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1 \\\Outline of the talk

- We will prove LDP of FW type for pinned diffusion

measures.

- Main tools of our analysis are;

(1) Rough Path Theory

(2) Quasi sure analysis ⊂ Malliavin calc.

- Probably new (?) But the case of pinned BM on

complete Riem. mfd. was shown by E. P. Hsu

(PTRF ’90). Shown via estimates of heat kernel.

No SDE in this paper. Not so ”of FW type.”
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w = (wt)0≤t≤1: d-dim BM

V1, . . . , Vd: vector fields on Rn

Consider the following (Stratonovich type) SDE;

dyt =
d∑

i=1

Vi(yt) ◦ dwi
t with y0 = a ∈ Rn.

The correspondence w 7→ y = (yt)0≤t≤1 is called

Itô map. NOT continuous. Write y = Φ(w).
- y is a diffusion proc. corresponding to

L = (1/2)
d∑

i=1

V 2
i
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Let ε > 0 be a small parameter. Consider

dyε
t =

d∑
i=1

Vi(yε
t ) ◦ εdwi

t with yε
0 = a ∈ Rn.

- yε is a diffusion proc. corresponding to

Lε = (ε2/2)
d∑

i=1

V 2
i

- Formally, yε = Ψ(εw)
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[Fact: FW’s LDP]

The law of yε satisfies LDP as ε ↘ 0.

- The law of (εwt) (=scaled Wiener measure)

satisfies LDP of Schilder type as ε ↘ 0.

- From this and contraction principle for LDP, FW’s

LDP is immediate if Φ were continuous.

- In the usual stochastic analysis, the proof is done

by using ”exponentially good approximation.”
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- In Rough Path Theory, we consider not only w

itself, but its iterated path integrals:

W 1
s,t = wt − ws, W 2

s,t =
∫ t

s

(wu − ws) ⊗ ◦dwu

for 0 ≤ s ≤ t ≤ 1.

- We call W = (W 1, W 2) Brownian RP.

- T. Lyons developed a thoery of line integrals and

ODE for RPs, in which Lyons-Itô map Φ is continous

w.r.t. RP topology. (Note: those are deterministic)
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Roughly speaking, Φ(εW ) = yε. (i.e., sol. of

Stratonovich SDE is obtained via RP theory)

A new proof by Ledoux-Qian-Zhang (’02)

The law of εW = (εW 1, ε2W 2) satisfies LDP of

Schilder type on RP space. From this, FW’s LDP is

immediate

A nice idea! Followed by many results on LDP for

various Gaussian RPs w.r.t. various Banach norms.
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2 \\\A natural question arises:

Can one prove a similar LDP for pinned diffusion

measure Qε
a,a′ ??

Here, Qε
a,a′ is the pinned diff. meas. associated

with Lε, which starts/ends at a/a′, resp.

Method: quasi-sure analysis for BRP. Recall that

original motivation for QSA was to analyze (the

pullback of) a pinned diffusion measure.
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3 \\\Setting and Assumptions

Vi : Rn → Rn: vector field, C∞
b , 1 ≤ i ≤ d

V0 : [0, 1] × Rn → Rn: ε-dep. vector field, C∞
b

dyε
t =

d∑
i=1

Vi(yε
t ) ◦ εdwi

t + V0(ε, yε
t )dt, yε

0 = a.

Generator; Lε = (ε2/2)
d∑

i=1

V 2
i + V0(ε, · )

Examples; V0(ε, · ) = V̂ ( · ) or ε2V̂ ( · )
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We assume ”everywhere ellipticity”

(H1) For all a ∈ Rn, the set of vectors

{V1(a), . . . , Vd(a)} linearly spans Rn.

Pinned diff. meas. Qε
a,a′ is well-defined and sits on

Cα−H
a,a′ ([0, 1], Rn)

= {x ∈ Ca,a′([0, 1], Rn) | α-Hölder conti }

for any α ∈ (1/3, 1/2).

Heuristically, Qε
a,a′ is the law of map w 7→ yε under

conditional measure P( · |yε
1 = a′).
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H: Cameron-Martin space of BM

For h ∈ H, φ0 = φ0(h) is a unique solution of;

dφ0
t =

d∑
i=1

Vi(φ0
t )dhi

t + V0(0, φ0
t )dt, φ0

0 = a.

