Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Equivariant *K*-theory and hook formula for skew shape on *d*-complete set

Hiroshi Naruse

Graduate School of Education University of Yamanashi

Algebraic and Enumerative Combinatorics in Okayama 2018/02/20

Equivariant K-theory

Application to *d*-complete posets

Example 000000

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$ Equivariant *K*-theory $K_T(\mathcal{G}/\mathcal{P}_-)$ and localization map Littlewood-Richardson coefficients Chevalley formula

Application to *d*-complete posets

Setup Billey type formula Chevalley formula for *d*-complete poset

Example

Equivariant K-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction Main Theorem

Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$ Equivariant *K*-theory $K_T(\mathcal{G}/\mathcal{P}_-)$ and localization map Littlewood-Richardson coefficients Chevalley formula

Application to *d*-complete posets

Setup Billey type formula Chevalley formula for *d*-complete poset

Example

Application to *d*-complete posets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Main Theorem (N-Okada)

Theorem

P: a connected d-complete poset, $c : P \rightarrow I$ coloring.

F: an order filter of P,

 $\mathcal{A}(P \setminus F) := \{ \sigma : P \setminus F \to \mathbb{N} \mid p \leq q \implies \sigma(p) \geq \sigma(q) \}.$ Then we have

$$\sum_{\sigma \in \mathcal{A}(P \setminus F)} \mathbf{z}^{\sigma} = \sum_{D \in \mathcal{E}_{P}(F)} \frac{\prod_{v \in B(D)} \mathbf{z}[H_{P}(v)]}{\prod_{v \in P \setminus D} (1 - \mathbf{z}[H_{P}(v)])},$$
(1)

where $\mathbf{z}^{\sigma} = \prod_{v \in P \setminus F} z_{c(v)}^{\sigma(v)}$, $\mathbf{z}[H_P(v)]$ is the hook monomial, $\mathcal{E}_P(F)$ is the set of excited giagrams of F in P, and B(D) is the set of excited peaks of D in P. Introduction ••• Equivariant K-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$ Equivariant *K*-theory $K_T(\mathcal{G}/\mathcal{P}_-)$ and localization map Littlewood-Richardson coefficients Chevalley formula

Application to *d*-complete posets

Setup Billey type formula Chevalley formula for *d*-complete poset

Example

Application to *d*-complete posets

Idea of Proof

Let $G_{P\setminus F}$ be the left hand side and $E_{P\setminus F}$ be the right hand side of the equation (1). Let $Z_{P\setminus F} := \left[\frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}}\right]_{e^{\alpha_i}=Z_i}$. For order filters, $F' \succ F$ means $F' \supseteq F$ and $F'\setminus F$ is non-empty antichain. 1) From <u>Billey type formula</u> we can see $Z_{P\setminus F} = E_{P\setminus F}$. 2) By Chevalley formula we have a recurrence relation on $Z_{P\setminus F}$.

$$Z_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F' \succ F} (-1)^{|F'\setminus F|-1} Z_{P\setminus F'}.$$

3) By inclusion-exclusion principle we can easily deduce the same recurrence relation on $G_{P\setminus F}$.

$$G_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} G_{P\setminus F'}.$$

Comparing initial values we get $G_{P\setminus F} = Z_{P\setminus F}$.

Application to *d*-complete posets

Idea of Proof

Let $G_{P\setminus F}$ be the left hand side and $E_{P\setminus F}$ be the right hand side of the equation (1). Let $Z_{P\setminus F} := \left[\frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}}\right]_{e^{\alpha_i} = Z_i}$. For order filters, $F' \succ F$ means $F' \supset F$ and $F'\setminus F$ is non-empty antichain. 1) From Billey type formula we can see $Z_{P\setminus F} = E_{P\setminus F}$. 2) By Chevalley formula we have a recurrence relation on $Z_{P\setminus F}$.

$$Z_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} Z_{P\setminus F'}.$$

3) By inclusion-exclusion principle we can easily deduce the same recurrence relation on $G_{P\setminus F}$.

$$G_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} G_{P\setminus F'}.$$

Comparing initial values we get $G_{P \setminus F} = Z_{P \setminus F}$.

Application to *d*-complete posets

Idea of Proof

Let $G_{P\setminus F}$ be the left hand side and $E_{P\setminus F}$ be the right hand side of the equation (1). Let $Z_{P\setminus F} := \left[\frac{\xi^{W_F}|_{W_P}}{\xi^{W_P}|_{W_P}}\right]_{e^{\alpha_i} = Z_i}$. For order filters, $F' \succ F$ means $F' \supset F$ and $F'\setminus F$ is non-empty antichain. 1) From <u>Billey type formula</u> we can see $Z_{P\setminus F} = E_{P\setminus F}$. 2) By Chevalley formula we have a recurrence relation on $Z_{P\setminus F}$.

$$Z_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F' \succ F} (-1)^{|F'\setminus F|-1} Z_{P\setminus F'}.$$

3) By inclusion-exclusion principle we can easily deduce the same recurrence relation on $G_{P\setminus F}$.

$$G_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} G_{P\setminus F'}.$$

Comparing initial values we get $G_{P \setminus F} = Z_{P \setminus F}$.

Application to *d*-complete posets

Idea of Proof

Let $G_{P\setminus F}$ be the left hand side and $E_{P\setminus F}$ be the right hand side of the equation (1). Let $Z_{P\setminus F} := \left[\frac{\xi^{w_F|w_P}}{\xi^{w_P|w_P}}\right]_{e^{\alpha_i}=z_i}$. For order filters, $F' \succ F$ means $F' \supset F$ and $F'\setminus F$ is non-empty antichain. 1) From Billey type formula we can see $Z_{P\setminus F} = E_{P\setminus F}$. 2) By Chevalley formula we have a recurrence relation on $Z_{P\setminus F}$.

$$Z_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} Z_{P\setminus F'}.$$

3) By inclusion-exclusion principle we can easily deduce the same recurrence relation on $G_{P\setminus F}$.

$$G_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} G_{P\setminus F'}.$$

Comparing initial values we get $G_{P \setminus F} = Z_{P \setminus F}$.

