NUMATA, Yasuhide

Shinshu univ.

(joint work w/ S. Okamura and K. Nakada.)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

On a framework for Hillman–Grassl algorithms Introduction

Notation

Outline

• Notation

• The classical Hillman–Grassl algorithm

▲ロト ▲園ト ▲ヨト ▲ヨト 三日 - のへで

2 Our framework

- Prototypical example
- A H–G graph
- Main results and Application

Introduction

Notation

Partitions and Young diagrams

Let λ be a partition of an integer, i.e.,

$$(\lambda_1, \lambda_2, \ldots, \lambda_l)$$

such that

$$i \leq i' \implies \lambda_i \geq \lambda_{i'}.$$

We regard λ as the set

$$\{ (i,j) \mid 1 \le j \le \lambda_i \}$$

うして ふゆう ふほう ふほう ふしつ

of boxes (or cells), and we use so-called English notation.

On a framework for Hillman–Grassl algorithms Introduction Notation

Hooks of Young diagrams

Let λ' be the transposed Young diagram of λ , i.e.,

 $\left\{ \, (j,i) \mid (i,j) \in \lambda \, \right\}.$

 $\lambda'_j = \#$ of boxes in the *j*-th column of λ .

For $(i, j) \in \lambda$, we define the hook at (i, j) of λ by

 $H(i,j) = \left\{ (i,j') \in \lambda \mid j \le j' \le \lambda_i \right\} \cup \left\{ (i',j) \in \lambda \mid i \le i' \le \lambda'_j \right\}.$

• (i, λ_i) is the easternmost box in the hook H(i, j).

• (λ'_j, j) is the southernnmost box in the hook H(i, j).

Introduction

Notation

Zigzag hooks of Young diagrams

Consider a path from (i, λ_i) to (λ'_j, j) such that the direction of each step is south (\downarrow) or west (\leftarrow) . In this talk, we call it a zigzag hook at (i, j).

> #of boxes in a zigzag hook at (i, j)=#of boxes in the hook H(i, j) at (i, j).

> > うして ふゆう ふほう ふほう ふしつ

- The west-first path is the hook at (i, j).
- The south-first path is the rim hook at (i, j).

Introduction

Notation

Reverse plane partition

We call a map

$$T: \lambda \to \mathbb{N} = \mathbb{Z}_{\geq 0}$$
$$(i, j) \mapsto T_{ij}$$

such that

$$i \le i' \implies T_{ij} \le T_{i'j}$$
$$j \le j' \implies T_{ij} \le T_{ij'}$$

ション ふゆ マ キャット マックシン

a reverse plane partition (RPP) on λ . Let $rpp(\lambda)$ be the set of RPPs on λ .

Introduction

Notation

Reverse plane partition for an arbitary poset

A Young diagram λ is a poset by the following order:

$$(i,j) \geq (i',j') \iff i \leq i' \text{ and } j \leq j'$$

In this sense,

 $T\colon \lambda \to \mathbb{N}$ is a RPP on λ

 $\iff T: \lambda \to \mathbb{N}$ is an order-reversing map.

For an arbitrary poset P, we call $T: P \to \mathbb{N}$ a RPP if T is an order-reversing map. Let rpp(P) be the set of RPPs on P.

うして ふゆう ふほう ふほう ふしつ

Outline

1 Introduction

- Notation
- The classical Hillman–Grassl algorithm

うして ふゆう ふほう ふほう ふしつ

2 Our framework

- Prototypical example
- A H–G graph
- Main results and Application

What is the Hillman–Grassl algorithm?

The classical H–G algorithm

- is an algorithm to obtain
 - $\bullet\,$ a sequence of boxes of λ
 - from a RPP T on λ .
- induces a weight-preserving bijection between
 - \bullet the set of RPP on λ and
 - the set of multisets of hooks of λ

for each Young diagram λ .

As a corollary to the bijection, we obtain the hook length formula.

うして ふゆう ふほう ふほう ふしつ

An algorithm to remove a zigzag hook

Input a RPP T on λ such that $T_{1,\lambda_1} > 0$. Output T' and j. Proc. **1** Let $i = 1, j = \lambda_1, Z = \emptyset$. **2** While $(i, j) \in \lambda$, do the following: • Append (i, j) to Z. **2** If $T_{i,i-1} = T_{i,i}$, then • add -1 to j; else • add 1 to i. • Let $T'_{ij} = \begin{cases} T_{ij} & (i,j) \notin Z \\ T_{ij} - 1 & (i,j) \in Z. \end{cases}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

An algorithm to remove a zigzag hook

Remark

This algorithm is an invertible algorithm.