Set Ka,a′
:= {h ∈ H | φ0(h)1 = a′} 6= ∅.
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Define a good rate function

J : Cα−H
a,a′ ([0, 1], Rn) → [0, ∞] by

J(y) = inf{
‖h‖2

H

2
| h ∈ Ka,a′

with y = φ0(h)}

− min{
‖h‖2

H

2
| h ∈ Ka,a′

}

if y = φ0(h) for some h ∈ Ka,a′
and

J(y) = ∞ if no such h ∈ Ka,a′
exists.
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4 \\\Main result (LDP of FW-type)

Theorem: Let 1/3 < α < 1/2 and assume (H1).

Then, {Qε
a,a′}ε>0 satisfies an LDP on

Cα−H
a,a′ ([0, 1], Rd) as ε ↘ 0 with a good rate

function J .
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5 \\\RP space with Besov norm

4 := {(s, t) | 0 ≤ s ≤ t ≤ 1}. For Y ∈ C(4, Rd),

‖Y ‖m
α,m−B :=

∫∫
4

|Ys,t|m

|t − s|1+mα
dsdt

(Besov norm, m ≥ 1, 0 < α ≤ 1)

T 2(Rd) := R ⊕ Rd ⊕ (Rd)⊗2: truncated ⊗-alg.

X = (1, X1, X2) ∈ C(4 → T 2(Rd)) is called

multiplicative if X1
s,t = X1

s,u + X1
u,t,

X2
s,t = X2

s,u + X2
u,t + X1

s,u ⊗ X1
u,t (Chen’s id.)
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♠ m ≥ 2, 1/3 < α < 1/2, α − m−1 > 1/3.

X = (1, X1, X2) is said to be (α, m)-Besov RP if

it is multiplicative and

‖X1‖α,m−B < ∞, ‖X2‖2α,m/2−B < ∞.

(We will write (X1, X2) by omitting ”1”)

Example: x ∈ C0([0, 1], Rd), Lipschitz conti.,

X1
s,t = xt − xs, X2

s,t =
∫ t

s

(xu − xs) ⊗ dxu

(the smooth RP above x, or the lift of x)
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A geometric RP is a RP obtained as a limit of a

sequence of smooth RPs w.r.t. (α, m)-besov top.

GΩB
α,m(Rd): totality of (α, m)-geometric RPs

♥ Relation to Hölder RP spaces.

GΩH
α′(Rd) ↪→ GΩB

α,m(Rd) ↪→ GΩH
α−m−1(Rd)

for m ≥ 2, 1/3 < α < α′ < 1/2, α − m−1 > 1/3.

♠ Interpretation of Besov indices;

α ≈ Hölder index

m: supplementary index. (basically, very large)
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♠ Remark: (i) Large deviation estimate for the law

of Brownian RP. (weight of [large ball]c)

(ii) LDP of Schilder type for the laws of scaled

Brownian RP.

These are known on for the Hölder case.

Because of the continuous embedding, they hold

true on GΩB
α,m(Rd), too.
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6 \\\Quasi sure existence of Brownian RP

Roughly, BRP W := lim
n→∞

W (n). Here W (n) is

the lift of w(n), polygonal approx associated with

{k2−n|0 ≤ k ≤ 2n}. (a.s. convergence)

Actually, W (n) converges quasi surely.

• Higuchi (Master thesis, ’06) / Aida (JFA ’11)

• I. (IDAQP ’06)

• Watanabe (Proc. Abel Symp. ’07)

Higuchi/Aida seems best. We will follow them.
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W = C0([0, 1], Rd): Wiener sp. with sup-norm

Zα,4m :=
{
w ∈ W| {W (k)}∞

k=1 Cauchy in GΩB
α,4m

}
- We assume (H2) m ∈ N, 1/3 < α < 1/2,

α − (4m)−1 > 1/3, 4m(1/2 − α) > 1.

- They proved that under (H2), Zα,4m is slim, i.e.,

capq,r(Zα,4m) = 0 for any 1 < q < ∞, r ≥ 0.

- We will fix this version of BRP W . Then, w 7→ W

is ∞-quasi conti. (Aida ’11)
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7 2 quick remarks

Two nice theorems in QSA became obvious.

(J. Ren, Bull Sci Math ’90) Quasi sure refinement

of Wong-Zakai approx. thm.

Note that we only need C3
b -condition for

coefficients.
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(Malliavin-Nualart, JFA ’94) The solution of an

SDE, as a path space-valued functional, admits an

∞-quasi conti. mdf.

-Note that we only need C3
b -condition for

coefficients.

- We don’t know this results via RP theory is better

or not, (since we don’t know the UMD Banach

norm in MN is weaker than Hölder-type norms.)

- But, al least in spirit, this proof seems better than

the one in MN.
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8 \\\Pinned process via Lyons-Itô map

From now on, we assume drift term in SDE ≡ 0.

