On a framework for Hillman—Grassl algorithms

On a framework for Hillman—Grassl algorithms

NUMATA, Yasuhide
Shinshu univ.

(joint work w/ S. Okamura and K. Nakada.)

On a framework for Hillman—Grassl algorithms
Int tion
Notation

Outline

e Introduction
@ Notation

On a framework for Hillman—Grassl algorithms
Int
Notation

Partitions and Young diagrams

Let A be a partition of an integer, i.e.,
(A, A2, ..o A)
such that
i<i = N>\
We regard A as the set
{@)I1<i<N}

of boxes (or cells), and we use so-called English notation.

Notation

Hooks of Young diagrams

Let X be the transposed Young diagram of)\, i.e.,

{G) 1 (5) e A}

N\ = #tof boxes in the j-th column of \.
For (i,7) € A, we define the hook at (i,j) of A by
H(i,j)={(G)er|j<i<N}Iu{(j)er|i<i<X}.

@ (i,);) is the easternmost box in the hook H (i, j).
o ()}, 7) is the southernnmost box in the hook H (i, j).

On a work for Hillman—C
Introduction
Notation

Zigzag hooks of Young diagrams

Consider a path from (i, A;) to (A}, j) such that the direction of
each step is south () or west (+).
In this talk, we call it a zigzag hook at (i, 7).

#of boxes in a zigzag hook at (i, j)
=#of boxes in the hook H (i, j) at (3, 7).

e The west-first path is the hook at (i, 7).
o The south-first path is the rim hook at (3, j).

On a framework for Hillman—Grassl algorithms
Int
Notation

Reverse plane partition

We call a map

T: A—)N:ZZO

such that
i<i = Tj; <Ty;
j<j = Ty <Ty

a reverse plane partition (RPP) on .
Let rpp(A) be the set of RPPs on A.

On a framework for Hillman—Grassl algorithms

Introduction
Notation

Reverse plane partition for an arbitary poset

A Young diagram A is a poset by the following order:
(i,5) > (i',j') <= i<i and j <j'

In this sense,
T: X— NisaRPP on A
<= T: X — Nis an order-reversing map.

For an arbitrary poset P, we call T: P — N a RPP if T is an
order-reversing map. Let rpp(P) be the set of RPPs on P.

On a framework for Hillman—Grassl algorithms

al Hillman—Grassl algorithm

Outline

e Introduction

@ The classical Hillman—Grassl algorithm

1 Hillman—Grassl algorithm

What is the Hillman—Grassl algorithm?

The classical H-G algorithm
@ is an algorithm to obtain
e a sequence of boxes of A
o from a RPP T on A
@ induces a weight-preserving bijection between

o the set of RPP on \ and
o the set of multisets of hooks of A

for each Young diagram .

As a corollary to the bijection, we obtain the hook length
formula.

On a framework for Hillman— lgorithms
Introduc
The ~al Hillman—Grassl algorithm

An algorithm to remove a zigzag hook

Input a RPP T on A such that 77 5, > 0.
Output T” and j.
Proc. @ Leti=1,5=MX\, Z=0.
@ While (i,7) € A, do the following:
@ Append (i,7) to Z.
o If T%,jfl = Ti,j7 then
0 add —1 to j;
else
o add 1 to 1.

T..
Q Let Tj; = + 7
E]_l (Z7.7)€

1 Hillman—Gr lgorithm

An algorithm to remove a zigzag hook

Remark (on the output 7”)

The output 7" is a reveser plane partition on \.
The difference between 7" and T is a zigzag hook at (1, 7).

Remark (on the output j)
If we apply this algorithm consecutively, then the outputs
J1,J2, .- satisty j1 > jo > ---.

On a framework for Hillman— lgorithms

Introduc
The

cal Hillman—Grassl algorithm

The classical H-G algorithm

Input a RPP T on A.
Output a sequence H of boxes of A.
Proc. @ Let H be the empty sequence.
@ Fori=1,2,..., do the following:
© While T3y, > 0, do the following:
0 Let 7" and j be the pair obtained from T'
by the algorithm to remove a zigzag hook.
(Since Ty = 0 for i' < 0, forget these
rows.)
@ Let T'be T' (as a RPP on \).
® Append (i,7) to H.