Remark (on the output T')

The output T' is a reveser plane partition on λ . The difference between T' and T is a zigzag hook at (1, j).

Remark (on the output j)

If we apply this algorithm consecutively, then the outputs j_1, j_2, \ldots satisfy $j_1 \ge j_2 \ge \cdots$.

The classical H–G algorithm

Input a RPP T on λ .

Output a sequence \mathcal{H} of boxes of λ .

- **Proc. (**) Let \mathcal{H} be the empty sequence.
 - 2 For $i = 1, 2, \ldots$, do the following:
 - While $T_{i\lambda_i} > 0$, do the following:
 - Let T' and j be the pair obtained from T by the algorithm to remove a zigzag hook. (Since T_{i'j} = 0 for i' < 0, forget these rows.)
 - **2** Let T be T' (as a RPP on λ).
 - **3** Append (i, j) to \mathcal{H} .

On a framework for Hillman–Grassl algorithms Introduction

The classical Hillman–Grassl algorithm

The classical H–G algorithm

Remark

Since the algorithm to remove a zigzag hook is invertible, the algorithm is also invertible.

The resulting sequence \mathcal{H} is ordered in some order. Hence we can regard it as a multiset of boxes.

Remark

The analogues of the H–G algorithm for the other poset is known. E.g., shifted Young diagrams.

Our aim is

• to describe analogues of H–G algorithms uniformly, and

• to generalize them.

Outline

- Notation
- The classical Hillman–Grassl algorithm

▲ロト ▲園ト ▲ヨト ▲ヨト 三日 - のへで

2 Our framework

- Prototypical example
- A H–G graph
- Main results and Application

Our framework

Prototypical example

Recall an algorithm to remove a zigzag hook

Input a RPP T on λ such that $T_{1,\lambda_1} > 0$. Output T' and j. Proc. **1** Let $i = 1, j = \lambda_1, Z = \emptyset$. **2** While $(i, j) \in \lambda$, do the following: • Append (i, j) to Z. **2** If $T_{i,i-1} = T_{i,i}$, then • add -1 to j; else • add 1 to i. • Let $T'_{ij} = \begin{cases} T_{ij} & (i,j) \notin Z \\ T_{ij} - 1 & (i,j) \in Z. \end{cases}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

On a framework for Hillman–Grassl algorithms Our framework

Prototypical example

Recall an algorithm to remove a zigzag hook

Input a RPP T on λ such that $T_{1,\lambda_1} > 0$. Output T' and j. Proc. **1** Let $i = 1, j = \lambda_1, Z = \emptyset$. **2** While $(i, j) \in \lambda$, do the following: • Append (i, j) to Z. **2** If $T_{i,i-1} = T_{i,i}$, then • add -1 to j; else • add 1 to i. • Let $T'_{ij} = \begin{cases} T_{ij} & (i,j) \notin Z \\ T_{ij} - 1 & (i,j) \in Z. \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Refactor the primitive part of the algorithm

Input a RPP T on λ such that $T_{1,\lambda_1} > 0$. Output Z and j. Proc.

Let $i = 1, j = \lambda_1, Z = \emptyset$.
While $(i, j) \in \lambda$, do the following:
Append (i, j) to Z.
If $T_{i,j-1} = T_{i,j}$, then
Let j be j - 1else
Let i be i + 1.

ション ふゆ マ キャット マックシン

On a framework for Hillman–Grassl algorithms Our framework

Prototypical example

Refactor the primitive part of the algorithm

Input a RPP T on λ such that $T_{1,\lambda_1} > 0$.

Output Z and j.

- **Proc. (a)** Let $c = (1, \lambda_1), Z = \emptyset$.
 - **2** While $c \in \lambda$, do the following:
 - Append c to Z.
 - Let c' be the box in the next hook in the same row as c. If $T_{c'} = T_c$, then
 - move c to the box of the next hook in the same row;

else

• move c to the next box of the same hook.

