Hook formulas for skew shapes

Greta Panova (University of Pennsylvania and IAS Princeton) joint with Alejandro Morales (UCLA), Igor Pak (UCLA)

Algebraic and Enumerative Combinatorics in Okayama, 2018

Standard Young Tableaux

Irreducible representations of *S_n*:

Specht modules \mathbb{S}_{λ} , for all $\lambda \vdash n$.

Basis for \mathbb{S}_{λ} : Standard Young Tableaux of shape λ :

$\lambda = (2, 2, 1)$:	— —:	12	12	13	13	14
()))		3 4	35	24	2 5	25
		5	4	5	4	3

Hook-length formula [Frame-Robinson-Thrall]:

2

(D) (B) (E) (E) E

Lattice path

Product formulas

Counting skew SYTs

Outer shape λ , inner – μ ,

e.g. for $\lambda = (5, 4, 4, 2), \mu = (2, 2, 1)$:

Lattice path

Product formulas

Counting skew SYTs

Outer shape λ , inner – μ , e.g. for $\lambda = (5, 4, 4, 2), \mu = (2, 2, 1)$:

うせん 聞い ふぼう ふぼう ふしゃ

Origins: Representations of $GL_n(\mathbb{C})$:

Weyl modules V_{λ} , for all λ with $\ell(\lambda) \leq n$. Characters – Schur functions $s_{\lambda}(x_1, \ldots, x_n)$.

Tensor product: $V_{\mu} \otimes V_{\nu} = \oplus_{\lambda} V_{\lambda}^{c_{\mu\nu}^{\lambda}}$, where $c_{\mu\nu}^{\lambda}$ – Littlewood-Richardson coefficients

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda}s_{\lambda} \iff c_{\mu\nu}^{\lambda} = \langle s_{\mu}s_{\nu}, s_{\lambda} \rangle = \langle s_{\nu}, \underbrace{s_{\lambda/\mu}}_{\text{skew Schur}} \rangle$$

Skew Schur functions and skew (semi)standard Young Tableaux (SSYTs):

$$s_{(3,2)/(1)}(x_1, x_2, x_3, x_4) = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_4 + \dots + x_1^2 x_2 x_3 + x_1^2 x_2 x_3 + \dots$$

$$\begin{array}{c|c}1 & 2 & 3 \\\hline 1 & 2 & 2 & 3 \\\hline 3 & 4 & 1 & 4 \\\hline 1 & 4 & 1 & 3 \\\hline 1 & 4 & 1 & 2 \\\hline 1 & 3 & 2 & 3 \\\hline \end{array}$$

Counting skew SYTs

Other motivation: dimer models (lozenge tilings) in statistical mechanics

(a)

э

Counting skew SYTs

Outer shape λ , inner – μ , e.g. for $\lambda = (5, 4, 4, 2), \mu = (2, 2, 1)$:

(日) (四) (王) (王) (王)

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[rac{1}{(\lambda_i - \mu_j - i + j)!}
ight]_{i,j=1}^{\ell(\lambda)}.$$

Littlewood-Richardson:

$$f^{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu,
u} f^{
u}$$

No product formula, e.g.
$$\lambda/\mu = \delta_{n+2}/\delta_n$$
:
 $56 + 8 > 3 < 4 > 2 < 7 > 1 < 9 > 5 < 6 \ f^{\delta_{n+2}/\delta_n} = E_{2n+1}$:
 $34 + 8 = 1 + E_1 x + E_2 \frac{x^2}{2!} + E_3 \frac{x^3}{3!} + E_4 \frac{x^4}{4!} + \dots = \sec(x) + \tan(x).$

Euler numbers: 2, 5, 16, 61....

Hook-Length formula for skew shapes

Theorem (Naruse, SLC, September 2014)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

Excited diagrams:

Hook-Length formula for skew shapes

Theorem (Morales-Pak-P)

For skew SSYTs, we have that

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in [\lambda] \setminus D} \left[rac{q^{\lambda_j' - i}}{1 - q^{h(i,j)}}
ight].$$

Theorem (Morales-Pak-P)

