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Plan

Today

• Introduce & enumerate

– Alternating sign matrices (ASMs)

– Alternating sign triangles (ASTs)

– Descending plane partitions (DPPs)

– Totally symmetric self-complementary plane partitions (TSSCPPs)

– Double-staircase semistandard Young tableaux

Thursday

• Discuss refined enumeration of ASMs with

– Fixed values of statistics

– Invariance under symmetry operations

• Sketch proofs for enumerations of

– Unrestricted ASMs

– Odd-order diagonally & antidiagonally symmetric ASMs



Alternating Sign Matrices (ASMs)

ASM: square matrix for which

• each entry is 0, 1 or −1

• each row & column contains at least one 1

• along each row & column, the nonzero entries alternate in sign,

starting & ending with a 1

e.g.










0 0 0 1 0
1 0 0 0 0
0 0 1 −1 1
0 1 −1 1 0
0 0 1 0 0











History:

• Arose during study of Dodgson condensation algorithm for determinant evaluation

(Mills, Robbins, Rumsey 1982; Robbins, Rumsey 1986)

• Many subsequent appearances in combinatorics, algebra, mathematical physics, . . .

Observations: • first/last row/column of an ASM contains single 1 & all other entries 0

• acting on an ASM with any symmetry operation of the square (reflections,

rotations) gives another ASM

• any permutation matrix is an ASM



Number An of n×n ASMs

n=1

(1) ⇒ A1 = 1

n=2
(

1 0

0 1

)

,

(

0 1

1 0

)

⇒ A2 = 2

n=3




1 0 0

0 1 0

0 0 1



 ,





0 1 0

1 0 0

0 0 1



 ,





1 0 0

0 0 1

0 1 0



 ,





0 0 1

0 1 0

1 0 0



 ,





0 0 1

1 0 0

0 1 0



 ,





0 1 0

0 0 1

1 0 0



 ,





0 1 0

1 −1 1

0 1 0





⇒ A3 = 7



n=4

• 4! = 24 matrices without any −1’s (permutation matrices)

• 4 matrices with one −1, at position 2,2:








0 1 0 0

1 −1 1 0

0 1 0 0

0 0 0 1









,









0 1 0 0

1 −1 1 0

0 0 0 1

0 1 0 0









,









0 1 0 0

1 −1 0 1

0 1 0 0

0 0 1 0









,









0 1 0 0

1 −1 0 1

0 0 1 0

0 1 0 0









Similarly:

4 matrices with one −1 at 2,3

4 matrices with one −1 at 3,2

4 matrices with one −1 at 3,3

So, 16 matrices with one −1

• 2 matrices with two −1’s:








0 1 0 0

1 −1 1 0

0 1 −1 1

0 0 1 0









,









0 0 1 0

0 1 −1 1

1 −1 1 0

0 1 0 0









⇒ A4 = 24+ 16+ 2 = 42



General Case

# of n×n ASMs: An =

n−1
∏

i=0

(3i+1)!

(n+i)!
= 1, 2, 7, 42, 429, 7436, . . .

• Recursion:
(2n

n

)

An+1 =
(3n+1

n

)

An

• Conjectured: Mills, Robbins, Rumsey 1982

• First proved:

– Zeilberger 1996 using constant term identities

– Kuperberg 1996 using connections with statistical mechanical model

• Book: D. Bressoud The Story of the ASM Conjecture, Cambridge Uni. Press (1999),

274 pages

• No combinatorial proof currently known.

• Kuperberg proof (more on Thursday):

– Apply bijection between n×n ASMs & configurations of statistical mechanical

six-vertex model on n×n square with domain-wall boundary conditions.

– Introduce parameter-dependent weights & consider weighted sum over all

configurations of model, i.e., generating function or partition function.

– Use Yang–Baxter equation & other properties to obtain Izergin–Korepin formula

for partition function as n×n determinant.

– Evaluate determinant at certain values of parameters for which all weights are 1.



Alternating Sign Triangles (ASTs)

AST of order n: triangular array a11 a12 a13 ......... a1,2n−3 a1,2n−2 a1,2n−1
a22 a23 ......... a2,2n−3 a2,2n−2

..
.

..
.

an−1,n−1 an−1,n an−1,n+1

ann

such that

• each entry is 0, 1 or −1

• each row contains at least one 1

• along each row, the nonzero entries alternate in sign, starting & ending with a 1

• down each column, the nonzero entries (if there are any) alternate in sign, starting

with a 1

• Introduced by Ayyer, RB, Fischer 2016

• e.g. AST of order 6: 0 0 1 0 0 0 0 0 0 0 0

1 −1 0 0 1 0 0 0 0

0 0 1 −1 0 0 1

1 −1 1 0 0

1 −1 1

1

Observations: • an order n AST has n2 entries • last row of an AST is a single 1

• first row of an AST contains a single 1 & all other entries 0

• reflecting an AST in the central vertical line gives another AST

• (# of order n ASTs without any −1’s) = n!