うして ふゆう ふほう ふほう ふしつ

A H–G graph

To describe the primitive part, we rearrange the boxes in λ . Let

$$\Gamma = \left\{ \begin{array}{c} (i,j) \mid i \in \{1,2,\ldots,\lambda_1\}, \\ j \in \{i,i+1,\ldots,\#H(1,\lambda_i-i+1)\} \end{array} \right\} \subset \mathbb{Z}^2.$$

Let v be the map

$$\begin{split} v \colon \Gamma \to \lambda \\ (i,j) \mapsto (1+j-i,\lambda_1+1-i). \end{split}$$

Add arrows $(i, j) \rightarrow (i + 1, j)$ and $(i, j) \rightarrow (i + 1, j + 1)$ to Γ . We call the labeled digraph $(\Gamma, v \colon \Gamma \rightarrow \lambda)$ a H–G graph.

The algorithm to remove a zigzag hook

Input a RPP T on λ such that $T_{1,\lambda_1} > 0$. Output Z and c. Proc. **1** Let $c = (1, 1), Z = \emptyset$. **2** While $c \in \Gamma$, do the following: • Append v(c) to Z. **2** Let $c \to c', c \to c''$. If T(v(c)) = T(v(c')), then • move c via \rightarrow ; else • move c via \rightarrow .

ション ふゆ マ キャット マックシン

Our strategy

Let P be an arbitrary poset. For any map $v \colon \Gamma \to P$, we can run the algorithm. The algorithm is, however, not nice. What does 'nice' mean...

- The output T' should be a RPP on P.
- This algorithm should be an invertible algorithm.
- If we apply this algorithm consecutively, then the resulting boxes should be ordered.

うして ふゆう ふほう ふほう ふしつ

We introduce some (minimal) condition for the map $v \colon \Gamma \to P$, to make the algorithm nice.

On a framework for Hillman–Grassl algorithms Our framework

A H-G graph

Outline

- Notation
- The classical Hillman–Grassl algorithm

▲ロト ▲園ト ▲ヨト ▲ヨト 三日 - のへで

2 Our framework

- Prototypical example
- \bullet A H–G graph
- Main results and Application

On a framework for Hillman–Grassl algorithms Our framework A H–G graph

Underlying digraph

Fix nonnegative integers r, h_1, \ldots, h_r . Let

$$\Gamma = \left\{ (i, j) \in \mathbb{Z}^2 \mid i \in \{ 1, \dots, r \}, \ j \in \{ i, i+1, \dots, h_i \} \right\}.$$

うして ふゆう ふほう ふほう ふしつ

Let $\Delta' = \{ ((i, j), (i, j + 1)) \in \Gamma^2 \}.$ Fix a subset $\Delta'' \subset \{ ((i, j), (i + 1, j + 1)) \in \Gamma^2 \}.$ We reagard Γ as the digraph such that

- the set of vertices is Γ ;
- the set of arrows is $\underline{\Delta'} \cup \underline{\Delta''}$.

On a framework for Hillman–Grassl algorithms Our framework A H–G graph Labeling

> Let P be a finite poset with the relation \leq . We write $x \leq y$ to denote that x is covered by y. Fix a map $v \colon \Gamma \to P$.

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Our framework

A H–G graph

A technical notation to describe our condition

We call a quadruple ((i, j), (i, j'); (i + h, j + h), (i + h, j' + h)) of elements in Γ a *ladder* if

We define sets $\check{\Xi}(i; j, j')$ and $\hat{\Xi}(i; j, j')$ of ladders by

$$\tilde{\Xi}(i;j,j') = \left\{ \begin{array}{l} \mathbf{T} \in \Gamma^2 \mid (\mathbf{T};(i,j),(i,j')) \text{ is a ladder} \end{array} \right\}, \text{ and} \\
\hat{\Xi}(i;j,j') = \left\{ \begin{array}{l} \mathbf{B} \in \Gamma^2 \mid ((i,j),(i,j');\mathbf{B}) \text{ is a ladder} \end{array} \right\}.$$

On a framework for Hillman–Grassl algorithms Our framework A H–G graph Paths

> Let $\tilde{\Pi}((i, j), (i', j'))$ be the set of paths from (i, j) to (i', j') in Γ . We define $\Pi((i, j), (i', j'))$ to be the set

$$\left\{ \left((i_1, j_1), \dots, (i_l, j_l) \right) \in \tilde{\Pi}((i, j), (i', j')) \mid v(i_t, j_t) \neq v(i_{t'}, j_{t'}) \right\}.$$

We also define

$$\Pi = \bigcup_{i=1}^{r} \Pi((1,1), (i,h_i)),$$

$$\check{\Pi}(i,j) = \Pi((1,1), (i,j)),$$

$$\hat{\Pi}(i,j) = \bigcup_{i'=i}^{r} \Pi((i,j), (i',h_{i'})).$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