For (reverse) plane partitions of skew shape λ/μ we have that

$$\sum_{\pi \in RPP(\lambda/\mu)} q^{|\pi|} = \sum_{S \in PD(\lambda/\mu)} \prod_{u \in S} \left[\frac{q^{h(u)}}{1 - q^{h(u)}} \right].$$

where $PD(\lambda/\mu) := \{S \subset [\lambda] : S \subset [\lambda] \setminus D$, for some $D \in \mathcal{E}(\lambda/\mu)\}$ is the set of "pleasant diagrams". Other recent proof by [M. Konvalinka]

5

Algebraic proof for SSYTs:

[Ikeda-Naruse, Kreiman]:

Let $w \leq v$ be Grassmannian permutations whose unique descent is at position d with corresponding partitions $\mu \subseteq \lambda \subseteq d \times (n-d)$. Then the Schubert class X_w for w at point v is:

$$[X_w]\Big|_v = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{\nu(d+j)} - y_{\nu(d-i+1)}).$$

[Ikeda-Naruse, Kreiman]:

Let $w \leq v$ be Grassmannian permutations whose unique descent is at position d with corresponding partitions $\mu \subseteq \lambda \subseteq d \times (n-d)$. Then the Schubert class X_w for w at point v is:

$$[X_w]\Big|_v = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{v(d+j)} - y_{v(d-i+1)}).$$

v = 245613, w = 361245Factorial Schur functions:

Factorial Schur functions:

$$s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) := rac{\det[(x_j - a_1)\cdots(x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)},$$

[Knutson-Tao, Lakshmibai–Raghavan–Sankaran] Schubert class at a point:

$$[X_w]|_v = (-1)^{\ell(w)} s_{\mu}^{(d)} (y_{\nu(1)}, \ldots, y_{\nu(d)}|y_1, \ldots, y_{n-1}).$$

$$\begin{split} \left[X_{w} \right] \Big|_{v} &= \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} \left(y_{v(d+j)} - y_{v(d-i+1)} \right). \\ s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) &:= \frac{\det \left[(x_{j} - a_{1}) \cdots (x_{j} - a_{\mu_{i}+d-i}) \right]_{i,j=1}^{d}}{\prod_{1 \leq i < j \leq d} (x_{i} - x_{j})}, \\ \left[X_{w} \right] \Big|_{v} &= (-1)^{\ell(w)} s_{\mu}^{(d)}(y_{v(1)}, \dots, y_{v(d)}|y_{1}, \dots, y_{n-1}). \end{split}$$

$$\begin{split} \left[X_{w}\right]_{v} &= \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} \left(y_{v(d+j)} - y_{v(d-i+1)}\right).\\ s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) &:= \frac{\det\left[(x_{j} - a_{1}) \cdots (x_{j} - a_{\mu_{i}+d-i})\right]_{i,j=1}^{d}}{\prod_{1 \leq i < j \leq d} (x_{i} - x_{j})},\\ \left[X_{w}\right]_{v} &= (-1)^{\ell(w)} s_{\mu}^{(d)}(y_{v(1)}, \dots, y_{v(d)}|y_{1}, \dots, y_{n-1}).\\ \end{split}$$
Evaluation at $y = 1, q, q^{2}, \dots, v(d+1-i) = \lambda_{i} + d + 1 - i, x_{i} \to y_{v(i)} = q^{\lambda_{i}+d+1-i} \to$

$$y_{v(d+j)} - y_{v(d-i+1)} = y_{v(d+j)} - x_i = q^{d-\lambda'_j+j} - q^{\lambda_i+d+1-i} = q^{d-\lambda'_j+j} (1 - q^{\lambda_i + \lambda'_j - i - j + 1})$$

$$\begin{split} \left[X_{w}\right]\Big|_{v} &= \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{v(d+j)} - y_{v(d-i+1)}).\\ s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) &:= \frac{\det[(x_{j} - a_{1}) \cdots (x_{j} - a_{\mu_{i}+d-i})]_{i,j=1}^{d}}{\prod_{1 \leq i < j \leq d} (x_{i} - x_{j})},\\ \left[X_{w}\right]\Big|_{v} &= (-1)^{\ell(w)} s_{\mu}^{(d)}(y_{v(1)}, \dots, y_{v(d)}|y_{1}, \dots, y_{n-1}).\\ \end{split}$$
Evaluation at $y = 1, q, q^{2}, \dots, v(d+1-i) = \lambda_{i} + d + 1 - i, x_{i} \to y_{v(i)} = q^{\lambda_{i}+d+1-i} \to$

