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• Aim: Review recent progress in nonlinear
dispersive equations and a probabilistic

approach by the Gibbs measure.

1. Introduction

Time local well-posedness in low regularity

space for the Cauchy problem of nonlinear

dispersive equation

2. Gibbs Measures and Global Solutions

How to prove the global existence of solution

by the Gibbs measure?



1 Introduction
• Nonlinear Schrödinger Equation (NLS)

i∂tu+ ∂2xu = λ|u|5u, (1)

t ∈ R, x ∈ T = R/2πZ
u(0, x) = u0(x). (2)

Mass and Energy Conservation Laws

ku(t)kL2 = ku0kL2 , (3)

E(u(t)) = E(u0), (4)



E(v) =
1

2
k∇vk2L2 +

λ

6
kvk6L6 .

• λ = 1 (defocusing) =⇒ E is positive

definite, no blowup solution, no nontrivial

standing wave (soliton-like solution),

• λ = −1 (focusing) =⇒ E is not bounded

from below, blowup solutions, standing waves

We assume λ = 1 (defocusing) from now on.

Let X = Hs for any s with 1/2 > s > 1/3.



Remark 1 We note that X ⊃ ∩s<1/2Hs and

so X includes the paths of the Brownian

motion.

Theorem 1 [Bourgain, 1996]

∀u0 ∈ X =⇒ ∃T > 0, ∃unique solution
u(t) to (1)− (2) in C([−T, T ];X),
ku(t)kX ≤ 2ku0kX (|t| < T ).

Furthermore, T ≥
¡
Cku0kX

¢−α
for some

α, C > 0 and the continuous dependence in



X of solution on initial data holds.

Remark 2 The following three claims in

Theorem 1 play an important role later.

T ≥
¡
Cku0kX

¢−α
, (5)

ku(t)kX ≤ 2ku0kX (|t| < T ), (6)

u0,n → u0 in X =⇒
kun(t)− u(t)kC([−T,T ];X) → 0. (7)



• Question: For various nonlinear dispersive
equations such as KdV and NLS, the time

local existence of solutions has been proved

within the framework of weak spaces including

distributions by the Fourier restriction norm

method. It is very interesting whether these

solutions exist globally in time or not.

How does the Gibbs measure work for the

proof of the global existence?



2 Gibbs Measures and Global

Solutions

PNf =
X
|k|≤N

f̂(k)eikx, N ∈ N.

Consider the Cauchy problem of the truncated

equation:

i∂tuN + ∂2xuN = PN
£
|uN |2uN

¤
, (8)

t ∈ R, x ∈ T



uN (0, x) = PNu0(x). (9)

Remark 3 (i)

∀u0 ∈ X ⊂ ∩s<1/2Hs =⇒
∃global solution of (8)− (9)

(ii) The truncated NLS (8) is a finite

dimensional Hamiltonian system.

• Finite Dimensional Gibbs Measure
We can construct the Gibbs measure for the

truncated NLS by the Liouville theorem,



because (8)-(9) is a finite dimensional

problem.

dμN = Z
−1
N e−

1
6kφNk6L6dρN , N ∈ N,

dρN =
Y
|k|≤N

e−
1
2

P |k|2|ak|2 d2ak,

φN =
X
|k|≤N

ake
ikx, ak ∈ C,

where ZN is the normalization constant.



Here, d2ak is regarded as the Lebesgue

measure on R2 for two components of the

real and the imaginary parts of ak.

Lemma 1 ∀T > 0, ∀ε > 0, ∃ cylindrical set
ΩN ⊂ X such that

μN
¡
ΩcN
¢
< ε,

PNu0 ∈ ΩN ⇒ kuN (t)kX ≤ C
³
log

T

ε

´1/2
,

|t| < T.



• Proof of Lemma 1

ΦN (t); the solution map of (8),

ΩN =
\

|j|≤[T/δ]
ΦjN (δ)

¡
{kPNu0kX ≤ K}

¢
.

Remark 4 The image ΦjN (δ) is the set such

that the value at t = −jδ of solution of (8)
with its element as initial data is in the ball

centered at the origin with radius K and so

ΩN is the set of all initial data such that if we



choose its element as initial data, the solution

uN satisfies

kuN (t)kX ≤ 2K (|t| < T ).

(The last inequality follows (6) in Remark 2.)

If we choose δ ∼ K−α, we have by the
invariance of μN

μN
¡
ΩcN
¢
≤ CT

δ
μN
¡
{kPNu0kX > K}

¢
∼ TKαe−cK

2 ∼ Te−c0K2

.



Choose K ∼
¡
log(T/ε)

¢1/2
and we have by

(5) in Remark 2

μN
¡
ΩcN
¢
< ε.

Therefore,

kuN (t)kX ≤ 2K

∼
³
log

T

ε

´1/2
, |t| < T

=⇒ Lemma 1



Lemma 1 + weak convergence of {μN} to μ
=⇒ ∀ε > 0, ∃Ωε ⊂ X such that μ

¡
Ωcε
¢
< ε

and for u0 ∈ Ωε, (1)-(2) has global solution u
satisfying

ku(t)kX ≤ C
³
log

1 + |t|
ε

´1/2
, t ∈ R. (10)

Estimate (10) + Borel-Cantelli Theorem =⇒
for a.s. u0 ∈ X, ∃ global solution u of (1)-(2)
satisfying (10) for some ε > 0.

Furhtermore, (7) in Remark 2 yields the



invariance of masure μ under the flow

generated by equation (1).

Remark 5 (i) The crucial part of the above

proof is based on the time local

well-posedness in X of the Cauchy problem

(1)-(2), while the probabilistic part of the

above proof is standard. Especially, (5)-(7)

are indispensable to the proof for the both

parts of the global existence of solution and

the invariance of measure μ.



(ii) In the global existence result proved

above, “almost surely” means that the Gibbs

measure zero set in X is exceptional. In fact,

the space Hs\ ∩τ<1/2 Hτ is measure zero

with respect to the Gibbs measure. In other

words, the above global existence result

implies that for almost sure u0 ∈ ∩τ<1/2Hτ ,

(1)-(2) has a global solution. The probabilistic

approach by the Gibbs measure is useful if one

wishes to have the global existence result in

the space corresponding to the support of the



Gibbs measure.
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