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Introduction

Topics

.

. .
1 We want to know the value of the expectation

E [f (XT )]

where Xt is a solution of a stochastic differential equation (SDE).

.

.

.

2 Applications: finance, control, filtering, physics, etc.

.

.

.

3 However, we do not know the exact distribution of Xt in general.
Therefore, we can not simulate Xt by MonteCarlo..

.

.

.

4 Goal: find a higher order approximation scheme X
(n)

t s.t.

E [f (XT )] − E [f (X
(n)

T )] = O(n−k ).

(especially, k ≥ 2)
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Introduction

What are merits of higher order methods ?

Reducing computational cost

(e.g. k = 1, n = 1000 ⇒ k = 2, n =several tens...)

Quasi Monte Carlo: It (sometimes) holds that

E [f (X
(n)

T )] =

∫
Rα(n)

g(y)p(dy)

∃g : Rα(n) → R.
∃p : measure on Rα(n).
If α(n) is not so large (∼ 100, 1000?), QMC works well.
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Approximations of SDEs without jumps

Approximation of SDEs by random ODEs

Setting

Consider a Stratonovich SDE (RN -valued)

X x
t = x +

d∑
i=0

∫ t

0
Vi(X x

s ) ◦ dW i(s) (1)

(W i)1≤i≤d is a d-dimensional Brownian motion.
W 0(s) = s.
Vi ∈ C∞

b (RN ; RN).

Our purpose: Compute

Pt f (x) := E [f (X x
t )]

at time t = T , through time discretization methods.

7 / 37



Higher order weak approximations of stochastic differential equations with and without jumps

Approximations of SDEs without jumps

Approximation of SDEs by random ODEs

Random Ordinary Differential Equation

Let t > 0 be a fixed time-scaling parameter. We want to construct an
approximation process

X
x
r = x +

d∑
i=0

∫ r

0
Vi(X

x
s)dωt

i(s) (2)

for 0 ≤ r ≤ t .
a driving random path ω has bounded variation paths.
ω ≈ W in some sense.
ω depends on fixed (small) time t ;
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Approximations of SDEs without jumps

Approximation of SDEs by random ODEs

Approximation Operator

Approximation operator: For a scaling parameter t ,

Qt f (x) := E [f (X
x
t )].

Time partition: π := {0 = t0 < t1 < · · · < tn = T}
Operator Qt1Qt2−t1 · · ·Qtn−tn−1

⇔ ∃Markov chain whose transition follows from the
random ODE (2) with scaling t = tj+1 − tj .

⇔ ∃Random ODE, defined in [0, T ], driven by (ωi
π).

Here ωi
π(s)(0 ≤ s ≤ T ) is defined for each time

interval [tj , tj+1] independently:

X
tj ,x
r = x +

d∑
i=0

∫ r

tj
Vi(X

tj ,x
s )dωi

tj+1−tj (s), r ∈ [tj , tj+1]

((ωtj+1−tj )j=0,...,n−1 are independent.)
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Approximations of SDEs without jumps

Approximation of SDEs by random ODEs

From local error to global error

(Rough sketch): tj − tj−1 ≡ T/n

.

.
.

1 Assume (Pt − Qt)g = O(tk+1) for smooth g.

.

.
.

2 Then

(PT − Qn
T/n)f = (Pn

T/n − Qn
T/n)f

=
n−1∑
j=0

Q j
t/n(PT/n − QT/n)P(1−(j+1)/n)T f

= n × O(n−(k+1)) = O(n−k ).

.

.

.

3 f : smooth & polynomial growth;
see e.g. Talay & Tubaro(1990), Tanaka & Kohatsu-Higa (2009)

.

.

.