$$y_{\nu(d+j)} - y_{\nu(d-i+1)} = y_{\nu(d+j)} - x_i = q^{d-\lambda'_j+j} - q^{\lambda_i+d+1-i} = q^{d-\lambda'_j+j} (1 - q^{\lambda_i + \lambda'_j - i - j + 1})$$

$$\sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} q^{d-\lambda'_j+j} (1-q^{h(i,j)}) = [X_w]|_v = s_{\mu}^{(d)}(q^{v(1)}, \dots | 1, q, \dots)$$

$$= \frac{\det[\prod_{r=1}^{\mu_j+d-j}(q^{\lambda_i+d+1-i}-q^r)]_{i,j=1}^d}{\prod_{i < j}(q^{\lambda_i+d+1-i}-q^{\lambda_j+d+1-j})} = \dots[simplifications]...$$

$$= (factor) \det[\underbrace{\frac{1}{(1-q)(1-q^2)\cdots(1-q^{\lambda_i-i-\mu_j+j})}}_{h_{\lambda_i-i-\mu_j+j}(1,q,\dots)}] \underbrace{=}_{Jacobi-Trudi} s_{\lambda/\mu}(1,q,\dots)$$

Hillman-Grassl map Φ : Reverse Plane Partitions of shape λ to Arrays of shape λ :

 $\begin{aligned} & \textit{Weight}(P) = |P| = 0 + 1 + 2 + 1 + 1 + 3 + 2 = 10 = \\ & = \sum_{i,j} A_{i,j} \textit{hook}(i,j) = 1 * 5 + 1 * 2 + 2 * 1 + 1 * 1 =: \textit{weight}(A) \end{aligned}$

7

Hillman-Grassi map Φ : Reverse Plane Partitions of shape λ to Arrays of shape λ :

 $\begin{aligned} & \textit{Weight}(P) = |P| = 0 + 1 + 2 + 1 + 1 + 3 + 2 = 10 = \\ & = \sum_{i,j} A_{i,j} \textit{hook}(i,j) = 1 * 5 + 1 * 2 + 2 * 1 + 1 * 1 =: \textit{weight}(A) \end{aligned}$

$$\sum_{P \in \mathcal{RPP}(\lambda)} q^{|P|} = \sum_{A: Array(\lambda)} \prod_{(i,j) \in \lambda} q^{h(i,j)*A_{i,j}} = \prod_{(i,j) \in \lambda} \frac{1}{1 - q^{h(i,j)}}$$

7

Theorem (Morales-Pak-P)

The restricted Hillman-Grassl map is a bijection from the SSYTs of shape λ/μ to the excited arrays (diagrams in $\mathcal{E}(\lambda/\mu)$ with nonzero entries on the broken diagonals).

< ロ > < 同 > < 回 > < 回 >

Theorem (Morales-Pak-P)

The restricted Hillman-Grassl map is a bijection from the SSYTs of shape λ/μ to the excited arrays (diagrams in $\mathcal{E}(\lambda/\mu)$ with nonzero entries on the broken diagonals).

Proof sketch:

Issue: enforce 0s on μ and strict increase down columns on λ/μ . Show $\Phi^{-1}(A)$ is column strict in λ/μ + support in λ/μ via properties of RSK (Integer partition on kth diagonal $(\ldots, P_{2,2+k}, P_{1,1+k}) = shape(RSK(A_k^T))$ is shape of RSK tableau on the corresponding subrectangle of A) Thus, Φ^{-1} is injective: restricted arrays \rightarrow SSYTs of shape λ/μ . Bijective: use the algebraic identity.

イロト 不得 とうき イヨト

Weakly increasing rows:

Skew reverse plane partitions \Leftrightarrow arrays with support *"pleasant diagrams"*:

 $PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}$

- subsets of complements of the excited diagrams, identified by the "high peaks".

Weakly increasing rows:

Skew reverse plane partitions \Leftrightarrow arrays with support "pleasant diagrams":

 $PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}$

- subsets of complements of the excited diagrams, identified by the "high peaks".

Excited diagrams \leftrightarrow complements of lattice paths:

Weakly increasing rows:

Skew reverse plane partitions \Leftrightarrow arrays with support "pleasant diagrams":

 $PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}$

- subsets of complements of the excited diagrams, identified by the "high peaks".

