/_{ν'}, *μ'*) and then using the fact that both *T* → *T[⊥]* and *T* → *T[∨]* are bijections.
- The parametrization of the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and their dimension were given by M. van Leeuwen (2000).
- The affine coordinates of the open covering of \mathcal{G}_T^M was given in the form of "generic vectors" by T. Maeda (2003 and later).
- This also proves the involutiveness of Azenhas' procedure. (A combinatorial proof of the involutiveness has been given by Azenhas, R. C. King and T (2017).)

- Even though Lemma is an essential ingredient, the proof of the Theorem still requires a technique similar to Steinberg's result on the Steinberg variety, showing that *T[⊥] ≺ T[∨]* holds for a certain ordering *≺* on *LR*(*λ'*/_{ν'}, *μ'*) and then using the fact that both *T* → *T[⊥]* and *T* → *T[∨]* are bijections.
- The parametrization of the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and their dimension were given by M. van Leeuwen (2000).
- The affine coordinates of the open covering of \mathcal{G}_T^M was given in the form of "generic vectors" by T. Maeda (2003 and later).
- This also proves the involutiveness of Azenhas' procedure. (A combinatorial proof of the involutiveness has been given by Azenhas, R. C. King and T (2017).)

- Even though Lemma is an essential ingredient, the proof of the Theorem still requires a technique similar to Steinberg's result on the Steinberg variety, showing that *T[⊥] ≺ T[∨]* holds for a certain ordering *≺* on *LR*(*λ'*/_{ν'}, *μ'*) and then using the fact that both *T* → *T[⊥]* and *T* → *T[∨]* are bijections.
- The parametrization of the irreducible components of $\mathcal{G}^{M}_{\mu\nu}$ and their dimension were given by M. van Leeuwen (2000).
- The affine coordinates of the open covering of \mathcal{G}_T^M was given in the form of "generic vectors" by T. Maeda (2003 and later).
- This also proves the involutiveness of Azenhas' procedure. (A combinatorial proof of the involutiveness has been given by Azenhas, R. C. King and T (2017).)