Number A′n of order n ASTs

n=1

(1) ⇒ A′1 = 1

n=2
(

1 0 0

1

)

,

(

0 0 1

1

)

⇒ A′2 = 2

n=3




1 0 0 0 0

1 0 0
1



 ,





0 0 0 1 0

1 0 0
1



 ,





0 0 0 0 1

1 0 0
1



 ,





1 0 0 0 0

0 0 1

1



 ,





0 1 0 0 0

0 0 1

1



 ,





0 0 0 0 1

0 0 1

1



 ,





0 0 1 0 0

1 −1 1

1



 ⇒ A′3 = 7



General Case

# of order n ASTs: A′n =

n−1
∏

i=0

(3i+1)!

(n+i)!
= 1, 2, 7, 42, 429, 7436, . . .

• Stated & proved: Ayyer, RB, Fischer 2016

• Proof analogous to that of Kuperberg for ASMs:

– Apply bijection between order n ASTs & configurations of statistical mechanical

six-vertex model on a triangle with certain boundary conditions.

– Introduce parameter-dependent weights & consider weighted sum over all

configurations of model, i.e., generating function or partition function.

– Use Yang–Baxter equation, reflection equation & other properties to obtain

formula for partition function as n×n determinant.

– Evaluate determinant at certain values of parameters for which all weights are 1.

• Therefore

(# of n×n ASMs) = (# of order n ASTs)

• No explicit bijection currently known between n×n ASMs & order n ASTs for

arbitrary n.



Descending Plane Partitions (DPPs)

DPP of order n: array d11 d12 d13 ......................................... d1,λ1

d22 d23 ............................... d2,λ2+1

d33 ...................... d3,λ3+2

..
.

..
.

dtt ...... dt,λt+t−1

such that • each part dij is a positive integer

• parts decrease weakly along rows

• parts decrease strictly down columns

• n ≥ d11 > λ1 ≥ d22 > λ2 ≥ . . . > λt−1 ≥ dtt > λt

• Arose during study of cyclically symmetric plane partitions. (Andrews 1979)

• e.g. DPP of order 6:

6 6 6 5 2

4 4 1

3

n ≥ d11 > λ1 ≥ d22 > λ2 ≥ d33 > λ3

↔ 6 ≥ 6 > 5 ≥ 4 > 3 ≥ 3 > 1



• There are simple bijections between

– order n DPPs

– sets of nonintersecting paths from (0, k +2) to (k,0) with 0 ≤ k ≤ n− 2

& steps (1,0) or (0,−1)

– cyclically symmetric rhombus tilings of a hexagon with alternating sides of

lengths n± 1 & central equilateral triangular hole of side length 2

• e.g.
6 6 6 5 2

4 4 1
3

←→

6 6 6

5

2

4 4

3

1

0 1 2 3 4
0

1

2

3

4

5

6

←→ ←→



Number Pn of DPPs of order n

n=1

∅ ⇒ P1 = 1

n=2

∅, 2 ⇒ P2 = 2

n=3

∅, 2, 3, 3 1, 3 2, 3 3, 3 3
2

⇒ P3 = 7

n=4

∅, 2, 3, 3 1, 3 2, 3 3, 3 3
2
, 4, 4 1, 4 2, 4 3, 4 4, 4 1 1, 4 2 1, 4 3 1, 4 4 1,

4 2 2, 4 3 2, 4 4 2, 4 3 3, 4 4 3, 4 4 4, 4 3
2
, 4 4

2
, 4 31

2
, 4 41

2
, 432

2
, 4 42

2
, 4 33

2
,

443
2

, 444
2

, 4 41
3

, 442
3

, 4 43
3

, 4 44
3

, 442
31

, 4 43
31

, 444
31

, 443
32

, 4 44
32

, 444
33

, 444
33
2

⇒ P4 = 42



General Case

# of order n DPPs: Pn =

n−1
∏

i=0

(3i+1)!

(n+i)!
= 1, 2, 7, 42, 429, 7436, . . .

• Stated & first proved: Andrews 1979

• Proof:

– Apply bijection between order n DPPs & sets of nonintersecting lattice paths.

– Use Lindström–Gessel–Viennot theorem to give Pn = det
1≤i,j≤n−1

(

δij +
(i+j

i−1

))

.

– Show that determinant is given by product formula.

• Therefore

(# of n×n ASMs) = (# of order n ASTs) = (# of order n DPPs)

• No explicit bijection currently known between any pair of these three objects

for arbitrary n.



Totally Symmetric Self-Complementary

Plane Partitions (TSSCPPs)

TSSCPP: plane partition in a box, which is invariant under reflections,

rotations & box-complementation

• Introduced: Stanley 1986

e.g. TSSCPP in 12× 12× 12 box:



Number P ′n of TSSCPPs in 2n×2n×2n box

n=1

⇒ P ′1 = 1

n=2

⇒ P ′2 = 2



n=3

⇒ P ′3 = 7



General Case

# of TSSCPPs in 2n×2n×2n box: P ′n =

n−1
∏

i=0

(3i+1)!

(n+i)!
= 1, 2, 7, 42, 429, 7436, . . .