Application to *d*-complete posets

Idea of Proof

Let $G_{P\setminus F}$ be the left hand side and $E_{P\setminus F}$ be the right hand side of the equation (1). Let $Z_{P\setminus F} := \left[\frac{\xi^{w_F|w_P}}{\xi^{w_P|w_P}}\right]_{e^{\alpha_i}=z_i}$. For order filters, $F' \succ F$ means $F' \supset F$ and $F'\setminus F$ is non-empty antichain. 1) From Billey type formula we can see $Z_{P\setminus F} = E_{P\setminus F}$. 2) By Chevalley formula we have a recurrence relation on $Z_{P\setminus F}$.

$$Z_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} Z_{P\setminus F'}.$$

3) By inclusion-exclusion principle we can easily deduce the same recurrence relation on $G_{P\setminus F}$.

$$G_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} G_{P\setminus F'}.$$

Comparing initial values we get $G_{P\setminus F} = Z_{P\setminus F}$.

Compa

Equivariant *K*-theory

Application to *d*-complete posets

Idea of Proof

Let $G_{P\setminus F}$ be the left hand side and $E_{P\setminus F}$ be the right hand side of the equation (1). Let $Z_{P\setminus F} := \left[\frac{\xi^{w_F|w_P}}{\xi^{w_P|w_P}}\right]_{e^{\alpha_i}=z_i}$. For order filters, $F' \succ F$ means $F' \supset F$ and $F'\setminus F$ is non-empty antichain. 1) From Billey type formula we can see $Z_{P\setminus F} = E_{P\setminus F}$. 2) By Chevalley formula we have a recurrence relation on $Z_{P\setminus F}$.

$$Z_{P\setminus F} = \frac{1}{1-\boldsymbol{z}[P\setminus F]} \sum_{F'\succ F} (-1)^{|F'\setminus F|-1} Z_{P\setminus F'}.$$

3) By inclusion-exclusion principle we can easily deduce the same recurrence relation on $G_{P\setminus F}$.

$$G_{P\setminus F} = \frac{1}{1 - \boldsymbol{z}[P \setminus F]} \sum_{F' \succ F} (-1)^{|F' \setminus F| - 1} G_{P \setminus F'}.$$

wring initial values we get $\overline{G_{P \setminus F} = Z_{P \setminus F}}.$

Equivariant K-theory

Application to *d*-complete posets

Example 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$

Equivariant K-theory $K_T(\mathcal{G}/\mathcal{P}_-)$ and localization map Littlewood-Richardson coefficients Chevalley formula

Application to *d*-complete posets

Setup Billey type formula Chevalley formula for *d*-complete poset

Example

Application to *d*-complete posets

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$

 $A = (a_{ij})_{i,j \in I}$ a symmetrizable generalized Cartan matrix,

 Γ the corresponding Dynkin diagram with node set *I*.

Then the associated Kac–Moody group \mathcal{G} over \mathbb{C} is constructed from the following data:

the weight lattice Z-module the (linearly independent) simple roots the simple coroots the fundamental weights $\Lambda \simeq \mathbb{Z}^{m},$ $\Pi = \{\alpha_{i} : i \in I\} \subset \Lambda,$ $\Pi^{\vee} = \{\alpha_{i}^{\vee} : i \ni I\} \subset \Lambda^{*},$ $\{\lambda_{i} : i \in I\} \subset \Lambda$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where $\Lambda^* = Hom_{\mathbb{Z}}(\Lambda, \mathbb{Z})$ is the dual lattice. We will write the canonical pairing $\langle \quad, \quad \rangle : \Lambda^* \times \Lambda \to \mathbb{Z}$. These satisfy

$$\langle \alpha_i^{\vee}, \alpha_j \rangle = \boldsymbol{a}_{ij}, \quad \langle \alpha_i^{\vee}, \lambda_j \rangle = \delta_{ij}.$$

Introduction	Equivariant K-theory	Application to <i>d</i> -complete posets	Example
00 00	0000 0000 0000 0000	0000 00 00000	000000

The Weyl group *W* is generated by simple reflections s_i ($i \in I$) and it is known to be a crystallographic Coxeter group.

Let \mathcal{B} be a Borel subgroup and \mathcal{B}_- the opposite Borel i.e. $\mathcal{B} \cap \mathcal{B}_- = \mathcal{T}$ is the maximal torus.

Let us fix a subset $J \subsetneq I$. Then we can consider the subgroup $W_J \subset W$ generated by $s_j, (j \in J)$ and the parabolic subgroup $\mathcal{P}_- \supset \mathcal{B}_-$ corresponding to J.

Let $W^J = W/W_J$ be the set of minimum length coset representatives.

Then we can consider

the Kashiwara thick partial flag variety $\mathcal{X}_{\mathcal{P}_{-}} = \mathcal{G}/\mathcal{P}_{-}$.