Excited diagrams \leftrightarrow complements of lattice paths:

Weakly increasing rows:

Skew reverse plane partitions \Leftrightarrow arrays with support *"pleasant diagrams"*:

 $PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}$

- subsets of complements of the excited diagrams, identified by the "high peaks".

Theorem (MPP)

The HG map is a bijection between skew RPPs of shape λ/μ and arrays with certain nonzero entries (at the "high peaks"):

$$\sum_{\pi \in RPP(\lambda/\mu)} q^{|\pi|} = \sum_{S \in PD(\lambda/\mu)} \prod_{u \in S} \left[\frac{q^{h(u)}}{1 - q^{h(u)}} \right]$$

P-partitions/limit:^{2°} combinatorial proof of \hat{o}^2 iginal Naruse Hook-Length Formula for $f^{\lambda/\mu}$.

・ロト・一部・・モト・モー・ ビー うくぐ

Non-intersecting lattice paths

Theorem[Lascoux-Pragacz, Hamel-Goulden] If $(\theta_1, \ldots, \theta_k)$ is a Lascoux-Pragacz decomposition (i.e. maximal outer border strip decomposition) of λ/μ , then

$$s_{\lambda/\mu} = \det \left[s_{\theta_i \# \theta_j} \right]_{i,j=1}^k$$

where $s_{\emptyset} = 1$ and $s_{\theta_i \# \theta_j} = 0$ if the $\theta_i \# \theta_j$ is undefined. θ_1 - border strip following the inner border of λ ; θ_i - inner border of $\lambda \setminus (\theta_1 \cup \cdots \cup \theta_{i-1})$ etc until μ is hit, then - border strips from each connected part etc. Ordering: corners.

Strip $\theta_i \# \theta_j :=$ shape of θ_1 between the diagonals of the endpoints of θ_i and θ_j .

<ロ> (四)、(四)、(三)、(三)

NHLF for border strips

Lemma (MPP)

For a border strip $heta=\lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma \ \gamma \subseteq \lambda}} \prod_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma}} rac{q^{\lambda_j'-i}}{1-q^{h(i,j)}}.$$

Proofs: induction on $|\lambda/\mu|$, or [multivariate] Chevalley formula for factorial Schurs.

NHLF for border strips

Lemma (MPP)

For a border strip $\theta=\lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma \ \gamma \subseteq \lambda}} \prod_{\substack{q \geq \lambda'_j - i \ 1 - q^{h(i,j)}}}.$$

Excited diagrams for $\lambda/\mu \leftrightarrow$ Non-Intersecting Lattice Paths:

3

(日)、

NHLF for border strips

Lemma (MPP)

For a border strip $heta=\lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma \ \gamma \subseteq \lambda}} \prod_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma}} rac{q^{\lambda_j'-i}}{1-q^{h(i,j)}}.$$

Excited diagrams for $\lambda/\mu \leftrightarrow$ Non-Intersecting Lattice Paths:

 $\Phi(n) := 1! \cdot 2! \cdots (n-1)!, \ \Psi(n) := 1!! \cdot 3!! \cdots (2n-3)!!, \\ \Psi(n;k) := (k+1)!! \cdot (k+3)!! \cdots (k+2n-3)!!, \ \Lambda(n) := (n-2)!(n-4)! \cdots$

Theorem (MPP)

For nonnegative integers a, b, c, d, e, let n be the size of the corresponding skew shape, then for the shapes in (i), (ii), (iii) we have the following product formulas for the number of skew SYTs:

$$f^{sh(i)} = n! \frac{\Phi(a)\Phi(b)\Phi(c)\Phi(d)\Phi(e)\Phi(a+b+c)\Phi(c+d+e)\Phi(a+b+c+e+d)}{\Phi(a+b)\Phi(e+d)\Phi(a+c+d)\Phi(b+c+e)\Phi(a+b+2c+e+d)},$$

$$f^{sh(ii)} = n! \frac{\Phi(a)\Phi(b)\Phi(c)\Phi(a+b+c)}{\Phi(a+b)\Phi(b+c)\Phi(a+c)} \frac{\Psi(c)\Psi(a+b+c)}{\Psi(a+c)\Psi(b+c)\Psi(a+b+2c)},$$

$$f^{Sh(ii)} = \frac{n! \Phi(a)\Phi(b)\Phi(c)\Phi(a+b+c)\Psi(c;d+e)\Psi(a+b+c;d+e)\Lambda(2a+2c)\Lambda(2b+2c)}{\Phi(a+b)\Phi(b+c)\Phi(a+c)\Psi(a+c)\Psi(b+c)\Psi(a+b+2c;d+e)\Lambda(2a+2c+d)\Lambda(2b+2c+e)},$$

Multivariate identities I

Set
$$z_{\lambda_i+d-i+1}(\lambda) = x_i$$
 and $z_{\lambda'_i+n-d-j+1}(\lambda) = y_j$.