On a framework for Hillman–Grassl algorithms Our framework A H–G graph HOOKS

> For $(i, j) \in \Gamma$, we define $\check{H}(i, j)$ and $\hat{H}(i, j)$ by $\check{H}(i, j) = \{ v(k, k) \mid k \in \{ 1, 2, ..., i \} \}$ $\cup \{ v(i, k) \mid k \in \{ i, i + 1, ..., j \} \},$ $\hat{H}(i, j) = \{ v(i, k) \mid k \in \{ j, j + 1, ..., h_i \} \}.$

For $i \in \{1, 2, \ldots, r\}$, we define the hook $H_{v(i,i)}$ at v(i,i) by

$$H_{v(i,i)} = \check{H}(i,i) \cup \hat{H}(i,i)$$
$$= \check{H}(i,h_i).$$

うして ふゆう ふほう ふほう ふしつ

On	\mathbf{a}	framework	for	Hillman-	-Grassl	algorithms
----	--------------	-----------	-----	----------	---------	------------

Our framework

A H–G graph

Definition We call $(\Gamma, \Delta, v: \Gamma \to P)$ a *H*-*G* graph for a finite poset *P* if 2 8 4 6 6 7

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Our framework

A H–G graph

Definition

Our framework

A H–G graph

Definition

We call $(\Gamma, \Delta, v: \Gamma \to P)$ a *H*-*G* graph for a finite poset *P* if 2 If $(i, j) \rightarrow (i+1, j+1)$, then the following hold: • { $x \mid v(i,j) \leq x$ } \ $\check{H}(i,j) = \{v(i+1,j+1)\}.$ **2** { $x \mid x < v(i+1, j+1)$ } \ $\hat{H}(i+1, j+1) = \{v(i, j)\}.$ **③** $v(i+1, j+1) \notin \hat{H}(i, j).$ • v(i+1, j+1) is the maximum of $\hat{H}(i+1, j+1)$. 8 4 6 6 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Our framework

A H–G graph

Definition

```
We call (\Gamma, \Delta, v: \Gamma \to P) a H-G graph for a finite poset P if
  1
  2
  1 If (i, j) \nleftrightarrow (i+1, j+1), then the following hold:
          \{ x \mid v(i,j) \dot{\leq} x \} \setminus \check{H}(i,j) = \emptyset. 
        2 { x \mid x \leq v(i+1, j+1) } \ \hat{H}(i+1, j+1) = \emptyset.
  4
  6
  6
  0
```

うして ふゆう ふほう ふほう ふしつ

Our framework

A H–G graph

Definition

```
We call (\Gamma, \Delta, v: \Gamma \to P) a H-G graph for a finite poset P if
  1
  2
  8
  • If ((i_1, 1), \ldots, (i_j, j)) \in \check{\Pi}(i, j), then
      v(i, j+1) \notin \{ v(i, t) \mid t \in \{ 1, \dots, j \} \}.
  6
  6
  0
```

