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Abstract. A sufficient condition on a geometrically finite Kleinian group G is
shown, under which any type-preserving isomorphism from G onto another geomet-
rically finite one is induced by an automorphism of the Riemann sphere.

The Fenchel-Nielsen isomorphism theorem asserts that a type-preserving isomor-
phism ϕ : Γ → Γ′ between cofinite volume Fuchsian groups Γ and Γ′ is induced by
an automorphism f of the unit disk ∆, that is, there is f such that ϕ(γ) = f ◦γ◦f−1

for every γ ∈ Γ. Roughly speaking, this means that an algebraic isomorphism be-
tween such Fuchsian groups is geometric. In this note, we extend this result to
Kleinian groups and investigate a sufficient condition for an algebraic isomorphism
to be geometric. Along this line, there is a result due to Marden and Maskit
[7]. Their theorem works under certain assumptions on both the Kleinian group
G and the isomorphism ϕ. Our theorem assumes nothing about ϕ but that it is
type-preserving, and provides a sharp sufficient condition for G under which any
type-preserving isomorphism ϕ is geometric.

A fundamental result is the following Marden isomorphism theorem [6].

Proposition. Let G be a geometrically finite torsion-free Kleinian group, and let
ϕ : G → G′ be a type-preserving isomorphism onto another Kleinian group. Suppose
there is a homeomorphism f : Ω(G) → Ω(G′) of the region of discontinuity where
f ◦g = ϕ(g)◦f for all g ∈ G. Then f extends to Ĉ as an automorphism conjugating
g into ϕ(g).

We may regard this proposition as a translation of the following topological result
due to Waldhausen (cf. [2] Chap.13) into the Kleinian group theory: for compact
orientable irreducible 3-manifolds M and M ′ with incompressible boundary com-
ponents, an isomorphism ϕ : π1(M) → π1(M ′) is geometric (i.e. there exists a
homeomorphism f : M → M ′ which induces ϕ) whenever it preserves the periph-
eral structure (i.e. for each component S of ∂M , there is a component S′ of ∂M ′

such that ϕ maps π1(S) to a conjugate of π1(S′) in π1(M ′)). Hence the problem
is reduced to a problem when the peripheral structure is preserved. Johannson [4]
proved that if M is acylindrical, then the peripheral structure is preserved. Our
result may be regarded as a translation of Johannson’s into the Kleinian group
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theory. However, without assuming his theorem, we exhibit in this note a simple
proof relying on the intersection property of the limit sets of Kleinian groups, which
was studied by Susskind [11].

Now, letting Ω(G) be the region of discontinuity of a Kleinian group G, Λ(G)
the limit set, and StabG(∆) the component subgroup for a component ∆ of Ω(G),
we state our result:

Theorem. Let G and G′ be geometrically finite Kleinian groups possibly with tor-
sion. We assume that G satisfies the following three conditions:

(0) each component ∆ of Ω(G) is simply connected;
(1) G has no APT;
(2) for any distinct components ∆1 and ∆2 of Ω(G), StabG(∆1) ∩ StabG(∆2)

contains no loxodromic elements.
Then, for any type-preserving isomorphism ϕ : G → G′, there is an automorphism
f of Ĉ such that ϕ(g) = f ◦ g ◦ f−1.

Remark. The combination of the assumptions (0) and (1) is equivalent to the fol-
lowing condition:

(1′) G is a web group, i.e. every component of Ω(G) is a Jordan domain.

We can rewrite Theorem as a statement for hyperbolic manifolds. Let H3 be
the hyperbolic 3-space, and NG a complete hyperbolic 3-manifold H3/G divided
by a finitely generated torsion-free Kleinian group G. When the convex core of
NG has finite hyperbolic volume, we say that G and NG are geometrically finite.
We may regard Ω(G)/G as boundary at infinity of the hyperbolic manifold NG.
Consider the topological manifold MG = (H3 ∪ Ω(G))/G with boundary. Then
the assumption (0) is equivalent to the condition that every boundary component
S of MG is incompressible, that is, the homomorphism π1(S) → π1(MG) induced
by the inclusion S ↪→ MG is injective. In virtue of the loop theorem, we may say
that MG has no essential disks when this condition is satisfied. The assumption
(1) is equivalent to the following condition: if a loop in ∂MG is freely homotopic
to a loop round a cusp in MG, then the homotopy can be performed in ∂MG. The
assumption (2) is equivalent to the condition that MG is acylindrical: if two loops in
∂MG are freely homotopic in MG, then the homotopy can be performed in ∂MG or
they are freely homotopic to a loop round a cusp. In virtue of the annulus theorem,
we may say that MG has no essential punctured-disks when the former condition
is satisfied and no essential annuli when the latter is.