Introduction	Equivariant K-theory	Application to <i>d</i> -complete posets	Examp
00	0000	0000	00000
00	0000	00	
	0000	00000	
	0000		

 $\mathcal{X}_{\mathcal{P}_{-}}=\mathcal{G}/\mathcal{P}_{-}$ has cell decomposition.

$$\mathcal{X}_{\mathcal{P}_{-}} = \bigsqcup_{w \in W^J} \mathcal{X}_w^{\circ}$$

where $\mathcal{X}_{w}^{\circ} = \mathcal{B}w\mathcal{P}_{-}/\mathcal{P}_{-}$ is the \mathcal{B} -orbit of \mathcal{T} -fixed point corresponding to w, $e_{w} = w\mathcal{P}_{-}/\mathcal{P}_{-} \in \mathcal{X}_{\mathcal{P}_{-}}$. The Zariski closure $\mathcal{X}_{w} = \overline{\mathcal{X}_{w}^{\circ}}$ of \mathcal{X}_{w}° is called the Schubert variety.

Using Bruhat order \leq on W^{J} induced from W, we have cell decomposition

$$\mathcal{X}_{\mathbf{W}} = \bigsqcup_{u \in \mathbf{W}^J, u \ge \mathbf{W}} \mathcal{X}_{u}^{\circ}.$$

 \mathcal{X}_w has codimension $\ell(w)$ in $\mathcal{X}_{\mathcal{P}_-}$ and it is infinite dimensional if $|W| = \infty$.

(日) (日) (日) (日) (日) (日) (日)

Equivariant K-theory

Application to *d*-complete posets

Example 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_{-}$ Equivariant *K*-theory $K_{\mathcal{T}}(\mathcal{G}/\mathcal{P}_{-})$ and localization map

Littlewood-Richardson coefficients Chevallev formula

Application to *d*-complete posets

Setup Billey type formula Chevalley formula for *d*-complete poset

Example

Application to *d*-complete posets

Equivariant K-theory $K_T(\mathcal{G}/\mathcal{P}_-)$

We can consider \mathcal{T} -equivariant *K*-theory of $\mathcal{X}_{\mathcal{P}_{-}} = \mathcal{G}/\mathcal{P}_{-}$ $\mathcal{K}_{\mathcal{T}}(\mathcal{G}/\mathcal{P}_{-})$ is the Grothendieck group of coherent sheaves on $\mathcal{G}/\mathcal{P}_{-}$. It has ring structure and

$$\mathcal{K}_{\mathcal{T}}(\mathcal{X}_{\mathcal{P}_{-}}) \cong \prod_{w \in W^J} \mathcal{K}_{\mathcal{T}}(\mathsf{pt})[\mathcal{O}_w],$$

where \mathcal{O}_w is the structure sheaf of the Schubert variety \mathcal{X}_w and $[\mathcal{O}_w]$ is the corresponding class in $\mathcal{K}_{\mathcal{T}}(\mathcal{X}_{\mathcal{P}_-})$. $\mathcal{K}_{\mathcal{T}}(\text{pt})$ is the \mathcal{T} -equivariant K-theory of a point and it can be identified with the representation ring of \mathcal{T} .

$$K_{\mathcal{T}}(\mathsf{pt}) \simeq R(\mathcal{T}) \simeq \mathbb{Z}[\Lambda].$$

Each element in $\mathbb{Z}[\Lambda]$ is expressed as a (\mathbb{Z} -)linear combination of e^{λ} ($\lambda \in \Lambda$). e^{λ} corresponds to the class of line bundle L^{λ} with character λ .

Equivariant *K*-theory

Application to *d*-complete posets

(日) (日) (日) (日) (日) (日) (日)

Schubert class and Localization map

For $w \in W^J$, we will write $\xi^w = [\mathcal{O}_w] \in K_T(\mathcal{X}_{\mathcal{P}_-})$ and call it \mathcal{T} -equivariant Schubert class. Each $v \in W^J$ gives a \mathcal{T} -fixed point $e_v = v\mathcal{P}_-/\mathcal{P}_- \in \mathcal{X}$. Then the inclusion map $\iota_v : \{e_v\} \to \mathcal{X}$ induces the pull-back ring homomorphism, called the localization map at v,

$$\iota_{\boldsymbol{v}}^*: \mathcal{K}_{\mathcal{T}}(\mathcal{X}_{\mathcal{P}_{-}}) \to \mathcal{K}_{\mathcal{T}}(\boldsymbol{e}_{\boldsymbol{v}}) \cong \mathbb{Z}[\Lambda].$$

For two elements $v, w \in W^J$, we denote by $\xi^w|_v$ the image of ξ^w under the localization map ι_v^* :

$$\xi^{\mathsf{W}}|_{\mathsf{V}} = \iota_{\mathsf{V}}^*([\mathcal{O}_{\mathsf{W}}]).$$

Equivariant K-theory

Application to *d*-complete posets

Billey type formula for $\xi^w|_v$

(Lam-Schilling-Shimozono 2010)

Proposition

Let v, $w \in W^J$, and fix a reduced expression $v = s_{i_1} s_{i_2} \dots s_{i_N}$ of v. Then we have

$$\xi^{w}|_{v} = \sum_{(k_{1},...,k_{r})} (-1)^{r-l(w)} \prod_{a=1}^{r} \left(1 - e^{\beta^{(k_{a})}}\right),$$
(2)

where the summation is taken over all sequences (k_1, \ldots, k_r) such that $1 \le k_1 < k_2 < \cdots < k_r \le N$ and $s_{i_{k_1}} * \cdots * s_{i_{k_r}} = w$ (with respect to the Demazure product), and $\beta^{(k)}$ is given by $\beta^{(k)} = s_{i_1} \ldots s_{i_{k-1}}(\alpha_{i_k})$ for $1 \le k \le N$.

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_{-}$ Equivariant *K*-theory $K_{\mathcal{T}}(\mathcal{G}/\mathcal{P}_{-})$ and localization map Littlewood-Richardson coefficients

Application to *d*-complete posets

Setup Billey type formula Chevalley formula for *d*-complete poset

Example

Application to *d*-complete posets

Littlewood-Richardson coefficients

We consider the structure constants for the multiplication in $K_T(\mathcal{X})$ with respect to the Schubert classes.

$$[\mathcal{O}_{\boldsymbol{U}}][\mathcal{O}_{\boldsymbol{V}}] = \sum_{\boldsymbol{w} \in \boldsymbol{W}^J} \boldsymbol{c}_{\boldsymbol{u},\boldsymbol{v}}^{\boldsymbol{w}}[\mathcal{O}_{\boldsymbol{w}}],$$

where $u, v, w \in W^J, c^w_{u,v} \in K_T(\text{pt}).$

Lemma If $c_{u,v}^w \neq 0$, then $u \leq w$ and $v \leq w$.

Lemma For $u, w \in W^J$, we have

$$C_{u,w}^{W} = \xi^{U}|_{W}.$$
(3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Application to *d*-complete posets

Littlewood-Richardson coefficients

We consider the structure constants for the multiplication in $K_T(\mathcal{X})$ with respect to the Schubert classes.

$$[\mathcal{O}_{\boldsymbol{U}}][\mathcal{O}_{\boldsymbol{V}}] = \sum_{\boldsymbol{w} \in \boldsymbol{W}^J} \boldsymbol{c}_{\boldsymbol{u},\boldsymbol{v}}^{\boldsymbol{w}}[\mathcal{O}_{\boldsymbol{w}}],$$

where
$$u, v, w \in W^J, c^w_{u,v} \in K_T(\text{pt}).$$

Lemma If $c_{u,v}^w \neq 0$, then $u \leq w$ and $v \leq w$.

Lemma For $u, w \in W^J$, we have

$$C_{u,w}^{W} = \xi^{U}|_{W}.$$
(3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Application to *d*-complete posets

Littlewood-Richardson coefficients

We consider the structure constants for the multiplication in $K_T(\mathcal{X})$ with respect to the Schubert classes.

$$[\mathcal{O}_{u}][\mathcal{O}_{v}] = \sum_{w \in W^{J}} c_{u,v}^{w}[\mathcal{O}_{w}],$$

where
$$u, v, w \in W^J$$
, $c_{u,v}^w \in K_T(\text{pt})$.

Lemma If $c_{u,v}^w \neq 0$, then $u \leq w$ and $v \leq w$.

Lemma

For $u, w \in W^J$, we have

$$\boldsymbol{c}_{\boldsymbol{u},\boldsymbol{w}}^{\boldsymbol{w}} = \xi^{\boldsymbol{u}}|_{\boldsymbol{w}}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

duction	Equivariant K-theory	Application to <i>d</i> -complete posets	Example
	0000	0000	000000
	0000	00	
	0000	00000	
	0000		

Lemma

Let $u, v, w \in W^J$ and $s \in W^J$ a simple reflection. If $c_{s,w}^w \neq c_{s,u}^u$, then we have

$$c_{u,v}^w = \frac{1}{c_{s,w}^w - c_{s,u}^u} \left(\sum_{u < x \le w} c_{s,u}^x c_{x,v}^w - \sum_{u \le y < w} c_{s,y}^w c_{u,v}^y \right).$$

In particular, we have

$$c^w_{u,w} = rac{1}{c^w_{\mathcal{S},w} - c^u_{\mathcal{S},u}} \sum_{u < x \leq w} c^x_{\mathcal{S},u} c^w_{x,w}.$$

i.e.

$$\xi^{u}|_{w} = \frac{1}{c_{s,w}^{w} - c_{s,u}^{u}} \sum_{u < x \le w} c_{s,u}^{x} \xi^{x}|_{w}.$$
 (4)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

Proof. Consider the associativity

$$([\mathcal{O}_s][\mathcal{O}_u])[\mathcal{O}_v] = [\mathcal{O}_s]([\mathcal{O}_u][\mathcal{O}_v])$$

and take the coefficients of $[\mathcal{O}_{\textit{W}}]$ in the both hand sides.

$$c^{u}_{s,u}c^{w}_{u,v} + \sum_{u < x \le w} c^{x}_{s,u}c^{w}_{x,v} = c^{w}_{s,w}c^{w}_{u,v} + \sum_{u \le y < w} c^{w}_{s,y}c^{y}_{u,v},$$

then we get

$$c_{u,v}^{w} = \frac{1}{c_{s,w}^{w} - c_{s,u}^{u}} \left(\sum_{u < x \le w} c_{s,u}^{x} c_{x,v}^{w} - \sum_{u \le y < w} c_{s,y}^{w} c_{u,v}^{y} \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Equivariant K-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_{-}$ Equivariant *K*-theory $K_{\mathcal{T}}(\mathcal{G}/\mathcal{P}_{-})$ and localization map Littlewood-Richardson coefficients

Chevalley formula

Application to *d*-complete posets

Setup Billey type formula Chevalley formula for *d-*complete poset

Example

Introd	uction
00	
00	

Application to *d*-complete posets

\mathcal{T} -quivariant Chevalley formula

W-orbit of the set of simple roots Π (resp. simple coroots Π^{\vee}) determine the set of real roots (resp. real coroots)

 $\Phi = W\Pi$ (resp. $\Phi^{\vee} = W\Pi^{\vee}$)

and the decomposition of Φ (resp. Φ^{\vee}) into the positive system Φ_+ (resp. Φ^{\vee}_+) and the negative system Φ_- (resp. Φ^{\vee}_-). For a dominant weight $\lambda \in \Lambda$, we define

$$\mathbb{H}_{\lambda} = \{ (\gamma^{\vee}, \boldsymbol{k}) : \gamma^{\vee} \in \Phi^{\vee}_{+}, \boldsymbol{0} \leq \boldsymbol{k} < \langle \gamma^{\vee}, \lambda \rangle, \boldsymbol{k} \in \mathbb{N} \}.$$

Fix a total order on the Dynkin node *I* so that $I = \{i_1 < \cdots < i_r\}$. define a map $\iota : \mathbb{H}_{\lambda} \to \mathbb{Q}^{r+1}$ by

$$\iota\left(\sum_{j=1}^{r} c_{j} \alpha_{i_{j}}^{\vee}, k\right) = \frac{1}{\langle \gamma^{\vee}, \lambda \rangle} \left(k, c_{1}, \cdots, c_{r}\right).$$

Then it is known that ι is injective.