Theorem (Ikeda-Naruse)

$$\sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (x_i - y_j) = s_{\mu}^{(d)}(\mathbf{x} \mid z(\lambda))$$

Multivariate identities I

Set
$$z_{\lambda_i+d-i+1}(\lambda) = x_i$$
 and $z_{\lambda'_i+n-d-j+1}(\lambda) = y_j$.

D

Theorem (Ikeda-Naruse)

$$\sum_{\in \mathcal{E}(\lambda/\mu)} \prod_{(i,j)\in D} (x_i - y_j) = s_{\mu}^{(d)}(\mathbf{x} \,|\, z(\lambda))$$

Proposition (MPP)

Let $\lambda/\mu \subset d \times (n-d)$ with $\lambda_d \ge \mu_1 + d - 1$. Then:

$$\sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (x_i - y_j) = s_{\mu}^{(d)}(x_1, \dots, x_d \mid y_1, \dots, y_{\lambda_d}).$$

In particular, the LHS is symmetric in (x_1, \ldots, x_d) .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Multivariate identities I

Set
$$z_{\lambda_i+d-i+1}(\lambda) = x_i$$
 and $z_{\lambda'_i+n-d-j+1}(\lambda) = y_j$.

Theorem (Ikeda-Naruse)

$$\sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (x_i - y_j) = s_{\mu}^{(d)}(\mathbf{x} \mid z(\lambda))$$

Proposition (MPP)

Let $\lambda/\mu \subset d \times (n-d)$ with $\lambda_d \ge \mu_1 + d - 1$. Then:

$$\sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (x_i - y_j) = s_{\mu}^{(d)}(x_1, \dots, x_d \mid y_1, \dots, y_{\lambda_d}).$$

In particular, the LHS is symmetric in (x_1, \ldots, x_d) .

Theorem (MPP)

If $x_i = \lambda_i - i$ and $y_j = -\lambda_j + j - 1$, then $h_{\lambda}(i, j) = x_i - y_j$. If λ is "nice", then any path θ : NW corner A \rightarrow SE corner B has the same multiset of hooks $(h(\theta(1)), h(\theta(2)), \ldots)$

-

イロト 不得 トイヨト イヨト

If $x_i = \lambda_i - i$ and $y_j = -\lambda_j + j - 1$, then $h_{\lambda}(i, j) = x_i - y_j$. If λ is "nice", then any path θ : NW corner A \rightarrow SE corner B has the same multiset of hooks $(h(\theta(1)), h(\theta(2)), \ldots)$

NHLF:
$$\frac{f^{\lambda/b^a}}{n!} = \left[\prod_{u \in [\lambda] \setminus R} \frac{1}{h_{\lambda}(i,j)}\right] \sum_{D \in \mathcal{E}(R/b^a)} \prod_{(i,j) \in R \setminus D} \frac{1}{h_{\lambda}(i,j)}$$

13

-

イロト 不得 トイヨト イヨト

f

Multivariate identities II

If $x_i = \lambda_i - i$ and $y_j = -\lambda_j + j - 1$, then $h_{\lambda}(i, j) = x_i - y_j$. If λ is "nice", then any path θ : NW corner A \rightarrow SE corner B has the same multiset of hooks $(h(\theta(1)), h(\theta(2)), \ldots)$

$$\begin{array}{ll} \mathsf{NHLF:} & \displaystyle \frac{f^{\lambda/b^2}}{n!} = \left[\prod_{u \in [\lambda] \setminus R} \frac{1}{h_{\lambda}(i,j)}\right] \sum_{D \in \mathcal{E}(R/b^2)} \prod_{(i,j) \in R \setminus D} \frac{1}{h_{\lambda}(i,j)} \\ \text{lip diagram/paths vertically} = (factor) \prod_{(i,j) \in R/0^c b^2} \frac{1}{h_{\lambda}(i,j)} \times \# \mathcal{E}(R/b^2) \end{array}$$