On a framework for Hillman—Grassl algorithms

Introd
The al Hillman—Grassl algorithm

The classical H-G algorithm

Since the algorithm to remove a zigzag hook is invertible, the
algorithm is also invertible.

The resulting sequence H is ordered in some order. Hence we
can regard it as a multiset of boxes.

The analogues of the H-G algorithm for the other poset is
known. E.g., shifted Young diagrams.

Our aim is
@ to describe analogues of H-G algorithms uniformly, and

o to generalize them.

On a framework for Hillman—Grassl algorithms
Our frame
Prototypical example

Outline

© Our framework
@ Prototypical example

Prototypical example

Recall an algorithm to remove a zigzag hook

Input a RPP T on A such that 77 5, > 0.
Output T” and j.
Proc. @ Leti=1,5=MX\, Z=0.
@ While (i,7) € A, do the following:
@ Append (i,7) to Z.
o If T%,jfl = Ti,j7 then

0 add —1 to j;
else
@ add 1 to .
T;s i Z
@ Let Ti’j ={Y (Z’j)
Ti; —1 (i,j) € Z.

vork for Hillman—Grassl algorithms

vork

,otypical example

Recall an algorithm to remove a zigzag hook

Input a RPP T on A such that 77 5, > 0.
Output T” and j.
Proc. @ Leti=1,7= X, Z=10.
@ While (,7) € A, do the following:
@ Append (i,7) to Z.
o If TL"jfl = Ti,j-/ then
0 add —1 to j;
else
© add 1 toi.

T..
Q Let Tj; = + 7
E]_l (Z7.7)€

Prototypical example

Refactor the primitive part of the algorithm

Input a RPP T on A such that 77 5, > 0.
Output Z and j.
Proc. @ Leti=1,5=MX\, Z=0.
@ While (i,7) € A, do the following:
@ Append (i,7) to Z.
o If T%,jfl = Ti,j7 then
® Let jbej—1
else
© Letibei+ 1.

vork for Hillman—Grassl algorithms

vork

,otypical example

Refactor the primitive part of the algorithm

Input a RPP T on A such that T3 , > 0.
Output Z and j.
Proc. @ Letc=(1,\), Z=0.
@ Wiile c € A, do the following:

© Append c to Z.
@ Let ¢ be the box in the next hook in the
same row as c. If Ty =T, then

@ move ¢ to the box of the next hook in
the same row;

else

@ move ¢ to the next box of the same hook.

Prototypical example

A H-G graph

To describe the primitive part, we rearrange the boxes in .
Let

_ .. i€{1727"'7)‘1}’ 2
F—{(Z,])’ jed{ii+1,..., #HA, N\ —i+ 1)} }CZ.

Let v be the map

v: ' — A
(i,§) = (1+7—d, A +1—1).

Add arrows (i,7) — (i+1,j) and (i,7) = (i+ 1,7+ 1) to T.
We call the labeled digraph (I',v: I' = A\) a H-G graph.

cal example

The algorithm to remove a zigzag hook

Input a RPP T on A such that 77 5, > 0.
Output Z and c.
Proc. @ Letc=(1,1), Z =10.
© While ¢ € T', do the following:
@ Append v(c) to Z.
0 Letc—d,c— " It T(v(c)) =T (v()),
then
® move c via —;
else
@ move c via —.

vork for Hillman—Grassl algorithms

vork

,otypical example

Ou1 strategy

Let P be an arbitrary poset.

For any map v: I' = P, we can run the algorithm.
The algorithm is, however, not nice.

What does ‘nice’ mean...

@ The output 7" should be a RPP on P.
o This algorithm should be an invertible algorithm.

o If we apply this algorithm consecutively, then the resulting
boxes should be ordered.

We introduce some (minimal) condition for the map v: I' = P,
to make the algorithm nice.

On a framework for Hillman—Grassl algorithms

© Our framework

e A H-G graph

A H-G graph

Underlying digraph

Fix nonnegative integers r, hq, ..., h,.
Let

={(GjJ)ez|ie{l,....r}, je{ii+1,...,hi}}.

Let & = { ((i.7), (ij + 1) € T2 }.
Fix a subset A” C { ((4,4),(i+1,j+1)) e I? }.
We reagard I' as the digraph such that
o the set of vertices is [';
e the set of arrows is A" U A” |
—— =~

— —»

ork for Hillman— lgorithms
amework

A H-G graph

Labeling

Let P be a finite poset with the relation <.
We write z<y to denote that z is covered by y.
Fix amapv: ' — P.

On a framework for Hillman—Grassl algorithms

A HG gre

A technical notation to describe our condition

We call a quadruple ((4,7), (¢,7'); (i + h,j+ h), (i + h,j" + h)) of
elements in I" a ladder if
Q@ j<j,
Q v(ii+s,j+s)>v(i+s,j +s)forsef{0,1,...,h},
Q@ (i+s,j+s) > (i+s+1,j+s+1) for
se{0,1,....,h—1},
Q (i+s,j +s)—>(i+s+1,7/+s+1) for
se{0,1,...,h—1}.
We define sets Z(i; 4, /') and 2(i; 4, j) of ladders by

(i;5,5)={Te 2 ‘ (T; (4,5), (,4")) is a ladder } , and
(i:5,5") = { B € T? | ((i,4), (i,5'); B) is a ladder } .

[1}> [1k

On a framework for Hillman—Grassl algorithms

Let II((i,), (#/,5)) be the set of paths from (4,) to (i/,4") in T.
We define II((4, j), (', j')) to be the set

{{ (o). () € TG), () | i) # v i) }

We also define

On a framework for Hillman—Grassl algorithms

For (i,7) € T', we define H(i,5) and H(i,5) by

H(i,j)={v(k,k) | ke{1,2,...,i}}
U{v(, k)| ke{ii+1,....5}},
H(i,j) ={v(i,k) [k e{4i+1,...,hi}}.

For i€ {1,2,...,r }, we define the hook H,;; at v(i,7) by
Hoyiiy = H(i,i) U H (i, 1)
= H(i, h;).

k for Hillmar lgorithms

am. rk

A H-G graph

We call (I'; A,v: T' — P) a H-G graph for a finite poset P if
o

©0 000O0

On a framework for Hillman—Grassl algorithms

We call (I'; A,v: T' — P) a H-G graph for a finite poset P if
Q v(1,1) is the maximum of H(1,1).
Q

© 0 06060

On a framework for Hillman—Grassl algorithms
Our framework

A H-G graph

We call (I',A,v: I' - P) a H-G graph for a finite poset P if
o
Q If (i,7) = (i + 1,7 + 1), then the following hold:
o {o|v(i,j)<x }\ Hij) = {v(i+ 1, +1)}.
9 {z|z<v(i+1,7+1)}\H(G+1,7+1)={v(,j) }.
@ v(i+1,j+1)¢H(,j).
© v(i+1,7+1) is the maximum of H(i + 1,5 +1).

© 0 06060

On a framework for Hillman—Grassl algorithms
Our framework

A H-G graph

We call (T',A,v: I' = P) a H-G graph for a finite poset P if

o

(2

Q If (4,
o
o

(1 + 1,7+ 1), then the following hold:

v(i,§)<z }\ H(i,5) = 0.

) 7+
{=|
{z|z<v(i+1,7+ 1) I\ H@GE+1,j4+1)=0.

© 0 060

On a framework for Hillman—Grassl algorithms
Our framework

A H-G graph

We call (T',A,v: I' = P) a H-G graph for a finite poset P if
o
2]
o

Q If ((41,1),..., (%

v(t,j+1)¢{v@,t)|te{l,...,5}}

o

o
o

On a framework for Hillman—Grassl algorithms
Our framework

A H-G graph

We call (T',A,v: I' = P) a H-G graph for a finite poset P if
o
2]
o
o
@ If ((ij,), .-, (ic,€)) € II(i,), then
v(i g = 1) E{ov@@t) [t e{d,....e}}.

o
o

On a framework for Hillman—Grassl algorithms
Our framework

A H-G graph

We call (I', A,v: T' — P) a H-G graph for a finite poset P if
o

(2]

(5]

o

(5]

Q If ((i1,1),..., (ic,e)) € I and v(im, m — w)>v(iym, m), then
@ there exists ¢ such that v(iy,, m —w) = v(i, t); or

© there exists t and ¢’ such that
((ita t)a (it’a t/)) € E(ZWM m—w, m)

On a framework for Hillman—Grassl algorithms
Our framework

A H-G graph

We call (T',A,v: I' = P) a H-G graph for a finite poset P if
o

2]

o

o

(5]

o

@ If ((i1,1),..., (ie,e)) € II and v(iy, m)>v(im, m + w), then
0 there exists t such that v(iy,, m +w) = v(i, t); or

© there exist t and t’ such that
((ig, 1), (i, ")) € E(im; m,m + w).

On a framework for Hillman—Grassl algorithms
Our framework

A H-G graph

Let (I', A,v) be a H-G graph.
We call the set { v(k,k) | k€ {1,2,...,7}} the first row of P
w.r.t. (I, A, v).

A H-G graph is notion only for the first row of the poset P. We
also introduce notion for all rows of the poset P.

Definition
We call { (T, Apyvp: Ty — Pp) |r=1,...,k } a H-G system for
a poset P if the following conditions hold:
Q@ P=PD>P,D>---DP,DP1=0.
@ For each r, (I'y, Ay, v,: I, — P.) is a H-G graph for P,.
@ For each r, P, \ P,y is the first row of P, w.r.t.
Ty, Apyvp: T — Pp).

On a framework for Hillman—Grassl algorithms

Our framework

Input a reverse plane partition 7" on A such that
TL)\I > 0.
Output Z, c.
Proc. @ Letec=(1,1), Z=0.
© While ¢ € ', do the following:
@ Append v(c) to Z.
o If c = ¢, T(v(c)) =T (v(c)) and
v(ij + 1,5+ 1) € Z then
@ move ¢ via —,
else
@ move ¢ via —.

On a framework for Hillman—Grassl algorithms
Our framework
Main results and Application

Outline

© Our framework

@ Main results and Application

On a framework for Hillman—Grassl algorithms

Our framework
s and Application

Let (I'yA,v: I' = P) be a H-G graph.

Theorem

Our algorithm for (I, A,v: I' — P) satisfies
o The output T' is a RPP on P.
o This algorithm is invertible.
o If we apply this algorithm consecutively, then the resulting
boxes is ordered.)

k for Hillman— lgorithms

am rk

Main results and Application

Let R be the first row of P.
Let

k=0,1,2,...
R=< (c1,...,¢ck) ¢ €R
-1 < ¢

Theorem

Our algorithm induces a bijection

: rpp(P) = rpp(P \ R) X R.

On a framework for Hillman—Grassl algorithms

Our framework
s and Application

Corollary

If{@,Av,v.: T = P)|r=1,...,k} is a H-G system for a
poset P, then we have a weight-preserving bijection between

e the set rpp(P) of P-partitions and
o the set of multisets of hooks.
The bijection induces a hook length formula.

On a framework for Hillman—Grassl algorithms
Our framework
Main results and Application

Theorem

Let P be a d-complete poset.

P has a H-G system (which is compatible with known hook
structure).

< P is swivel-free.

‘slant irreducible’ d-complete posets:

sweivel-free (1) Young diagrams, (2) shifted Young diagrams,
(3) birds, (4) insets, (5) tailed insets, (6) banners,
(7) nooks, (11) swivel shifteds;

not sweivel-free (8) swivels, (9) tailed swivels, (10) tagged
swivels, (12) pumps, (13) tailed pumps, (14) near
bats, (15) bat.

On a framework for Hillman—Grassl algorithms

Our framework

Main results and Application

Remark

Let (I'yA,v: I' = P) be a H-G graph for P.
@ The first row {v(1,1),...,v(l,]) } of P is a poset-filter and
a chain.

e The maximum element v(l,[) of the first row is a maximal
element of P.

e The hook H, ;) at the element is a poset-filter of P.
Hence, for d-complete posets including swivel, we can not

construct a H-G system which is compatible with known hook
structure.

ork for Hillman— lgorithms

Main results and Application

Final remark.

If P has a H-G system, then P is a d-complete poset.

	Introduction
	Notation
	The classical Hillman�Grassl algorithm

	Our framework
	Prototypical example
	A H�G graph
	Main results and Application

