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Plan

Today

e Introduce & enumerate
— Alternating sign matrices (ASMs)
— Alternating sign triangles (ASTSs)
— Descending plane partitions (DPPs)
— Totally symmetric self-complementary plane partitions (TSSCPPs)

— Double-staircase semistandard Young tableaux

Thursday

e Discuss refined enumeration of ASMs with
— Fixed values of statistics

— Invariance under symmetry operations

e Sketch proofs for enumerations of
— Unrestricted ASMs
— (Odd-order diagonally & antidiagonally symmetric ASMs



Alternating Sign Matrices (ASMs)

ASM: square matrix for which
e cach entry is 0, 1 or —1
e cach row & column contains at least one 1

e along each row & column, the nonzero entries alternate in sign,
starting & ending with a 1

e.g. OO0 O 1 O
10 O O O
OO0 1 -11
01 -1 1 O
OO0 1 0 O
History:

e Arose during study of Dodgson condensation algorithm for determinant evaluation
(Mills, Robbins, Rumsey 1982; Robbins, Rumsey 1986)

e Many subsequent appearances in combinatorics, algebra, mathematical physics, ...

Observations: e first/last row/column of an ASM contains single 1 & all other entries O
e acting on an ASM with any symmetry operation of the square (reflections,
rotations) gives another ASM
e any permutation matrix is an ASM



Number A,, of nxn ASMS
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n=4
e 4! = 24 matrices without any —1's (permutation matrices)

e 4 matrices with one —1, at position 2,2:

O 1 0 0 O 1 0 O O 1 0 O
1 -1 1 O 1 -1 1 O 1 -1 0 1
O 1 o0 o010 O O 11”10 1 0O
O O O 1 O 1 0 0 O O 1 O
Similarly:
4 matrices with one —1 at 2,3
4 matrices with one —1 at 3,2
4 matrices with one —1 at 3,3
So, 16 matrices with one —1
e 2 matrices with two —1's:
O 1 O O O O 1 O
1 -1 1 O O 1 -1 1
o 1 -1 11’1 -1 1 O
O O 1 O 0O 1 O O

= Ay = 2441642 = 42

o oo
O oo
o oo



General Case

n—1
3i4+1)!
# of nxn ASMs: A, = [] % = 1,2, 7,42, 429, 7436, ...
bl (n+1)!

2
Recursion: < n) Apngy1 = (
n

Conjectured: Mills, Robbins, Rumsey 1982
First proved:

— Zeilberger 1996 using constant term identities
— Kuperberg 1996 using connections with statistical mechanical model

Book: D. Bressoud The Story of the ASM Conjecture, Cambridge Uni. Press (1999),
274 pages

n

No combinatorial proof currently known.
Kuperberg proof (more on Thursday):

— Apply bijection between nxn ASMs & configurations of statistical mechanical
Six-vertex model on nxn square with domain-wall boundary conditions.

— Introduce parameter-dependent weights & consider weighted sum over all
configurations of model, i.e., generating function or partition function.

— Use Yang—Baxter equation & other properties to obtain Izergin—Korepin formula
for partition function as nxn determinant.

— Evaluate determinant at certain values of parameters for which all weights are 1.



Alternating Sign Triangles (ASTSs)

AST of order n: triangular array ai1 ai2 A13 eeeeennn. 123 Q12p2 G12n-1
ano a23  .oeeeen.. a2 2n-3 a2 2n-2

An-1n-1 Anln OGnp-1ntl
Ann
such that
e cach entry is 0, 1 or —1
e cach row contains at least one 1
e along each row, the nonzero entries alternate in sign, starting & ending with a 1
e down each column, the nonzero entries (if there are any) alternate in sign, starting
with a 1

e Introduced by Ayyer, RB, Fischer 2016

e €.9g. AST of order 6: O O 1 O 0 O 0O O O O O
1 -1 O 0 1 0 O 0 O
O O 1 -1 0 0 1
1 -1 1 0 O
1 -1 1
1
Observations: e an order n AST has n? entries e |last row of an AST is a single 1

e first row of an AST contains a single 1 & all other entries O
e reflecting an AST in the central vertical line gives another AST
e (# of order n ASTs without any —1's) = n!