13

-

イロト 不得 トイヨト イヨト

If $x_i = \lambda_i - i$ and $y_j = -\lambda_j + j - 1$, then $h_{\lambda}(i,j) = x_i - y_j$. If λ is "nice", then any path θ : NW corner A \rightarrow SE corner B has the same multiset of hooks $(h(\theta(1)), h(\theta(2)), \ldots)$

$$\begin{aligned} \mathsf{NHLF:} \quad & \frac{f^{\lambda/b^a}}{n!} = \left[\prod_{u \in [\lambda] \setminus R} \frac{1}{h_\lambda(i,j)}\right] \sum_{D \in \mathcal{E}(R/b^a)} \prod_{(i,j) \in R \setminus D} \frac{1}{h_\lambda(i,j)} \\ \text{flip diagram/paths vertically} &= (factor) \prod_{(i,j) \in R/0^c b^a} \frac{1}{h_\lambda(i,j)} \times \# \mathcal{E}(R/b^a) \\ &= \prod_{(i,j) \in \lambda \setminus R} \frac{1}{h_\lambda(i,j)} \prod_{(i,j) \in R/0^c b^a} \frac{1}{h_\lambda(i,j)} \frac{\Phi(a+b+c)\Phi(a)\Phi(b)\Phi(c)}{\Phi(a+b)\Phi(b+c)\Phi(a+c)} \\ &= (a+b) \Phi(b+c)\Phi(a+c) \\ &= (a+b) \Phi(b+c)\Phi(b+c) \\ &= (a+b) \Phi(b+c) \Phi(b+c) \\ &= (a+b) \Phi(b+c) \\ &= (a+b) \Phi(b+c) \\ &= (a+b) \Phi(b+c) \Phi(b+c) \\ &= (a+b)$$

$$\begin{split} \mathsf{NHLF:} \quad & \frac{f^{\lambda/b^a}}{n!} = \left[\prod_{u \in [\lambda] \setminus R} \frac{1}{h_\lambda(i,j)}\right] \sum_{D \in \mathcal{E}(R/b^a)} \prod_{(i,j) \in R \setminus D} \frac{1}{h_\lambda(i,j)} \\ \text{flip diagram/paths vertically} &= (factor) \prod_{(i,j) \in R/0^c b^a} \frac{1}{h_\lambda(i,j)} \times \#\mathcal{E}(R/b^a) \\ &= \prod_{(i,j) \in \lambda \setminus R} \frac{1}{h_\lambda(i,j)} \prod_{(i,j) \in R/0^c b^a} \frac{1}{h_\lambda(i,j)} \frac{\Phi(a+b+c)\Phi(a)\Phi(b)\Phi(c)}{\Phi(a+b)\Phi(b+c)\Phi(a+c)} \end{split}$$

Excited diagrams \leftrightarrow flagged tableaux of shape μ :

$$\begin{split} \mathsf{NHLF:} \quad & \frac{f^{\lambda/b^a}}{n!} = \left[\prod_{u \in [\lambda] \setminus R} \frac{1}{h_\lambda(i,j)}\right] \sum_{D \in \mathcal{E}(R/b^a)} \prod_{(i,j) \in R \setminus D} \frac{1}{h_\lambda(i,j)} \\ \text{flip diagram/paths vertically} &= (factor) \prod_{(i,j) \in R/0^c b^a} \frac{1}{h_\lambda(i,j)} \times \#\mathcal{E}(R/b^a) \\ &= \prod_{(i,j) \in \lambda \setminus R} \frac{1}{h_\lambda(i,j)} \prod_{(i,j) \in R/0^c b^a} \frac{1}{h_\lambda(i,j)} \frac{\Phi(a+b+c)\Phi(a)\Phi(b)\Phi(c)}{\Phi(a+b)\Phi(b+c)\Phi(a+c)} \end{split}$$

Excited diagrams \leftrightarrow flagged tableaux of shape μ :

When $\mu = (b^a)$, then SSYTs with max entry $\leq \max\{k : \lambda_k \geq k + b - a\}$:

The end of day 1

Τ	h						
y			а	n			
		0				k	
				и	1		•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで