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Introduction

Notation

Partitions and Young diagrams

Let λ be a partition of an integer, i.e.,

(λ1, λ2, . . . , λl)

such that

i ≤ i′ =⇒ λi ≥ λi′ .

We regard λ as the set

{ (i, j) | 1 ≤ j ≤ λi }

of boxes (or cells), and we use so-called English notation.
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Hooks of Young diagrams

Let λ′ be the transposed Young diagram of λ, i.e.,

{ (j, i) | (i, j) ∈ λ } .

λ′
j = #of boxes in the j-th column of λ.

For (i, j) ∈ λ, we define the hook at (i, j) of λ by

H(i, j) =
{
(i, j′) ∈ λ

∣∣ j ≤ j′ ≤ λi

}
∪
{
(i′, j) ∈ λ

∣∣ i ≤ i′ ≤ λ′
j

}
.

(i, λi) is the easternmost box in the hook H(i, j).

(λ′
j , j) is the southernnmost box in the hook H(i, j).
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Zigzag hooks of Young diagrams

Consider a path from (i, λi) to (λ′
j , j) such that the direction of

each step is south (↓) or west (←).
In this talk, we call it a zigzag hook at (i, j).

#of boxes in a zigzag hook at (i, j)

=#of boxes in the hook H(i, j) at (i, j).

The west-first path is the hook at (i, j).

The south-first path is the rim hook at (i, j).
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Reverse plane partition

We call a map

T : λ→ N = Z≥0

(i, j) 7→ Tij

such that

i ≤ i′ =⇒ Tij ≤ Ti′j

j ≤ j′ =⇒ Tij ≤ Tij′

a reverse plane partition (RPP) on λ.
Let rpp(λ) be the set of RPPs on λ.
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Reverse plane partition for an arbitary poset

A Young diagram λ is a poset by the following order:

(i, j) ≥ (i′, j′) ⇐⇒ i ≤ i′ and j ≤ j′

In this sense,

T : λ→ N is a RPP on λ

⇐⇒ T : λ→ N is an order-reversing map.

For an arbitrary poset P , we call T : P → N a RPP if T is an
order-reversing map. Let rpp(P ) be the set of RPPs on P .
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Introduction

The classical Hillman–Grassl algorithm

What is the Hillman–Grassl algorithm?

The classical H–G algorithm

is an algorithm to obtain

a sequence of boxes of λ
from a RPP T on λ.

induces a weight-preserving bijection between

the set of RPP on λ and
the set of multisets of hooks of λ

for each Young diagram λ.

As a corollary to the bijection, we obtain the hook length
formula.
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An algorithm to remove a zigzag hook

Input a RPP T on λ such that T1,λ1 > 0.

Output T ′ and j.

Proc. 1 Let i = 1, j = λ1, Z = ∅.
2 While (i, j) ∈ λ, do the following:

1 Append (i, j) to Z.
2 If Ti,j−1 = Ti,j , then

1 add −1 to j;

else

1 add 1 to i.

3 Let T ′
ij =

{
Tij (i, j) ̸∈ Z

Tij − 1 (i, j) ∈ Z.
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An algorithm to remove a zigzag hook

Remark

This algorithm is an invertible algorithm.

Remark (on the output T ′)

The output T ′ is a reveser plane partition on λ.
The difference between T ′ and T is a zigzag hook at (1, j).

Remark (on the output j)

If we apply this algorithm consecutively, then the outputs
j1, j2, . . . satisfy j1 ≥ j2 ≥ · · · .
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The classical H–G algorithm

Input a RPP T on λ.

Output a sequence H of boxes of λ.

Proc. 1 Let H be the empty sequence.
2 For i = 1, 2, . . ., do the following:

1 While Tiλi
> 0, do the following:

1 Let T ′ and j be the pair obtained from T
by the algorithm to remove a zigzag hook.
(Since Ti′j = 0 for i′ < 0, forget these
rows.)

2 Let T be T ′ (as a RPP on λ).
3 Append (i, j) to H.
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The classical H–G algorithm

Remark

Since the algorithm to remove a zigzag hook is invertible, the
algorithm is also invertible.
The resulting sequence H is ordered in some order. Hence we
can regard it as a multiset of boxes.

Remark

The analogues of the H–G algorithm for the other poset is
known. E.g., shifted Young diagrams.

Our aim is

to describe analogues of H–G algorithms uniformly, and

to generalize them.
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Our framework

Prototypical example

Recall an algorithm to remove a zigzag hook

Input a RPP T on λ such that T1,λ1 > 0.

Output T ′ and j.

Proc. 1 Let i = 1, j = λ1, Z = ∅.
2 While (i, j) ∈ λ, do the following:

1 Append (i, j) to Z.
2 If Ti,j−1 = Ti,j , then

1 add −1 to j;

else

1 add 1 to i.

3 Let T ′
ij =

{
Tij (i, j) ̸∈ Z

Tij − 1 (i, j) ∈ Z.
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Our framework

Prototypical example

Recall an algorithm to remove a zigzag hook

Input a RPP T on λ such that T1,λ1 > 0.

Output T ′ and j.

Proc. 1 Let i = 1, j = λ1, Z = ∅.
2 While (i, j) ∈ λ, do the following:

1 Append (i, j) to Z.
2 If Ti,j−1 = Ti,j , then

1 add −1 to j;

else

1 add 1 to i.

3 Let T ′
ij =

{
Tij (i, j) ̸∈ Z

Tij − 1 (i, j) ∈ Z.
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Refactor the primitive part of the algorithm

Input a RPP T on λ such that T1,λ1 > 0.

Output Z and j.

Proc. 1 Let i = 1, j = λ1, Z = ∅.
2 While (i, j) ∈ λ, do the following:

1 Append (i, j) to Z.
2 If Ti,j−1 = Ti,j , then

1 Let j be j − 1

else

1 Let i be i+ 1.
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Refactor the primitive part of the algorithm

Input a RPP T on λ such that T1,λ1 > 0.

Output Z and j.

Proc. 1 Let c = (1, λ1), Z = ∅.
2 While c ∈ λ, do the following:

1 Append c to Z.
2 Let c′ be the box in the next hook in the

same row as c. If Tc′ = Tc, then

1 move c to the box of the next hook in
the same row;

else

1 move c to the next box of the same hook.
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A H–G graph

To describe the primitive part, we rearrange the boxes in λ.
Let

Γ =

{
(i, j)

∣∣∣∣ i ∈ { 1, 2, . . . , λ1 } ,
j ∈ { i, i+ 1, . . . ,#H(1, λi − i+ 1) }

}
⊂ Z2.

Let v be the map

v : Γ→ λ

(i, j) 7→ (1 + j − i, λ1 + 1− i).

Add arrows (i, j)→ (i+ 1, j) and (i, j)→→ (i+ 1, j + 1) to Γ.
We call the labeled digraph (Γ, v : Γ→ λ) a H–G graph.
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The algorithm to remove a zigzag hook

Input a RPP T on λ such that T1,λ1 > 0.

Output Z and c.

Proc. 1 Let c = (1, 1), Z = ∅.
2 While c ∈ Γ, do the following:

1 Append v(c) to Z.
2 Let c→ c′, c→→ c′′. If T (v(c)) = T (v(c′)),

then

1 move c via →→;

else

1 move c via →.
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Our strategy

Let P be an arbitrary poset.
For any map v : Γ→ P , we can run the algorithm.
The algorithm is, however, not nice.
What does ‘nice’ mean...

The output T ′ should be a RPP on P .

This algorithm should be an invertible algorithm.

If we apply this algorithm consecutively, then the resulting
boxes should be ordered.

We introduce some (minimal) condition for the map v : Γ→ P ,
to make the algorithm nice.
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Our framework

A H–G graph

Underlying digraph

Fix nonnegative integers r, h1, . . . , hr.
Let

Γ =
{
(i, j) ∈ Z2

∣∣ i ∈ { 1, . . . , r } , j ∈ { i, i+ 1, . . . , hi }
}
.

Let ∆′ =
{
((i, j), (i, j + 1)) ∈ Γ2

}
.

Fix a subset ∆′′ ⊂
{
((i, j), (i+ 1, j + 1)) ∈ Γ2

}
.

We reagard Γ as the digraph such that

the set of vertices is Γ;

the set of arrows is ∆′︸︷︷︸
→

∪ ∆′′︸︷︷︸
→→

.
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A H–G graph

Labeling

Let P be a finite poset with the relation ≤.
We write x<̇y to denote that x is covered by y.
Fix a map v : Γ→ P .
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A H–G graph

A technical notation to describe our condition

We call a quadruple ((i, j), (i, j′); (i+ h, j + h), (i+ h, j′ + h)) of
elements in Γ a ladder if

1 j < j′,

2 v(i+ s, j + s)>̇v(i+ s, j′ + s) for s ∈ { 0, 1, . . . , h },
3 (i+ s, j + s)→→ (i+ s+ 1, j + s+ 1) for

s ∈ { 0, 1, . . . , h− 1 },
4 (i+ s, j′ + s)→→ (i+ s+ 1, j′ + s+ 1) for

s ∈ { 0, 1, . . . , h− 1 }.
We define sets Ξ̌(i; j, j′) and Ξ̂(i; j, j′) of ladders by

Ξ̌(i; j, j′) =
{
T ∈ Γ2

∣∣ (T; (i, j), (i, j′)) is a ladder
}
, and

Ξ̂(i; j, j′) =
{
B ∈ Γ2

∣∣ ((i, j), (i, j′); B) is a ladder
}
.
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Our framework

A H–G graph

Paths

Let Π̃((i, j), (i′, j′)) be the set of paths from (i, j) to (i′, j′) in Γ.
We define Π((i, j), (i′, j′)) to be the set{

((i1, j1), . . . , (il, jl)) ∈ Π̃((i, j), (i′, j′))
∣∣∣ v(it, jt) ̸= v(it′ , jt′)

}
.

We also define

Π =

r∪
i=1

Π((1, 1), (i, hi)),

Π̌(i, j) = Π((1, 1), (i, j)),

Π̂(i, j) =

r∪
i′=i

Π((i, j), (i′, hi′)).
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Our framework

A H–G graph

Hooks

For (i, j) ∈ Γ, we define Ȟ(i, j) and Ĥ(i, j) by

Ȟ(i, j) = { v(k, k) | k ∈ { 1, 2, . . . , i } }
∪ { v(i, k) | k ∈ { i, i+ 1, . . . , j } } ,

Ĥ(i, j) = { v(i, k) | k ∈ { j, j + 1, . . . , hi } } .

For i ∈ { 1, 2, . . . , r }, we define the hook Hv(i,i) at v(i, i) by

Hv(i,i) = Ȟ(i, i) ∪ Ĥ(i, i)

= Ȟ(i, hi).
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A H–G graph

Definition

We call (Γ,∆, v : Γ→ P ) a H–G graph for a finite poset P if

1

2

3

4

5

6

7
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Our framework

A H–G graph

Definition

We call (Γ,∆, v : Γ→ P ) a H–G graph for a finite poset P if

1 v(1, 1) is the maximum of Ĥ(1, 1).

2

3

4

5

6

7
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Our framework

A H–G graph

Definition

We call (Γ,∆, v : Γ→ P ) a H–G graph for a finite poset P if

1

2 If (i, j)→→ (i+ 1, j + 1), then the following hold:

1 { x | v(i, j)<̇x } \ Ȟ(i, j) = { v(i+ 1, j + 1) }.
2 { x | x<̇v(i+ 1, j + 1) } \ Ĥ(i+ 1, j + 1) = { v(i, j) }.
3 v(i+ 1, j + 1) ̸∈ Ĥ(i, j).

4 v(i+ 1, j + 1) is the maximum of Ĥ(i+ 1, j + 1).

3

4

5

6

7
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Our framework

A H–G graph

Definition

We call (Γ,∆, v : Γ→ P ) a H–G graph for a finite poset P if

1

2

3 If (i, j) ̸→→ (i+ 1, j + 1), then the following hold:

1 { x | v(i, j)<̇x } \ Ȟ(i, j) = ∅.
2 { x | x<̇v(i+ 1, j + 1) } \ Ĥ(i+ 1, j + 1) = ∅.