Example 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We define a total ordering < on \mathbb{H}_{λ} by

$$h < h' \iff \iota(h) <_{\mathsf{lex}} \iota(h'),$$

where $<_{\text{lex}}$ is the lexicographical ordering on \mathbb{Q}^{r+1} . For $h = (\gamma^{\vee}, k)$, we define affine transformations r_h and \tilde{r}_h on Λ by

$$r_{h}(\mu) = \mu - \langle \gamma^{\vee}, \mu \rangle \gamma,$$

$$\tilde{r}_{h}(\mu) = r_{h}(\mu) + (\langle \gamma^{\vee}, \lambda \rangle - \mathbf{k}) \gamma.$$

Note that $r_h = s_\gamma$ is the reflection corresponding to the positive root γ .

Equivariant K-theory

Application to *d*-complete posets

Example 000000

Lenart-Shimozono (2014)

Proposition

Let $s = s_i \in W^J$ be a simple reflection. Then for $w, v \in W^J$ we have

$$c_{s,v}^{w} = \begin{cases} 1 - e^{\lambda_{i} - v\lambda_{i}} & \text{if } w = v, \\ \sum_{(h_{1}, \cdots, h_{r})} (-1)^{r-1} e^{\lambda_{i} - v\widetilde{r}_{h_{1}} \cdots \widetilde{r}_{h_{r}}\lambda_{i}} & \text{if } w > v, \end{cases}$$
(5)

where the summation is taken over all sequences (h_1, \dots, h_r) of length $r \ge 1$ satisfying the following two conditions: (H1) $h_1 > h_2 > \dots > h_r$ in \mathbb{H}_{λ_i} , (H2) $v < vr_{h_1} < vr_{h_1}r_{h_2} < \dots < vr_{h_1} \dots r_{h_r} = w$ is a saturated chain in W^J .

Equivariant K-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$ Equivariant *K*-theory $K_T(\mathcal{G}/\mathcal{P}_-)$ and localization map Littlewood-Richardson coefficients Chevalley formula

Application to *d*-complete posets

Setup

Billey type formula Chevalley formula for *d*-complete poset

Example

Equivariant *K*-theory

Application to *d*-complete posets

(ロ) (同) (三) (三) (三) (○) (○)

Application to *d*-complete posets

In what follows, let *P* be a connected *d*-complete poset with top tree Γ together with *d*-complete coloring $c : P \to I$. α_P the simple root, λ_P the fundamental weight corresponding to the color *i*_P of the maximum element of *P*.

We apply the above argument to the Kashiwara thick partial flag variety $\mathcal{X}_{\mathcal{P}_{-}} = \mathcal{G}/\mathcal{P}_{-}$, where \mathcal{P}_{-} is the maximal parabolic subgroup corresponding to $J = I \setminus \{i_P\}$. In this case, the parabolic subgroup W_J coincides with the stabilizer of λ_P in W, and the minimum length coset representatives W^J is denoted by W^{λ_P} .

For $p \in P$, we put

$$\alpha(\boldsymbol{p}) = \alpha_{\boldsymbol{c}(\boldsymbol{p})}, \quad \alpha^{\vee}(\boldsymbol{p}) = \alpha^{\vee}_{\boldsymbol{c}(\boldsymbol{p})}, \quad \boldsymbol{s}(\boldsymbol{p}) = \boldsymbol{s}_{\boldsymbol{c}(\boldsymbol{p})}.$$

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

Take a linear extension and label the elements of *P* as p_1, \dots, p_N (N = #P) so that $p_i < p_j$ in *P* implies i < j. Then we constructs an element $w = w_P \in W$ by putting

 $w_P = s(p_1)s(p_2)\cdots s(p_N).$

For an order filter $F = \{p_{i_1}, \dots, p_{i_r}\}$ $(i_1 < \dots < i_r)$, we define $w_F = s(p_{i_1}) \cdots s(p_{i_r}).$

 $F \subset F' \iff w_F \leq w_{F'}$ in Bruhat order

If $p = p_k \in P$, then we define

$$\beta(\boldsymbol{p}_k) = \boldsymbol{s}(\boldsymbol{p}_1) \cdots \boldsymbol{s}(\boldsymbol{p}_{k-1}) \alpha(\boldsymbol{p}_k),$$

Proposition

$$\mathbf{Z}[H_P(p)] = [e^{\beta(p)}]_{e^{\alpha_i} = Z_i}.$$

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

Take a linear extension and label the elements of *P* as p_1, \dots, p_N (N = #P) so that $p_i < p_j$ in *P* implies i < j. Then we constructs an element $w = w_P \in W$ by putting

 $w_P = s(p_1)s(p_2)\cdots s(p_N).$

For an order filter $F = \{p_{i_1}, \cdots, p_{i_r}\}$ $(i_1 < \cdots < i_r)$, we define $w_F = s(p_{i_1}) \cdots s(p_{i_r}).$

 $\mathsf{F} \subset \mathsf{F}' \iff w_{\mathsf{F}} \leq w_{\mathsf{F}'}$ in Bruhat order

If $p = p_k \in P$, then we define

$$\beta(\mathbf{p}_k) = \mathbf{s}(\mathbf{p}_1) \cdots \mathbf{s}(\mathbf{p}_{k-1}) \alpha(\mathbf{p}_k),$$

Proposition

$$\mathbf{Z}[H_P(p)] = [e^{\beta(p)}]_{e^{\alpha_i} = Z_i}.$$

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

Take a linear extension and label the elements of *P* as p_1, \dots, p_N (N = #P) so that $p_i < p_j$ in *P* implies i < j. Then we constructs an element $w = w_P \in W$ by putting

 $w_P = s(p_1)s(p_2)\cdots s(p_N).$

For an order filter $F = \{p_{i_1}, \cdots, p_{i_r}\}$ $(i_1 < \cdots < i_r)$, we define $w_F = s(p_{i_1}) \cdots s(p_{i_r}).$

 $F \subset F' \iff w_F \leq w_{F'}$ in Bruhat order

If $p = p_k \in P$, then we define

$$\beta(\boldsymbol{p}_k) = \boldsymbol{s}(\boldsymbol{p}_1) \cdots \boldsymbol{s}(\boldsymbol{p}_{k-1}) \alpha(\boldsymbol{p}_k),$$

Proposition

$$\mathbf{Z}[H_P(p)] = [e^{\beta(p)}]_{e^{\alpha_i} = Z_i}.$$

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

Take a linear extension and label the elements of *P* as p_1, \dots, p_N (N = #P) so that $p_i < p_j$ in *P* implies i < j. Then we constructs an element $w = w_P \in W$ by putting

 $w_P = s(p_1)s(p_2)\cdots s(p_N).$

For an order filter $F = \{p_{i_1}, \cdots, p_{i_r}\}$ $(i_1 < \cdots < i_r)$, we define

$$w_F = s(p_{i_1}) \cdots s(p_{i_r}).$$

$${\it F} \subset {\it F}' \iff {\it w}_{\it F} \le {\it w}_{\it F'}$$
 in Bruhat order

If $p = p_k \in P$, then we define

$$\beta(\boldsymbol{p}_k) = \boldsymbol{s}(\boldsymbol{p}_1) \cdots \boldsymbol{s}(\boldsymbol{p}_{k-1}) \alpha(\boldsymbol{p}_k),$$

Proposition

$$\mathbf{Z}[H_P(p)] = [e^{\beta(p)}]_{e^{\alpha_i} = Z_i}.$$

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Take a linear extension and label the elements of *P* as p_1, \dots, p_N (N = #P) so that $p_i < p_j$ in *P* implies i < j. Then we constructs an element $w = w_P \in W$ by putting

 $w_P = s(p_1)s(p_2)\cdots s(p_N).$

For an order filter $F = \{p_{i_1}, \cdots, p_{i_r}\}$ $(i_1 < \cdots < i_r)$, we define

$$w_F = s(p_{i_1}) \cdots s(p_{i_r}).$$

$${\sf F} \subset {\sf F}' \iff {\sf w}_{{\sf F}} \le {\sf w}_{{\sf F}'}$$
 in Bruhat order

If $p = p_k \in P$, then we define

$$\beta(p_k) = s(p_1) \cdots s(p_{k-1})\alpha(p_k),$$

Proposition

$$\boldsymbol{z}[H_{P}(\boldsymbol{\rho})] = [\boldsymbol{e}^{\beta(\boldsymbol{\rho})}]_{\boldsymbol{e}^{\alpha_{i}} = z_{i}}$$

ction	Equivariant K-theory	Application to <i>d</i> -complete posets	Example
	0000	0000	000000
	0000	00	
	0000	00000	

Given a subset $D = \{p_{i_1}, \dots, p_{i_r}\}$ $(i_1 < \dots < i_r)$ of P, we define elements $w_D \in W$ and $w_D^* \in W$ by putting

 $w_D = s(p_{i_1})s(p_{i_2})\cdots s(p_{i_r})$ and $w_D^* = s(p_{i_1})*s(p_{i_2})*\cdots *s(p_{i_r})$,

where * is the Demazure product.

Proposition

Let F be an order filter of P and $D \subset P$. (1) $D \in \mathcal{E}_P(F) \iff w_D = w_F$ and |E| = |F|(2) $D \in \mathcal{E}_P^*(F) \iff w_D^* = w_F$ For the case (2) D is uniquely expressed as $D = D' \sqcup S$ s.t. $D' \in \mathcal{E}_P(F), S \subset B(D')$.

Equivariant K-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$ Equivariant *K*-theory $K_T(\mathcal{G}/\mathcal{P}_-)$ and localization map Littlewood-Richardson coefficients Chevalley formula

Application to *d*-complete posets

Billey type formula

Chevalley formula for *d*-complete poset

Example

Birds

Equivariant *K*-theory

Application to *d*-complete posets

э.

Billey type formula

Proposition We have

$$\xi^{w_{F}}|_{w_{P}} = \sum_{E \in \mathcal{E}_{P}^{*}(F)} (-1)^{\#E-\#F} \prod_{\rho \in E} (1 - \mathbf{z}[H_{P}(\rho)]), \quad (6)$$

under the identification $z_i = e^{\alpha_i}$ ($i \in I$). We can rewrite the above expression as

$$\xi^{w_F}|_{w_P} = \sum_{D \in \mathcal{E}_P(F)} \prod_{\rho \in D} \left(1 - \mathbf{z}[H_P(\rho)]\right) \prod_{\rho \in B(D)} \mathbf{z}[H_P(\rho)].$$

$$\frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}} = \sum_{D \in \mathcal{E}_P(F)} \frac{\prod_{v \in B(D)} \mathbf{z}[H_P(v)]}{\prod_{v \in P \setminus D} (1 - \mathbf{z}[H_P(v)])}$$

