Poincare's lemma on domains defined by Brownian rough path

Shigeki Aida Tohoku University

January 26, 2012

Introduction

- ullet G : simply connected compact Lie group
- ullet $H^{2k+1}(L_e(G),\mathbb{R})=\{0\}$, where
- $L_e(G)=C([0,1]
 ightarrow G\mid \gamma(0)=\gamma(1)=e).$

• The exterior differential operator d and Hodge-Kodaira type Laplacian \Box can be defined on Sobolev spaces of differential forms on $L_e(G)$ based on the pinned Brownian motion measure and Malliavin calculus.

Question Can one prove dim ker $\Box|_p = 0$? Here p is odd and $\Box|_p$ stands for the Hodge-Kodaira Laplacian acting p-forms.

We can prove the following.

Theorem 1 (1) Let α be a 1-form on $L_e(G)$ satisfying $d\alpha = 0$. Then there exists a function f such that $df = \alpha$.

(2) Ker $\Box|_1 = \{0\}.$

This theorem is proved by using a Poincaré type vanishing lemma on a certain domain in a Wiener space.

The related general results were studied by Kusuoka based on his capacity and Sobolev spaces.

Plan of Talk

- 1. Poincaré type vanishing lemma : convex case
- 2. Brownian rough path
- 3. Poincaré type vanishing lemma : A domain defined by Brownian rough path
- 4. Precise statement of Theorem 1
- 5. Proof of Theorem 1

Poincaré type vanishing lemma : convex case

- Let (B, H, μ) be an abstract Wiener space. Let $F \in \mathbb{D}^{\infty}(B, \mathbb{R})$. Assume
- $(1) \ \ |DF(w)|_{H}^{-1} \in \cap_{p \geq 1} L^{p}(B,\mu)$
- (2) $D^2F(w) \geq 0$ μ -almost sure w.

Let $U = \{w \in B \mid F(w) < 1\}$. We assume $\mu(U) > 0$. Let d be the exterior differential operator acting on smooth forms $\mathbb{D}^{\infty}(B, \wedge^{p}H^{*})$ on B. Let d^{*} be the adjoint opertaor of d. We define

$$\Box = dd^* + d^*d.$$

We restrict this operator on \boldsymbol{U} by specifying a boundary condition. Let

$$egin{aligned} D(\Box|_p) &= & \{lpha \in \mathbb{D}^\infty(B, \wedge^p H^*) \mid \iota(n)lpha|_S(w) = 0, \ & & \iota(n)dlpha|_S(w) = 0 \;
u - a.s.w \in S \}. \end{aligned}$$

Here

$$d
u = |DF(w)| \delta_1(F) d\mu, \;\; S = \{F = 1\},$$
 $n(w)$: unit outer normal vector at $w \in$

 \boldsymbol{S}

This is called the absolute boundary condition.

More precisely, we define \Box in the following way. Let

$$egin{array}{rll} {\cal E}(lpha,eta) &=& \int_U (dlpha,deta) d\mu + \int_U (d^*lpha,d^*eta) d\mu, \ lpha,eta &\in& \{ heta\in {\mathbb D}^\infty(B,\wedge^p H^*)\mid \ && \iota(n) heta(w)=0 \; a.s.w\in S\}. \end{array}$$

We define \Box as the self-adjoint operator corresponding to the closed form which is obtained by the closure of \mathcal{E} . Shigekawa proved the following theorem.

Theorem 2 (Shigekawa) inf $\sigma(\Box|_p) \ge p$.

 L^2 -Poincaré lemma:

Suppose that dlpha=0, $lpha\in D(\mathcal{E}|_p)$. Let $eta=d^*\square|_p^{-1}lpha$. Then

$$egin{array}{rll} deta &=& dd^* \Box^{-1}lpha = (dd^* + d^*d)\, \Box^{-1}lpha \ &=& lpha, \end{array}$$

where we have used $d\Box^{-1} = \Box^{-1}d$ and $d\alpha = 0$. This implies that closed form is exact on U. However, it seems that this argument require the essentially self-adjointness of \Box on some suitable domain (domain issue). **Proposition 3** Assume

(1) $\forall w \in B, F(w + \cdot) : H \to \mathbb{R}$ is convex and esssup $|DF(w)|_H < \infty$.

(2) There exist projection operators P_N on H such that P_N → I_H, P_N ∈ L(B, B*), ||F(P_N[⊥]·)||_{D^{1,4}(ℝ)} → 0.
(3) μ(U_r) > 0, where U_r = {w | F(w) < r}.
(4) We fix p > 1. Assume α ∈ L²(B, H*) ∩ D^{∞,p}(B, H*) satisfies dα = 0 on U_r.

Then there exists $f_{r'} \in \mathbb{D}^{1,2}(B,\mathbb{R})$ such that

 $df_{r'} = lpha$ on $U_{r'}$ for any r' < r.