4

5

6

7
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Our framework

A H–G graph

Definition

We call (Γ,∆, v : Γ→ P ) a H–G graph for a finite poset P if

1

2

3

4 If ((i1, 1), . . . , (ij , j)) ∈ Π̌(i, j), then
v(i, j + 1) ̸∈ { v(i, t) | t ∈ { 1, . . . , j } }.

5

6

7
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Our framework

A H–G graph

Definition

We call (Γ,∆, v : Γ→ P ) a H–G graph for a finite poset P if

1

2

3

4

5 If ((ij , j), . . . , (ie, e)) ∈ Π̂(i, j), then
v(i, j − 1) ̸∈ { v(i, t) | t ∈ { j, . . . , e } }.

6

7
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Our framework

A H–G graph

Definition

We call (Γ,∆, v : Γ→ P ) a H–G graph for a finite poset P if

1

2

3

4

5

6 If ((i1, 1), . . . , (ie, e)) ∈ Π and v(im,m−w)>̇v(im,m), then

1 there exists t such that v(im,m− w) = v(it, t); or
2 there exists t and t′ such that

((it, t), (it′ , t
′)) ∈ Ξ̌(im;m− w,m).

7
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Our framework

A H–G graph

Definition

We call (Γ,∆, v : Γ→ P ) a H–G graph for a finite poset P if

1

2

3

4

5

6

7 If ((i1, 1), . . . , (ie, e)) ∈ Π and v(im,m)>̇v(im,m+w), then

1 there exists t such that v(im,m+ w) = v(it, t); or
2 there exist t and t′ such that

((it, t), (it′ , t
′)) ∈ Ξ̂(im;m,m+ w).
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Let (Γ,∆, v) be a H–G graph.
We call the set { v(k, k) | k ∈ { 1, 2, . . . , r } } the first row of P
w.r.t. (Γ,∆, v).

A H–G graph is notion only for the first row of the poset P . We
also introduce notion for all rows of the poset P .

Definition

We call { (Γr,∆r, vr : Γr → Pr) | r = 1, . . . , k } a H–G system for
a poset P if the following conditions hold:

1 P = P1 ⊃ P2 ⊃ · · · ⊃ Pk ⊃ Pk+1 = ∅.
2 For each r, (Γr,∆r, vr : Γr → Pr) is a H–G graph for Pr.

3 For each r, Pr \ Pr+1 is the first row of Pr w.r.t.
(Γr,∆r, vr : Γr → Pr).
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A H–G graph

Input a reverse plane partition T on λ such that
T1,λ1 > 0.

Output Z, c.

Proc. 1 Let c = (1, 1), Z = ∅.
2 While c ∈ Γ, do the following:

1 Append v(c) to Z.
2 If c→→ c′′, T (v(c)) = T (v(c′)) and

v(ij + 1, j + 1) ̸∈ Z then

1 move c via →→,

else

1 move c via →.
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Main results and Application

Let (Γ,∆, v : Γ→ P ) be a H–G graph.

Theorem

Our algorithm for (Γ,∆, v : Γ→ P ) satisfies

The output T ′ is a RPP on P .

This algorithm is invertible.

If we apply this algorithm consecutively, then the resulting
boxes is ordered.
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Main results and Application

Let R be the first row of P .
Let

R =

 (c1, . . . , ck)

∣∣∣∣∣∣
k = 0, 1, 2, . . .

ct ∈ R
ct−1 ≤ ct

 .

Theorem

Our algorithm induces a bijection

φ : rpp(P )→ rpp(P \R)×R.
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Corollary

If { (Γr,∆r, vr : Γr → Pr) | r = 1, . . . , k } is a H–G system for a
poset P , then we have a weight-preserving bijection between

the set rpp(P ) of P -partitions and

the set of multisets of hooks.

The bijection induces a hook length formula.
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Theorem

Let P be a d-complete poset.

P has a H–G system (which is compatible with known hook
structure).

⇔ P is swivel-free.

Remark

‘slant irreducible’ d-complete posets:

sweivel-free (1) Young diagrams, (2) shifted Young diagrams,
(3) birds, (4) insets, (5) tailed insets, (6) banners,
(7) nooks, (11) swivel shifteds;

not sweivel-free (8) swivels, (9) tailed swivels, (10) tagged
swivels, (12) pumps, (13) tailed pumps, (14) near
bats, (15) bat.
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Remark

Let (Γ,∆, v : Γ→ P ) be a H–G graph for P .

The first row { v(1, 1), . . . , v(l, l) } of P is a poset-filter and
a chain.

The maximum element v(l, l) of the first row is a maximal
element of P .

The hook Hv(l,l) at the element is a poset-filter of P .

Hence, for d-complete posets including swivel, we can not
construct a H–G system which is compatible with known hook
structure.
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Final remark.

Conjecture

If P has a H–G system, then P is a d-complete poset.
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