Theorem′. Let NG and NG′ be geometrically finite hyperbolic 3-manifolds. We
assume that NG has neither essential disks, essential punctured-disks nor essential
annuli. Then for any isomorphism ϕ : π1(NG) → π1(NG′) which preserves the
cusps, there is a (quasi-isometric) homeomorphism f : NG → NG′ which induces
ϕ.

Remark. If we drop any of three assumptions in the above Theorem, we can find a
counterexample to the statements. In this sense, our theorem is sharp.
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Proof of Theorem. Suppose that G is torsion-free. If G or G′ is of the first kind,
namely, NG or NG′ is of finite volume, then the Mostow rigidity theorem implies
ours (cf. [6]). Hence we may further assume that G and G′ are of the second kind.
Let ∆ be any component of Ω(G) and H the component subgroup StabG(∆). By
the assumptions (0) and (1), we know H is quasifuchsian. We shall prove that
H ′ = ϕ(H) is also a component subgroup of G′. This means that the peripheral
structure is preserved by ϕ. Then our claim follows from the Marden isomorphism
theorem (See [5] p.218 for a detailed argument to apply Marden’s theorem).

First, we see that H ′ is also quasifuchsian. Indeed, the image H ′ under the type-
preserving isomorphism is either quasifuchsian or totally degenerate ([9] Theorem
6), but it cannot be totally degenerate because G′ is geometrically finite and of the
second kind (cf. [10] p.134).

Next, we will show that g′(Λ(H ′))∩Λ(H ′) is empty or consists of one parabolic
fixed point for any g′ ∈ G′−H ′. When Λ(H ′) satisfies this (and h′(Λ(H ′)) = Λ(H ′)
for any h′ ∈ H ′), we say that Λ(H ′) is precisely H ′-invariant except for a parabolic
fixed point. We investigate the intersection of the limit sets of two subgroups in a
Kleinian group. By the following lemma, which is a corollary to Susskind’s result,
we know that Λ(H ′) satisfies the above property.

Lemma. Under the assumptions of Theorem, let H1 and H2 be distinct component
subgroups of G. Then Λ(ϕ(H1)) ∩ Λ(ϕ(H2)) is empty or consists of one parabolic
fixed point.

Proof. Since ϕ(H1) and ϕ(H2) are geometrically finite subgroups of a Kleinian
group G′, we know from Theorem 3 in [11] that

Λ(ϕ(H1)) ∩ Λ(ϕ(H2)) = Λ(ϕ(H1) ∩ ϕ(H2)) ∪ P ′,

where P ′ is a set of points fixed by a parabolic abelian group of rank 2 generated
by an element of ϕ(H1) and another element of ϕ(H2). However P ′ is empty in
our case. In fact, a parabolic element of H1 and another of H2 cannot generate an
abelian group of rank 2 because H1 and H2 are component subgroups. Accordingly,
one of ϕ(H1) and another of ϕ(H2) cannot, which implies that P ′ = ∅. As a
consequence, we have

Λ(ϕ(H1)) ∩ Λ(ϕ(H2)) = Λ(ϕ(H1) ∩ ϕ(H2)) = Λ(ϕ(H1 ∩ H2)).

Here, H1∩H2 is an elementary group without a loxodromic element by the assump-
tion (2), and so is ϕ(H1 ∩ H2). Therefore Λ(ϕ(H1 ∩ H2)) consists of one parabolic
fixed point at most, which proves the statement of the lemma. ¤

Proof continued. We will see that H ′ is embedded, namely, there is a properly em-
bedded incompressible surface S′ in NG′ whose fundamental group is H ′ under the
identification π1(NG′) ∼= G′. Since Λ(H ′) is precisely H ′-invariant except for a par-
abolic fixed point, we can construct an H ′-invariant and G′-equivariant contractible
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surface in H3 with the boundary Λ(H ′) (cf. [10] VII.B.16). Then its projection to
NG′ yields the desired S′.