• Conjectured: Mills, Robbins, Rumsey 1986

• First proved: Andrews 1994

• Proof analogous to that for DPPs:

– Apply bijection between TSSCPPs in 2n× 2n× 2n box & certain sets of

nonintersecting lattice paths with fixed start points & partially-free end

points. (Doran 1993)

– Use Lindström–Gessel–Viennot-type theorem to express P ′n as Pfaffian,

P ′n = Pf
σn≤i<j≤n−1

(

2j−i
∑

k=2i−j+1

(i+j

k

)

)

, σn =

{

0, n even

1, n odd.

(Okada 1989, Stembridge 1990)

– Show that Pfaffian is given by product formula.

• Therefore

(# of n×n ASMs) = (# of order n ASTs)

= (# of order n DPPs) = (# of TSSCPPs in 2n×2n×2n box)

• No explicit bijection currently known between any pair of these four objects

for arbitrary n.



Summary

• The following are all equal

–

n−1
∏

i=0

(3i+1)!

(n+i)!

– # of n×n ASMs

– # of order n ASTs

– # of order n DPPs

– # of TSSCPPs in 2n×2n×2n box

• No bijective proofs currently known for the equality between any of the
(

5
2

)

= 10

pairs of numbers.

• “This is one of the most intriguing open problems in the area of bijective proofs.”

(R. Stanley 2009)

• Other comments:

– “These conjectures are of such compelling simplicity that it is hard to know

how any mathematician can bear the pain of living without understanding why

they are true. . . . I expect that these problems will remain with us for some

time.” (D. Robbins 1991)

– “The greatest, still unsolved, mystery concerns the question of what plane

partitions have to do with alternating sign matrices.” (C. Krattenthaler 2016)



Double-staircase semistandard Young tableaux

• Hook-content formula for semistandard Young tableaux gives

SSYT
(

(n−1, n−1, . . . ,2,2,1,1),2n
)

SSYT
(

(2n−2,2n−4, . . . ,6,4,2), n
)

=

n−1
∏

i=0

(3i+1)!

(n+i)!
(Okada 2006)

where SSYT(λ, k) :=

(

# of semistandard Young tableaux of

shape λ with entries from {1,2, . . . , k})

)

• Observe that (n−1, n−1, . . . ,2,2,1,1) & (2n−2,2n−4, . . . ,6,4,2) are conjugate

partitions of double-staircase shape.

• Also SSYT
(

(2n−2,2n−4, . . . ,6,4,2), n
)

= 3n(n−1)/2

• e.g. for n = 3:

SSYT
(

(2,2,1,1),6
)

SSYT
(

(4,2),3
)

= SSYT

(

,6

)/

SSYT
(

,3
)

= 189/33 = 189/27 = 7

• No bijective proofs currently known for equality between
SSYT((n−1,n−1,...,2,2,1,1),2n)

SSYT((2n−2,2n−4,...,6,4,2),n)
&

# of n×n ASMs, order n ASTs, order n DPPs or TSSCPPs in 2n×2n×2n box.

• Can show q−(2n−1)n(n−1)/6 s(n−1,n−1,...,2,2,1,1)(1, q, . . . , q
2n−1)

/

s(2n−2,...,6,4,2)(1, q, . . . , q
n−1)

=

n−1
∏

i=0

[3i+1]q!

[n+i]q!
=

∑

order nDPPs π

q

∑

ijπij (Mills, Robbins, Rumsey 1982)

& s(n−1,n−1,...,2,2,1,1)(x1, . . . , x2n) ≈ certain case of six-vertex model partition function

(Okada 2006)



Posets & Polytopes

• “The biggest lesson I learned from Richard Stanley is combinatorial objects want to

be partially ordered. . . . A related lesson Stanley has taught me is combinatorial

objects want to belong to polytopes.” (J. Propp 2016)

• With certain natural order relations, {n×n ASMs}, {order n ASTs}, {order n DPPs}

& {TSSCPPs in 2n×2n×2n box} are (nonisomorphic) distributive lattices.

(Mills, Robbins, Rumsey 1982; Elkies, Kuperberg, Larsen, Propp 1992;

Striker 2011; RB)

• # of join irreducibles is
(

n+1
3

)

for {n×n ASMs} & {TSSCPPs in 2n×2n×2n box}

& (n2+n−3)(n−1)/3 for {order n ASTs} & {order n DPPs}.

• e.g. the lattice of 3×3 ASMs is
�
�
�
�
�

❅
❅

❅
❅

❅

❅
❅❅

❅
❅❅

�
��

�
��

• •

• •

•

•

•

& its poset of join irreducibles is
�
��
❅

❅❅

• •

• •

.

• A polytope in R
n2

with n×n ASMs as vertices has also been studied.

This contains the Birkhoff polytope. (RB, Knight 2008, Striker 2009)



More specifically, for any fixed n:

• the Birkhoff polytope (polytope of doubly stochastic matrices) is
{

n×n real matrices

∣

∣

∣

∣

• each entry is nonnegative

• each complete row & column sum is 1

}

• the alternating sign matrix polytope is






n×n real matrices

∣

∣

∣

∣

∣

∣

• each partial row & column sum extending from

each end of the row or column is nonnegative

• each complete row & column sum is 1






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