4 f : Lipschitz or more general, under Hörmander type condition;
see Bally & Talay, Kohatsu-Higa, Kusuoka, etc.
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Approximations of SDEs without jumps

Approximation of SDEs by random ODEs

Stochastic Taylor expansion I

By using Itô formula, (Vi act as vector fields)

f (X x
t ) = f (x) +

d∑
i=0

∫ t

0
(Vi f )(X x

s ) ◦ dW i(s)

= f (x) +
d∑

i=0

(Vi f )(x)

∫ t

0
◦dW i(s)

+
∑

0≤i,j≤d

∫ t

0

∫ s

0
(VjVi f )(X x

r ) ◦ dW j(r) ◦ dW i(s)

Notation for the order of convergence:
For index (i1, · · · , iℓ), ij = 0, 1, . . . , d ,

|(i1, · · · , iℓ)| := ℓ + #{j : ij = 0}.
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Approximations of SDEs without jumps

Approximation of SDEs by random ODEs

Stochastic Taylor expansion I (continued)

Stochastic Taylor expansion:

f (X x
t ) =

∑
|(i1,...,iℓ)|≤m

(Vi1 · · ·Viℓ f )(x)

×
∫ t

0
· · ·

∫ s2

0
◦dW i1(s1) · · · ◦ dW iℓ(sℓ)

+ RX
m(t , f )

with
E [|RX

m(t , f )|] ≤ C(T , f ) t (m+1)/2.

A similar expansion holds for X
x
t .

(◦dW is replaced by dω)
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Approximations of SDEs without jumps

(Extended) Cubature on Wiener space

Cubature formulas (extended)

.

. .
1 Definition: ω ∈ C0,bv([0, 1]; Rd+1) defines a cubature formula with

degree m if for any index (i1, . . . , iℓ) with |(i1, . . . , iℓ)| ≤ m,

E
[ ∫ 1

0
· · ·

∫ s2

0
◦dW i1(s1) · · · ◦ dW iℓ(sℓ)

]
= E

[ ∫ 1

0
· · ·

∫ s2

0
dωi1(s1) · · · dωiℓ(sℓ)

]
,

and for |(i1, . . . , iℓ)| = m + 1 or m + 2,∫ 1

0
· · ·

∫ s2

0
d |ωi1 |(s1) · · · d |ωiℓ |(sℓ) ∈ L2(Ω).

.

.

.

2 Lyons & Victoir (2004) assume in addition,
(We do not assume here)

ω0(s) = s.
ω has a discrete probability distribution on C0,bv([0, 1]; Rd+1).

13 / 37



Higher order weak approximations of stochastic differential equations with and without jumps

Approximations of SDEs without jumps

(Extended) Cubature on Wiener space

Time Scaling

.

. .
1 Note that

√
t
|(i1,··· ,iℓ)|

∫ 1

0
· · ·

∫ s2

0
◦dW i1(s1) · · · ◦ dW iℓ(sℓ)

law
=

∫ t

0
· · ·

∫ s2

0
◦dW i1(s1) · · · ◦ dW iℓ(sℓ).

.

.

.

2 Scaling for ω: For 0 ≤ s ≤ t ,

ω0
t (s) := tω0(s/t)

ωi
t(s) :=

√
tωi

t(s/t), 1 ≤ i ≤ d .
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Approximations of SDEs without jumps

(Extended) Cubature on Wiener space

Error estimates

(Sketch)
Assume that ω defines a cubature formula with degree m.
f ∈ C∞

b .
Then

E [f (X x
t )] − E [f (X

x
t )] = E [RX

m(t , f )] − E [RX
m(t , f )]

= O(t (m+1)/2).

⇒ Order k = (m − 1)/2 scheme !

⇒ For second order schemes, we need m = 5.
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Approximations of SDEs without jumps

Operator Splitting method as a Cubature

Stochastic Taylor expansion II

Formal Taylor series of t 7→ etL

By taking expectations of stochastic Taylor expansions,

E [f (X x
t )] = f (x) + tLf (x) +

t2

2
L2f (x) +

t3

3!
L3f (x) + · · ·

where L :=
∑d

i=0 Li ( ↔ the generator of Pt ),
L0 := V0

Li = 1
2 V 2

i , 1 ≤ i ≤ d .

Approximation of Pt ⇔ Approximation of exponential map
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Approximations of SDEs without jumps

Operator Splitting method as a Cubature

Splitting of exponential maps on noncommutative algebra

.

. .
1 Now we can not solve directly

etL = et(L0+L1+···+Ld ).

.

.
.

2 However, each etLi may be solvable ...

Approximation of etL by {etL0 , . . . , etLd}
{Li} : noncommutative
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Approximations of SDEs without jumps

Operator Splitting method as a Cubature

Second order method via splitting

et(Li+Lj ) = I + t(Li + Lj) + t2

2 (Li + Lj)
2 + · · · .

etLi etLj = I + t(Li + Lj) + t2

2 (L2
i + L2

j + 2LiLj) + · · · .

Socond-order methods:

et(Li+Lj ) =
1
2

etLi etLj +
1
2

etLj etLi + O(t3)

et(Li+Lj ) = et/2Li etLj et/2Li + O(t3)

The idea can be found in the works of Strang (1960s).
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Approximations of SDEs without jumps

Operator Splitting method as a Cubature

ODE and coordinate SDE

What’s etLi ?

Notation: exp(V )x is the solution of

dzt(x)

dt
= V (zt(x)), z0(x) = x

at time t = 1.
exp(W i

t Vi)x is the solution of the SDE

dX x
i,t = x +

∫ t

0
Vi(X x

i,s) ◦ dW i(s) ∈ RN

So, etLi is solvable in the sense of

etLi f (x) = E [f (X x
i,t)] = E [f (exp(W i

t Vi)x)].

etLi etLj ↔ two step flow exp(W j
t Vj) exp(W i

t Vi)x
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Approximations of SDEs without jumps

Operator Splitting method as a Cubature

Ninomiya-Victoir scheme

.

Ninomiya-Victoir scheme

.

.

.

. ..

.

.

X
x
t =


exp(t/2V0) exp(

√
tZ 1V1) · · · exp(

√
tZ dVd ) exp(t/2V0)x ,

if Λ = 1,

exp(t/2V0) exp(
√

tZ dVd ) · · ·exp(
√

tZ 1V1) exp(t/2V0)x ,
if Λ = −1.

Z = (Z i)1≤i≤d and Λ are independent.
Z ∼ N(0, Id ).
P(Λ = ±1) = 1/2.
If the ODE has no closed-form solution, then we can use
Runge-Kutta methods.
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Approximations of SDEs without jumps

Operator Splitting method as a Cubature

Ninomiya-Victoir scheme as an extended cubature on Wiener space

.

Ninomiya-Victoir as cubature

.

.

.

. ..

.

.

ωi(r) =
∫ r

0 ηi(s)ds, 0 ≤ r ≤ 1:

ηi(s) =


(d + 1), if i = 0, s ∈ [0, 1

2(d+1) ) ∪ [ 2d+1
2(d+1) , 1),

(d + 1)Z i , if i ≥ 1, Λ = 1, s ∈ [ 2d−2i+1
2(d+1) , 2d−2i+3

2(d+1) ),

(d + 1)Z i , if i ≥ 1, Λ = −1, s ∈ [ 2i−1
2(d+1) ,

2i+1
2(d+1) ),

0, otherwise.

⇒ ω : degree 5 formula. (ω0(s) ̸= s.)

.

Theorem

.

.

.

. ..

.

.

Let f ∈ C6
pol(R

N), and ω is defined by the above. Then

|PT f (x) − Qn
T/nf (x)| ≤ const.

n2 .
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Approximations of SDEs without jumps

Operator Splitting method as a Cubature

Remark : Cubature formula for Gaussian measure

Cubature for Gaussian measure with degree m:
A discrete-valued random variable Z such that

E [Z α] =

∫
Rd

xα 1
(
√

2π)d
e−|x|2/2dx

for |α| ≤ m.

N-V + Gaussian cubature with degree 5
⇓

Cubature on Wiener space with degree 5,
and with finite number of paths (but ω0(s) ̸= s).

The number of paths is
"2× (the number of points of Gaussian cubature)".
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Approximations of SDEs with jumps I (finite jump intesity)

Setting: jump-type SDE

Let J(t) be a compound Poisson process.
Consider the following SDE with jumps

X x
t = x +

d∑
i=0

∫ t

0
Vi(X x

s ) ◦ dW i(s) +

∫ t

0
h(X x

s−)dJ(s)

Question: How can we construct a higher order scheme ?
Point 1 : W and J are independent.
Point 2 : Number of jumps = finite.
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Approximations of SDEs with jumps I (finite jump intesity)

Operator Splitting

Approach (OS): Operator Splitting

.