Φ: Lyons–Itô map associated with V1, . . . , Vd.

Then, yε = Φ(εW )1 q.e. w ∈ W.

yε
1: non-deg. in Malliavin’s sense.

=⇒ δa′(yε
1): (positive) Watanabe dist.

=⇒ pε
1(a, a′) = E[δa′(yε

1)]

By Sugita’s theorem, δa′(yε
1) is actually a finite

Borel measure on W (=: θε
a,a′(dw))
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Its lift is well-defined. We set

µε
a,a′ = [ε · Lift]∗(θε

a,a′) = [w 7→ εW ]∗(θε
a,a′)

a measure on geom. RP sp.

µ̂ε
a,a′ , θ̂ε

a,a′ : normalized ones (probabilities).

♥ Fact Qε
a,a′ = Φ∗(µ̂ε

a,a′)

- First pointed out in I. (’06)

- But, almost immediate from the quasi-conti of

w 7→ W .
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We have obtained the pinned diffusion as an image

of continuous Lyons-Itô map

Thus, our main results is immediate from

LDP for µε
a,a′ on GΩB

α,4m(Rd) as ε ↘ 0
(Note that the whole set is both open and closed)

A sketch of proof of this LDP will be given.
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9 \\\Key points of proof

(I) large deviation estimate for capacities

1 < ∀q < ∞, ∀r ≥ 0, ∃C = C(q, r, α, m) s.t,

capq,r

(
{w | ‖W i‖1/i

iα,4m/i−B ≥ R}
)

≤ e−CR2

as R ↗ ∞. (i = 1, 2)

♠ This kind of estimate is well-known for the law of

Gaussian RP. (e.g., Friz-Oberhauser ’10). But, we

are dealing with not measures, but capacities.
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(II) Integration by parts for Watanabe distributions

F = (F 1, . . . , F n) ∈ D∞(Rn): non-deg

G ∈ D∞ and T ∈ S′(Rn, R).
=⇒E

[
(∂iT ◦ F ) · G

]
= E

[
(T ◦ F ) · Ψi( · ; G)

]
Here Ψi( · ; G) is given by

−
d∑

j=1

{
−

d∑
k,l=1

G · γik · γjl〈Dτkl, DF j〉H

+γij〈DG, DF j〉H + γij · G · LF j
}

.

where τ is Malliavin cov. matrix and γ = τ−1
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how to use it. In upper estimate, we must treat

E
[
{something like indicator of a set} · δa′(yε

1)
]

But, δa′(ξ) = (∂2
1 · · · ∂2

n)A(ξ), (ξ ∈ Rn)

with A(ξ) :=
n∏

j=1

|ξj − a′
j|+

So we can apply IBP and make Schwartz

distribution on RHS vanish. After that we may use

the usual Scilder-type LDP for BRP
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(III) Taylor expansion of Itô map around h ∈ H
Watanabe’s asymptotic expansion of

ỹε
1 = Φ(εW + h) in D∞-topology (for given h)

Here, SDE for ỹε
t is given by

dỹε
t =

d∑
i=1

Vi(ỹε
t ) ◦ [εdwi

t + dhi
t]

Then, as ε ↘ 0, ỹε
1 ∼ φ0(h)1 + εφ1(h, w)1 + · · ·

Notice taht if h ∈ Ka,a′
⇐⇒ φ0(h)1 = a′.

φ1(h, w)1 is a non-deg. Rn-val. Gaussian r.v.
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Watanabe’s asymptotic theory further claims;

δ0

( ỹε
1 − a′

ε

)
→ δ0(φ1(h, · )1)

in Dq,−r-topology (1 < ∃q < ∞, ∃r ≥ 0).

RHS defines a non-trivial meas. by Sugita’s thm

In lower estimate, we use this. Just a sketch.

Bρ(X): small ball around RP X (ρ > 0)

Let h ∈ Ka,a′
and let H be its lift.

Want to estimate the weight of the ball from below
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Roughly, we calculate as follows;

E[1Bρ(H)(εW ) · δa′(yε
1)

]
= E[exp(−

‖h‖2

2ε2
− 〈

h

ε
, w〉) 1Bρ/ε(0)(W ) δa′(ỹε

1)
]

= e
− ‖h‖2

2ε2 E[e−〈 h
ε ,w〉1Bρ/ε(0)(W )

1

εn
δ0(

ỹε
1 − a′

ε
)
]

If 〈h, ·〉 ∈ W∗, ε2 log of RHS is

≥ −
‖h‖2

2
− const · ρ + o(1)

Since ρ > 0 is arbitrary, the lower estimate is done