Equivariant K-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$ Equivariant *K*-theory $K_T(\mathcal{G}/\mathcal{P}_-)$ and localization map Littlewood-Richardson coefficients Chevalley formula

Application to *d*-complete posets

Setup Billey type formula

Chevalley formula for *d*-complete poset

Example Birds

Equivariant K-theory

Application to *d*-complete posets

(7)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Chevalley formula for *d*-complete poset

Proposition

Let P be a connected d-complete poset and $s = s_{i_P}$. For two order filters F and F' of P, we have

$$c_{s,w_F}^{w_{F'}} = \begin{cases} 1 - \mathbf{z}[F] & \text{if } F' = F, \\ (-1)^{\#(F' \setminus F) - 1} \mathbf{z}[F] & \text{if } F' \supseteq F \text{ and } F' \setminus F \text{ is an antichain,} \\ 0 & \text{otherwise,} \end{cases}$$

under the identification $z_i = e^{\alpha_i}$ ($i \in I$).

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

Let *F* be an order filter of *P* and $h = (\gamma^{\vee}, k) \in \mathbb{H}_{\lambda_{P}}$.

If $w_F r_h \in W^{\lambda_P}$ and $w_F \lessdot w_F r_h \le w_P$, then there exists $p \in P$ such that $F \sqcup \{p\}$ is an order filter of P, $w_F r_h = w_{F'}$ and $\gamma^{\vee} = \gamma^{\vee}(p)$. In this case k = 0, because $\langle \gamma^{\vee}, \lambda_P \rangle = 1$, and $\tilde{r}_h \lambda_P = \lambda_P$.

Equivariant *K*-theory

Application to *d*-complete posets

Example 000000

To deduce recurrence relation on $Z_{P \setminus F} := \frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}}$, recall

$$\xi^{u}|_{w} = \frac{1}{c_{s,w}^{w} - c_{s,u}^{u}} \sum_{u < x \le w} c_{s,u}^{x} \xi^{x}|_{w}.$$
 (8)

Change variables $u = w_F, w = w_P, x = w_{F'}$. Then we have

$$\xi^{w_{F}}|_{w_{P}} = \frac{\mathbf{Z}[F]}{\mathbf{Z}[F] - \mathbf{Z}[P]} \sum_{F' \succ F} (-1)^{|F' \setminus F| - 1} \xi^{w_{F'}}|_{w_{P}}.$$
 (9)

Note that $c_{S,W_F}^{W_F} = 1 - z[F]$.

$$Z_{P\setminus F} = \frac{1}{1 - \boldsymbol{z}[P \setminus F]} \sum_{F' \succ F} (-1)^{|F' \setminus F| - 1} Z_{P \setminus F'}$$

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへの

Equivariant K-theory

Application to *d*-complete posets

To deduce recurrence relation on $Z_{P \setminus F} := \frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}}$, recall

$$\xi^{u}|_{w} = \frac{1}{c_{s,w}^{w} - c_{s,u}^{u}} \sum_{u < x \le w} c_{s,u}^{x} \xi^{x}|_{w}.$$
 (8)

Change variables $u = w_F, w = w_P, x = w_{F'}$. Then we have

$$\xi^{w_{F}}|_{w_{P}} = \frac{\mathbf{z}[F]}{\mathbf{z}[F] - \mathbf{z}[P]} \sum_{F' \succ F} (-1)^{|F' \setminus F| - 1} \xi^{w_{F'}}|_{w_{P}}.$$
 (9)

Note that $c_{s,w_F}^{w_F} = 1 - \boldsymbol{z}[F]$.

$$Z_{P\setminus F} = \frac{1}{1 - \boldsymbol{z}[P \setminus F]} \sum_{F' \succ F} (-1)^{|F' \setminus F| - 1} Z_{P \setminus F'}$$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Equivariant K-theory

Application to *d*-complete posets

▲□▶▲□▶▲□▶▲□▶ □ のQ@

To deduce recurrence relation on $Z_{P \setminus F} := \frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}}$, recall

$$\xi^{u}|_{w} = \frac{1}{c_{s,w}^{w} - c_{s,u}^{u}} \sum_{u < x \le w} c_{s,u}^{x} \xi^{x}|_{w}.$$
 (8)

Change variables $u = w_F, w = w_P, x = w_{F'}$. Then we have

$$\xi^{w_{F}}|_{w_{P}} = \frac{\mathbf{Z}[F]}{\mathbf{Z}[F] - \mathbf{Z}[P]} \sum_{F' \succ F} (-1)^{|F' \setminus F| - 1} \xi^{w_{F'}}|_{w_{P}}.$$
 (9)

Note that $c_{s,w_F}^{w_F} = 1 - \boldsymbol{z}[F]$.

$$Z_{P\setminus F} = \frac{1}{1 - \boldsymbol{z}[P \setminus F]} \sum_{F' \succ F} (-1)^{|F' \setminus F| - 1} Z_{P \setminus F'}$$

Equivariant K-theory

Application to *d*-complete posets

Example 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Remark

Stembridge (2001) classified dominant λ -minuscule element of Weyl groups and found another two families other than 15-classes of Proctor's. , which are the cases of non-simply laced Dynkin diagrams. All our arguments can be applied to these cases.

Replace colored *d*-complete posets by a heap H(w) of a dominant λ -minuscule element *w*.

Definitions of $\mathcal{E}_P(F)$ and B(D) should be slightly modified.

Then the same ED-hook type formula of the theorem holds.