. .
1 Consider the equation

dX x
d+1,t = x +

∫ t

0
h(X x

d+1,s−)dJ(s)

⇒ easy to simulate (if we can easily simulate jump size).

.

.

.

2 Generator:

Ld+1f (x) :=

∫
Rd

(f (x + h(x)y) − f (x))ν(dy)

where ν is a finite Lévy measure.
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Approximations of SDEs with jumps I (finite jump intesity)

Operator Splitting

Approach (OS): Operator Splitting (continued)

.

. .
3 As in the continuous diffusion case, we can consider

approximations of
et
∑d+1

i=0 Li

by
{etL0 , . . . , etLd , etLd+1}.

.

.

.

4 We can construct a second order scheme via

1
2

etL0 · · ·etLd+1 +
1
2

etLd+1 · · · etL0 = et
∑d+1

i=0 Li + O(t3)

(This is first considered by Fujiwara (2006, Master thesis))
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Approximations of SDEs with jumps I (finite jump intesity)

Jump-adapted approximation

Approach (JSAS): Jump (Size) Adapted Simulation

Ref. : Mordecki & Szepessy & Tempone & Zouraris (2008)

.

. . 1 First, simulate J(t):
Jump time: 0 < τ1 < · · · < τk < T

.

.
.

2 Since τj+1 − τj may be large, we use another partition {t̃j} so that
{ti} := {t̃j} ∪ {τj} satisfies tj+1 − tj ≤∃ ∆

.

.

.

3 (Jump adapted simulation)
Continuous term approximation:

X tj− = Euler or cubature scheme in time interval [tj−1, tj).

for continuous part X
tj−1,x
tj− = x +

∑d
i=0

∫ tj−
tj−1

Vi(X
tj−1,x
s ) ◦ dW i(s).

Jump simulation:

X tj =

{
X tj− + h(X tj−) × (jump size), if tj : jump time,

X tj−, otherwise.

27 / 37



Higher order weak approximations of stochastic differential equations with and without jumps

Approximations of SDEs with jumps I (finite jump intesity)

Jump-adapted approximation

Practical Problems

Which is better, (OS) or (JSAS)?

The best (adapted) choice of partition t1 < · · · < tn

How to simulate by QMC. (We need a restriction of the number of
jumps.)

28 / 37



Higher order weak approximations of stochastic differential equations with and without jumps

Approximations of SDEs with jumps II (general Lévy process)

Approximations of SDEs with jumps II (general Lévy process)

.

. .
1 Introduction

.

. .
2 Approximations of SDEs without jumps

Approximation of SDEs by random ODEs
(Extended) Cubature on Wiener space
Operator Splitting method as a Cubature

.

. .

3 Approximations of SDEs with jumps I (finite jump intesity)
Operator Splitting
Jump-adapted approximation

.

. .

4 Approximations of SDEs with jumps II (general Lévy process)
Overview
Small jump approximation
How to deal with compound Poisson term

.

. .

5 Further Research

29 / 37



Higher order weak approximations of stochastic differential equations with and without jumps

Approximations of SDEs with jumps II (general Lévy process)

Overview

Setting : Infinite Activity Lévy-driven SDE

Genaral Lévy-driven SDE:

X x
t = x +

d∑
i=0

∫ t

0
Vi(X x

s ) ◦ dW i(s) +

∫ t

0
h(X x

s−)dZ (s) (3)

where Z (t) is a Lévy process without Brownian term, and
Zt ∈ ∩p>1Lp.
Generator:

L = L0 + · · · + Ld + Ld+1,

Ld+1f (x) := ∇f (x)h(x)b

+

∫
Rd

(f (x + h(x)y) − f (x) −∇f (x)h(x)1|y|≤1)ν(dy),

where b ∈ Rd , ν is a Lévy measure. (Note:
∫
|y|≤1 |y |

2ν(dy) < ∞.)
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Approximations of SDEs with jumps II (general Lévy process)

Overview

Basic Strategy

Extend the schemes (OS) & (JSAS) to the general case (3).

.

. . 1 (OS): Tanaka & Kohatsu(2009) → Kohatsu & Ngo(2011, submitted)

.

.
.

2 (JSAS): Kohatsu & Tankov(2009) without Brownian term
i.e. Vi ≡ 0, 1 ≤ i ≤ d .