Number A/ of order n ASTs
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General Case

T (3it1)!
# of order n ASTs: 4), = |] ~— - = 1,2,7,42,429,7436, ...
Pl (n+41)!

e Stated & proved: Ayyer, RB, Fischer 2016

e Proof analogous to that of Kuperberg for ASMs:

Apply bijection between order n ASTs & configurations of statistical mechanical
six-vertex model on a triangle with certain boundary conditions.

Introduce parameter-dependent weights & consider weighted sum over all
configurations of model, i.e., generating function or partition function.

Use Yang—Baxter equation, reflection equation & other properties to obtain
formula for partition function as nxn determinant.

Evaluate determinant at certain values of parameters for which all weights are 1.

e [ herefore

(# of nxn ASMs) = (# of order n ASTSs)

e NO explicit bijection currently known between nxn ASMs & order n ASTs for
arbitrary n.



Descending Plane Partitions (DPPs)

DPP of order n: array di1 di12 di3 .eoeoriiiiiiiiiiiiiie di z,
Aoo A3 e, d» Aot1

such that each part d;; is a positive integer
parts decrease weakly along rows
parts decrease strictly down columns

n>dilt >N >dop >0 > 000> N No1 2d > M

e Arose during study of cyclically symmetric plane partitions. (Andrews 1979)

e c.g. DPP of order 6:

66652
4 4 1
3

n > dil > A1 > doo > Ao > d3z > A3
<~ 6>26>5>24>3>3>1



e [ here are simple bijections between
— order n DPPs

— sets of nonintersecting paths from (0,k 4+ 2) to (k,0) with 0 <k <n-—2
& steps (1,0) or (0,—1)

— cyclically symmetric rhombus tilings of a hexagon with alternating sides of
lengths n =1 & central equilateral triangular hole of side length 2




Number P, of DPPs of order n
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General Case

- (3i+1)!

+# of order n DPPs: P, H (!
mn 7

= 1,2, 7,42, 429, 7436, ...

e Stated & first proved: Andrews 1979

e Proof:
— Apply bijection between order n DPPs & sets of nonintersecting lattice paths.
— Use Lindstrom—Gessel—Viennot theorem to give P, = 1<_d_(2t 1<5w -+ <Z+i))
S, )N —

— Show that determinant is given by product formula.

e [ herefore

(# of nxn ASMs) = (# of order n ASTs) = (# of order n DPPs)

e NO explicit bijection currently known between any pair of these three objects
for arbitrary n.



Totally Symmetric Self-Complementary
Plane Partitions (TSSCPPs)

TSSCPP: plane partition in a box, which is invariant under reflections,
rotations & box-complementation

e Introduced: Stanley 1986

e.g. TSSCPP in 12 x 12 x 12 box:




Number P/ of TSSCPPs in 2nx2nx2n box

n=2

= P2:







General Case

n—1
# of TSSCPPs in 2nx2nx2n box: P, = |]
1=0

(3i4-1)!
(n+41)!

= 1,2, 7,42, 429, 7436, ...

e Conjectured: Mills, Robbins, Rumsey 1986
e First proved: Andrews 1994
e Proof analogous to that for DPPs:

— Apply bijection between TSSCPPs in 2n x 2n x 2n box & certain sets of
nonintersecting lattice paths with fixed start points & partially-free end
points. (Doran 1993)

— Use Lindstrom—Gessel—Viennot-type theorem to express P/ as Pfaffian,

gy i+j 0, n even
! - ) n
Pn o Jn<i5j£nl< Z ( k >>  In = {1, n odd.

k=2i—j+1
(Okada 1989, Stembridge 1990)
— Show that Pfaffian is given by product formula.

e [ herefore

(# of nxn ASMs) = (# of order n ASTSs)
= (# of order n DPPs) = (# of TSSCPPs in 2nx2nx2n box)

e NoO explicit bijection currently known between any pair of these four objects
for arbitrary n.