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ つくぐ

Our framework

A H–G graph

Definition

```
We call (\Gamma, \Delta, v: \Gamma \to P) a H-G graph for a finite poset P if
  1
  2
  3
  6 If ((i_j, j), \dots, (i_e, e)) \in \hat{\Pi}(i, j), then
      v(i, j-1) \notin \{v(i, t) \mid t \in \{j, \dots, e\}\}.
  6
  0
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our framework

A H–G graph

Definition

We call $(\Gamma, \Delta, v: \Gamma \to P)$ a *H*-*G* graph for a finite poset *P* if 2 3 (4) 6 • If $((i_1, 1), \dots, (i_e, e)) \in \Pi$ and $v(i_m, m - w) > v(i_m, m)$, then • there exists t such that $v(i_m, m - w) = v(i_t, t)$; or **2** there exists t and t' such that $((i_t, t), (i_{t'}, t')) \in \check{\Xi}(i_m; m - w, m).$

Our framework

A H–G graph

Definition

We call $(\Gamma, \Delta, v: \Gamma \to P)$ a H-G graph for a finite poset P if 1 2 3 4 6 6 • If $((i_1, 1), \ldots, (i_e, e)) \in \Pi$ and $v(i_m, m) \geq v(i_m, m+w)$, then • there exists t such that $v(i_m, m + w) = v(i_t, t)$: or there exist t and t' such that 0 $((i_t, t), (i_{t'}, t')) \in \hat{\Xi}(i_m; m, m+w).$

Our framework

A H–G graph

Let (Γ, Δ, v) be a H–G graph. We call the set $\{v(k, k) \mid k \in \{1, 2, ..., r\}\}$ the first row of P w.r.t. (Γ, Δ, v) .

A H–G graph is notion only for the first row of the poset P. We also introduce notion for all rows of the poset P.

Definition

We call { $(\Gamma_r, \Delta_r, v_r \colon \Gamma_r \to P_r) \mid r = 1, ..., k$ } a *H*-*G* system for a poset *P* if the following conditions hold:

$$P = P_1 \supset P_2 \supset \cdots \supset P_k \supset P_{k+1} = \emptyset.$$

- **2** For each r, $(\Gamma_r, \Delta_r, v_r \colon \Gamma_r \to P_r)$ is a H–G graph for P_r .
- **③** For each $r, P_r \setminus P_{r+1}$ is the first row of P_r w.r.t. $(\Gamma_r, \Delta_r, v_r \colon \Gamma_r \to P_r).$

On a framework for Hillman–Grassl algorithms Our framework

A H–G graph

Input a reverse plane partition T on λ such that $T_{1,\lambda_1} > 0.$ Output Z, c. **Proc. 1** Let $c = (1, 1), Z = \emptyset$. **2** While $c \in \Gamma$, do the following: • Append v(c) to Z. 2 If $c \rightarrow c''$, T(v(c)) = T(v(c')) and $v(i_j+1, j+1) \notin Z$ then • move c via \rightarrow , else • move c via \rightarrow .

ション ふゆ マ キャット マックシン

On a framework for Hillman–Grassl algorithms Our framework Main results and Application

Outline

- Notation
- The classical Hillman–Grassl algorithm

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

2 Our framework

- Prototypical example
- A H–G graph
- Main results and Application

Our framework

Main results and Application

Let $(\Gamma, \Delta, v \colon \Gamma \to P)$ be a H–G graph.

Theorem

Our algorithm for $(\Gamma, \Delta, v \colon \Gamma \to P)$ satisfies

- The output T' is a RPP on P.
- This algorithm is invertible.
- If we apply this algorithm consecutively, then the resulting boxes is ordered.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

On a framework for Hillman–Grassl algorithms Our framework Main results and Application

> Let R be the first row of P. Let

$$\mathcal{R} = \left\{ \begin{array}{c} (c_1, \dots, c_k) \\ c_t \in R \\ c_{t-1} \leq c_t \end{array} \right\}.$$

Theorem

Our algorithm induces a bijection

 $\varphi \colon \operatorname{rpp}(P) \to \operatorname{rpp}(P \setminus R) \times \mathcal{R}.$

ション ふゆ く は く は く む く む く し く

Our framework

Main results and Application

Corollary

If $\{ (\Gamma_r, \Delta_r, v_r \colon \Gamma_r \to P_r) \mid r = 1, \dots, k \}$ is a H-G system for a poset P, then we have a weight-preserving bijection between

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

- the set rpp(P) of P-partitions and
- the set of multisets of hooks.

The bijection induces a hook length formula.

On a framework for Hillman–Grassl algorithms Our framework Main results and Application

Theorem

Let P be a d-complete poset.

P has a H-G system (which is compatible with known hook structure).

 \Leftrightarrow P is swivel-free.

Remark

'slant irreducible' *d*-complete posets:

sweivel-free (1) Young diagrams, (2) shifted Young diagrams,

- (3) birds, (4) insets, (5) tailed insets, (6) banners,
- (7) nooks, (11) swivel shifteds;

not sweivel-free (8) swivels, (9) tailed swivels, (10) tagged swivels, (12) pumps, (13) tailed pumps, (14) near bats, (15) bat. On a framework for Hillman–Grassl algorithms Our framework

Main results and Application

Remark

Let $(\Gamma, \Delta, v \colon \Gamma \to P)$ be a H–G graph for P.

- The first row { $v(1, 1), \ldots, v(l, l)$ } of P is a poset-filter and a chain.
- The maximum element v(l, l) of the first row is a maximal element of P.

• The hook $H_{v(l,l)}$ at the element is a poset-filter of P. Hence, for *d*-complete posets including swivel, we can not construct a H–G system which is compatible with known hook structure.

うして ふゆう ふほう ふほう ふしつ

On a framework for Hillman–Grassl algorithms Our framework Main results and Application

Final remark.

Conjecture

If P has a H–G system, then P is a d-complete poset.