Approach (OS): Decompose Ld+1 = L(1)
d+1 + L(2)

d+1 + L(3)
d+1 where

L(1)
d+1f (x) = bϵ(hf )(x),

L(2)
d+1f (x) =

∫
|y|≤ϵ

(f (x + h(x)y) − f (x) −∇f (x)h(x)y)ν(dy),

L(3)
d+1f (x) =

∫
|y|>ϵ

(f (x + h(x)y) − f (x))ν(dy),

where ϵ < 1, bϵ := b −
∫

ϵ<|y|≤1 yν(dy).
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Approximations of SDEs with jumps II (general Lévy process)

Small jump approximation

Asmussen-Rosinski approximation for L(2)
d+1

L(1)
d+1 and L(3)

d+1 correspond to "drift" & "compound Poisson" term
respectively.

What is L(2)
d+1? : Define Σϵ :=

( ∫
|y|≤ϵ

yiyjν(dy)
)

1≤i,j≤d

L(2)
d+1 = h(x)Σϵh∗(x)D2f (x) + O

( ∫
|y|≤ϵ

|y |3ν(dy)
)
.

So we replace L(2)
d+1 by a new "small diffusion"(Itô form) term

L̃(2)
d+1 := h(x)Σϵh∗(x)D2f (x)

as an approximation. If necessary for simulation, we can modify
(L(1)

d+1, L̃(2)
d+1) so that L̃(2)

d+1 becomes the generator of the SDE of
Stratonovich form.
Control (ϵ, n) as

∫
|y|≤ϵ

|y |3ν(dy) ≈ O(n−k ).
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Approximations of SDEs with jumps II (general Lévy process)

How to deal with compound Poisson term

The case
∫
|y|≤1 |y |ν(dy) < +∞

.

. .
1 The number of jumps w.r.t. L(3)

d+1 goes to +∞, as ϵ ↓ 0. To avoid
this, we need some restriction for jumps.

.

.
.

2 If we assume that
∫
|y|≤1 |y |ν(dy) < +∞, then

Note: |bϵ| < +∞.
So we can use (OS) approximations for

(L0 + L(1)
d+1) : (drift)

L1, . . . , Ld , L̃(2)
d+1 : (2d-diffusion)

L(3)
d+1 : (Jumps)

.

.

.

3 For L(3)
d+1, we can construct an approximation process which has

single or double jumps in (fixed) small time interval. See Tanaka
& Kohatsu, or Kohatsu & Ngo.

33 / 37



Higher order weak approximations of stochastic differential equations with and without jumps

Approximations of SDEs with jumps II (general Lévy process)

How to deal with compound Poisson term

The case
∫
|y|≤1 |y |ν(dy) = +∞

.

. .
1 Kohatsu & Ngo discuss a case study where Z is a subordinated

Brownian motion. They construct an algorithm under the case∫
|y|≤1 |y |ν(dy) = +∞, but |

∫
|y|≤1 yν(dy)| < +∞

.

.
.

2 If we assume that
∫
|y|≤1 |y |ν(dy) = +∞, then in general,

Note: |bϵ| = +∞.
We should not decompose (L(1)

d+1 + L(3)
d+1), since L(1)

d+1 includes the
truncation function for L(3)

d+1.
Consider (OS) approximations for

L1, . . . , Ld , L̃(2)
d+1 : (2d-diffusion)

L0 + (L(1)
d+1 + L(3)

d+1) : (ODE with Jumps)

What can we do for (L(1)
d+1 + L(3)

d+1)?
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Problems in time discretization

.

. .
1 Find higher-order methods with degree more than 7 (d ≥ 2).

(We have known only "existence"!)

.

.
.

2 High order approximation of Lévy driven SDEs
How to deal with small jumps (which occurs infinitely many times).
How to simulate Lévy processes whose Lévy measure has high
singularity (

∫
|y|≤1 |y |ν(dy) = +∞).

.

.

.

3 Problems in computing conditional expectations E [·|Ft ]:
Pricing American/Bermudan options
Simulating forward-backward SDEs (FBSDEs)

⇒ Recombination techniques: e.g. Chevance(1997),
Lyons-Litterer(forthcoming, AAP), Tanaka(2011, submitted)
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Thank you for your attention.
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