As the final step of the torsion-free case, we will show that H ′ = ϕ(H) is a
component subgroup of G′. If not, the properly embedded incompressible surface
S′ induces a non-trivial amalgamated or HNN free product decomposition of G′.
It is

G′ = Γ′
1 ∗

H′
Γ′

2 or G′ = Γ′ ∗
H′

according as MG′ −S′ is disconnected or connected. Then, operating ϕ−1, we have
a non-trivial decomposition

G = Γ1 ∗
H

Γ2 or G = Γ ∗
H

.

Let (MG)0 be the pared manifold MG−{cusp neighborhoods}. It is a compact topo-
logical manifold with boundary whose interior is homeomorphic to NG. Using the
above free product decomposition of G ∼= π1((MG)0), we have a properly embedded
incompressible surface S in (MG)0 such that π1(S) corresponds to a subgroup of
H and S induces a non-trivial decomposition of G (cf. [3] p.35). Further, since ϕ
is type-preserving, all parabolic elements of G are contained in conjugates of the
factors of this decomposition. Hence, by moving S by a homotopy if necessary, we
may assume that ∂S is in the non-cuspidal boundary ∂n(MG)0 = ∂(MG)0 ∩ ∂MG.
If ∂S is not empty, every component of ∂S must be in the surface ∆/H because an
annulus (A, ∂A) in ((MG)0, ∂n(MG)0) is not essential due to the assumptions (1)
and (2). If S were a disk, then ∂n(MG)0 would be compressible. This contradicts
the assumption (0), and thus S is not a disk. Since every non-trivial loop in S
is freely homotopic to a loop in ∆/H, we can see that S divides (MG)0 into two
parts, one of which is homeomorphic to S × [0, 1]. This contradicts the fact that
S induces a non-trivial amalgamated free product decomposition of G. Thus the
proof of the torsion-free case completes.

In case G contains elliptic elements, we take a torsion-free subgroup Γ of G with
finite index by the Selberg lemma. Since Λ(Γ) = Λ(G), Γ also satisfies the assump-
tions (0), (1) and (2). We restrict the isomorphism ϕ to Γ. Then ϕ|Γ : Γ → Γ′

is geometric by the result in the torsion-free case; there is an automorphism f of
Ĉ which induces ϕ|Γ. In particular, f determines the correspondence between the
components ∆ of Ω(Γ) = Ω(G) and ∆′ of Ω(Γ′) = Ω(G′). In each component ∆, we
modify f |∆ so that it may compatible with H = StabG(∆). This is possible because
the type-preserving isomorphism ϕ|H is geometric by the original Fenchel-Nielsen
isomorphism theorem for Fuchsian groups. Thus we can construct a homeomor-
phism f̃ : Ω(G) → Ω(G′) which induces ϕ : G → G′. Consider f−1 ◦ f̃ . It is defined
on Ω(Γ) and induces the identity isomorphism Γ → Γ. Then by the Maskit identity
theorem [8], f−1 ◦ f̃ is extendable to an automorphism of Ĉ, and so is f̃ . This
completes the proof of the general case. ¤

Remark. In [5], Keen, Maskit and Series have shown that for a geometrically finite
web group G such that every component of Ω(G) is a round disk, the peripheral
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structure is preserved under any type-preserving isomorphism onto another geo-
metrically finite Kleinian group G′. It is evident that such a Kleinian group G
satisfies our assumptions (0), (1) and (2). The authors use two facts to prove their
result: a lemma due to Otal and a theorem by Floyd [1]. The former lemma char-
acterizes whether a quasifuchsian subgroup of G′ is peripheral or not in terms of
the topology of the limit set. The latter theorem asserts that Λ(G) and Λ(G′) are
homeomorphic if G and G′ are isomorphic under a type-preserving map. We can
see that their arguments extend to another proof of our theorem.
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