Summary

e T he following are all equal
"1 (3i41)!
- HGr
— # of nxn ASMs
— #£ of order n ASTs
— # of order n DPPs
— # of TSSCPPs in 2nx2nx2n box

e No bijective proofs currently known for the equality between any of the (g) =10
pairs of numbers.

e ““This is one of the most intriguing open problems in the area of bijective proofs.”
(R. Stanley 2009)

e Other comments:
“These conjectures are of such compelling simplicity that it is hard to know
how any mathematician can bear the pain of living without understanding why
they are true. ... I expect that these problems will remain with us for some
time.” (D. Robbins 1991)

“The greatest, still unsolved, mystery concerns the question of what plane
partitions have to do with alternating sign matrices.” (C. Krattenthaler 2016)



Double-staircase semistandard Young tableaux

Hook-content formula for semistandard Young tableaux gives
SSYT((n—1,n-1,...,2,2,1,1),2n) H " (3i4+1)!
SSYT((Qn—Q,Qn—4,...,6,4,2), (n+1)!

# of semistandard Young tableaux of
shape M\ with entries from {1,2,...,k})

Observe that (n—1,n—-1,...,2,2,1,1) & (2n—2,2n—4,...,6,4,2) are conjugate
partitions of double-staircase shape.

Also SSYT((2n—2,2n—4,...,6,4,2),n) = 3nn-1)/2

(Okada 2006)

where SSYT(\ k) = (

e.g. for n = 3:
SSYT((2,2,1,1),6)
SSYT((4,2),3)

= SSYT( ,6) /SSYT( -1,3) = 189/3° =189/27 =7

SSYT ((n-1,n-1,...,2,2,1,1),2n)
SSYT((2n—2,2n4,...,6,4,2),n)
# of nxn ASMSs, order n ASTSs, order n DPPs or TSSCPPs in 2nx2nx2n boxX.

(2n—1)n(n—1)/6

No bijective proofs currently known for equality between

_ 2n—1 -1
Can show g¢ S(n-1,n-1,..221,1(1,¢ -, q¢" )/S(Qn—Q,...,6,4,2)(1a q--5q" ")

3i+1 1T
H [ s ](i _ Z qua (Mills, Robbins, Rumsey 1982)
[n+z] ordern DPPs =

& S(n_l,n_l’_._’Q,Q’l,l)(5131,...,:Egn) ~ certain case of six-vertex model partition function
(Okada 2006)



Posets & Polytopes

“The biggest lesson I learned from Richard Stanley is combinatorial objects want to
be partially ordered. ... A related lesson Stanley has taught me is combinatorial
objects want to belong to polytopes.” (J. Propp 2016)

With certain natural order relations, {nxn ASMs}, {order n ASTs}, {order n DPPs}
& {TSSCPPs in 2nx2nx2n box} are (nonisomorphic) distributive lattices.

(Mills, Robbins, Rumsey 1982; Elkies, Kuperberg, Larsen, Propp 1992;
Striker 2011; RB)

#£ of join irreducibles is ("I') for {nxn ASMs} & {TSSCPPs in 2nx2nx2n box}

& (n?°4+n—-3)(n—1)/3 for {order n ASTs} & {order n DPPs}.

e.g. the lattice of 3x3 ASMs is & its poset of join irreducibles is M :

A polytope in R™ with nxn ASMs as vertices has also been studied.
This contains the Birkhoff polytope. (RB, Knight 2008, Striker 2009)



More specifically, for any fixed n:

e the Birkhoff polytope (polytope of doubly stochastic matrices) is

e cach complete row & column sum is 1

, e cach entry is nonnegative
nXn real matrices

e the alternating sign matrix polytope is

e cach partial row & column sum extending from
nxn real matrices each end of the row or column is nonnegative

e cach complete row & column sum is 1
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