Equivariant K-theory

Application to *d*-complete posets

Example •00000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Main Theorem Idea of Proof

Equivariant K-theory

Kashiwara thick flag variety $\mathcal{G}/\mathcal{P}_-$ Equivariant *K*-theory $K_T(\mathcal{G}/\mathcal{P}_-)$ and localization map Littlewood-Richardson coefficients Chevalley formula

Application to *d*-complete posets

Setup Billey type formula Chevalley formula for *d*-complete poset

Example Birds

Introduc	tion
00	
00	

Equivariant *K*-theory

Application to *d*-complete posets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Smallest Bird

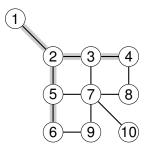
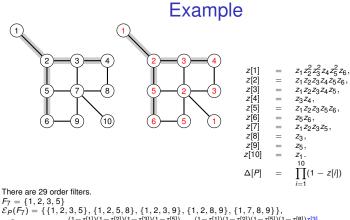


Figure: *e*₆[1; 2, 2]

roduction	Equivariant K
	0000
	0000
	0000
	0000

1

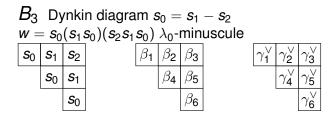


 $\frac{(1-z[1])(1-z[2])(1-z[3])(1-z[5])}{\Delta(P)} + \frac{(1-z[1])(1-z[2])(1-z[5])(1-z[8])z[3]}{\Delta(P)} +$ G_{P/F_7} $\frac{(1-z[1])(1-z[2])(1-z[3])(1-z[9])z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[2])(1-z[9])(1-z[9])z[3]z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[2])(1-z[9])z[3]z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[9])z[3]z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[9])z[3]z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[9])z[3]z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[9])z[3]z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[9])z[3]z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[9])z[5]}{\Delta(P)} + \frac{(1-z[1])(1-z[1$ $\frac{(1-z[1])(1-z[7])(1-z[8])(1-z[9])z[2]}{\Delta(P)}$ $\frac{(1-z[1])F(z)}{\Delta(P)}$ where $F(z) = 1 - z_1 z_2 z_3^2 z_4 z_5 - z_1 z_2 z_3^2 z_4 z_5 z_6 - z_1 z_2 z_3 z_5^2 z_6 - z_1 z_2 z_3 z_4 z_5^2 z_6 + z_1 z_2 z_3^2 z_4 z_5^2 z_6 - z_1 z_2 z_3 z_4 z_5^2 z_6 + z_1 z_2 z_3^2 z_4 z_5^2 z_6 - z_1 z_2 z_3 z_4 z_5 z_6 - z_1 z_2 z_3 z_4 z_5 - z_1 z_2 z_3 z_4 z_5$ $z_1^2 z_2^2 z_3^2 z_4 z_5^2 z_6 + z_1^2 z_2^2 z_3^3 z_4 z_5^2 z_6 + z_1^2 z_2^2 z_3^2 z_4^2 z_5^2 z_6 + z_1^2 z_2^2 z_3^2 z_4 z_5^3 z_6 + z_1^2 z_2^2 z_3^2 z_4 z_5^2 z_6 - z_1^3 z_3^2 z_4^2 z_5^4 z_6^2$

Equivariant K-theory

Application to *d*-complete posets

B_3 example



 $\beta_1 = \alpha_0 + \alpha_1 + \alpha_2$, $\beta_2 = 2\alpha_0 + 2\alpha_1 + \alpha_2$, $\beta_3 = 2\alpha_0 + \alpha_1 + \alpha_2$
 $\beta_4 = \alpha_0 + \alpha_1$, $\beta_5 = 2\alpha_0 + \alpha_1$, $\beta_6 = \alpha_0$,

$$\begin{array}{l} \gamma_1^{\vee} = \alpha_0^{\vee}, \, \gamma_2^{\vee} = \alpha_0^{\vee} + \alpha_1^{\vee}, \, \gamma_3^{\vee} = \alpha_0^{\vee} + \alpha_1^{\vee} + \alpha_2^{\vee}, \\ \gamma_4^{\vee} = \alpha_0^{\vee} + 2\alpha_1^{\vee}, \, \gamma_5^{\vee} = \alpha_0^{\vee} + 2\alpha_1^{\vee} + \alpha_2^{\vee}, \, \gamma_6^{\vee} = \alpha_0^{\vee} + 2\alpha_1^{\vee} + 2\alpha_2^{\vee} \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

on	Equivariant K-theory	Application to <i>d</i> -complete posets
	0000	0000
	0000	00
	0000	00000
	0000	

$$\lambda = 321, \mu = 21$$

$$W_1 = \frac{1}{(1 - z_0)(1 - z_0^2 z_1)(1 - z_0^2 z_1 z_2)}$$

$$\begin{array}{c} \square \\ \bigcirc \\ \bigcirc \\ \square \\ \square \\ \square \\ \blacksquare \\ \end{array} \\ W_2 = \frac{z_0 z_1}{(1 - z_0 z_1)(1 - z_0^2 z_1)(1 - z_0^2 z_1 z_2)} \\ \end{array}$$

$$W_3 = \frac{z_0^2 z_1^2 z_2}{(1 - z_0 z_1)(1 - z_0^2 z_1 z_2)(1 - z_0^2 z_1^2 z_2)}$$

$$W_4 = \frac{z_0 z_1 z_2}{(1 - z_0 z_1 z_2)(1 - z_0^2 z_1 z_2)(1 - z_0^2 z_1^2 z_2)}$$

ED-sum

$$W_1 + W_2 + W_3 + W_4 = \frac{1}{(1 - z_0)(1 - z_0 z_1)(1 - z_0 z_1 z_2)}$$

Example

0000	Introduction 00 00	Equivariant K-theory	Application to <i>d</i> -complete posets 0000 00 00000	Example 000000
------	--------------------------	----------------------	---	-------------------

Thank you!