Proof of Proposition 3

We write $P_N w = \xi$, $w - P_N w = \eta$ and define

$$egin{array}{rl} R_N &= & \{\eta \mid F(\eta) < r/2\}, \ U(\eta) = \{\xi \mid F(\xi+\eta) < r\} \ U_N &= & \{\xi+\eta \mid \xi \in U(\eta), \eta \in R_N\} \subset U. \end{array}$$

Then $U(\eta)$ is a convex set and $0 \in U(\eta)$. We can write

$$egin{array}{rll} lpha(w) &=& \sum_i lpha_i(w) d\xi^i + \sum_j lpha_j(w) d\eta^j \ &:=& lpha_N(\xi,\eta) + lpha_N^\perp(\xi,\eta). \end{array}$$

 $d_N lpha_N(\cdot,\eta)=0$ on $U(\eta)$ for $a.s.\eta$, where $d_N=P_N d$.

Define

$$egin{aligned} f_N(\xi,\eta) &= \int_0^1 \sum_i lpha_i (t\xi+\eta) \xi^i dt \ g_N(\xi,\eta) &= f_N(\xi,\eta) - rac{\int_{U(\eta)} f_N(\xi,\eta) d\mu_N(\xi)}{\mu_N(U(\eta))} \end{aligned}$$

Then

 $egin{aligned} &d_N g_N(\xi,\eta) \ = \ lpha_N(w) \ &\|g_N(\cdot,\eta)\|^2_{L^2(U(\eta),\mu_N)} \ \le \ C\|lpha_N(\cdot,\eta)\|^2_{L^2(U(\eta),\mu_N)}. \end{aligned}$

(*) implies $\sup_N \| \hat{g}_N \|_{L^2(B,\mu)} < \infty.$

Hence a subsequence $\hat{g}_{N(k)}$ converges weakly to some g_∞ in $L^2(B,\mu).$

 $g_\infty arphi(F)$ is the desired function, where arphi is a smooth cut-off function such that

 $arphi(x) = 1 ~~(x \leq r_1), ~~ arphi(x) = 0 ~~(x \geq r_2),$ where $r' < r_1 < r_2 < r.$

Let us consider the case:

$$egin{array}{rcl} B = W^d &=& C([0,1] o \mathbb{R}^d \mid w(0) = 0), \ & H &=& H^1([0,1] o \mathbb{R}^d \mid h(0) = 0). \end{array}$$

There exists the Wiener measure μ on W^d . Using solutions of SDE on G, we can change the problem on $L_e(G)$ in Theorem 1 to a problem on some domains in Wiener spaces. However, the above Poincaré lemma on convex domains cannot be applied to the problem.

We need Poincaré's lemmas on non-convex domains defined by Brownian rough path.

Brownian rough path

Let $x = x_t = (x_t^1, \dots, x_t^d)$, $y = y_t = (y_t^1, \dots, y_t^d) \ (0 \le t \le 1)$ be continuous paths. Suppose that x or y is a bounded variation. Then we can define for $0 \le s \le t \le 1$

$$egin{aligned} C(x,y)_{s,t} &= \int_s^t (x_u-x_s)\otimes dy_u \ &= \sum_{1\leq i,j\leq d} \left(\int_s^t (x_u^i-x_s^i)dy_u^j
ight)e_i\otimes e_j \ &\in \mathbb{R}^d\otimes \mathbb{R}^d \end{aligned}$$

as a Stieltjes integral. Here $e_i = {}^t(0, \ldots, \overset{i}{1}, \ldots, 0)$. Let $\Delta = \{(s, t) \in \mathbb{R}^2 \mid 0 \leq s \leq t \leq 1\}$. For a continuous mapping $\phi : \Delta \to V$ with values in a normed linear space V, define

$$\| \phi \|_{m, heta} \ = \ \left\{ \int_0^1 \int_0^t rac{|\phi(s,t)|_V^m}{(t-s)^{2+m heta}} ds dt
ight\}^{1/m},$$

where, m is an even number such that m(1- heta)>2 and 2/3< heta<1.

$$W_{m, heta}(\Delta o V) := C(\Delta o V \mid \| \phi \|_{m, heta} < \infty).$$

Also we define for a continuous path x starting at 0 on \mathbb{R}^d

$$\|x\|_{m, heta} = \left\{\int_0^1 \int_0^t rac{|x_t - x_s|^m}{|t - s|^{2+m heta}} ds dt
ight\}^{1/m}$$

and

$$egin{aligned} W_{m, heta}(\mathbb{R}^d) &= igg\{x: [0,1] o \mathbb{R}^d \mid x_0 = 0, \|x\|_{m, heta} < \infty, \ x ext{ is continuous.}igg\}. \end{aligned}$$

• $W_{m, heta/2}(\mathbb{R}^d)$ is a subset of the heta/2-Hölder continuous function space

•
$$\mu(W_{m, heta/2}(\mathbb{R}^d))=1.$$

From now on, we fix the indexes

$$m(1- heta')>4, \quad 2/3< heta< heta'<1.$$

For $w \in W_{m, \theta'/2}$, define

w(N) = dyadic polygonal approximation of <math>w such that

 $w(N)_{k/2^N} = w_{k/2^N}$ for all $0 \leq k \leq 2^N$ and $w(N)^i \ = \ (w(N), e_i)$ $w(N)^\perp \ = \ w - w(N)$ $w(N)^{\perp,i} \ = \ w^i - w(N)^i$

Theorem 4 Let Ω be the set of $w \in W_{m,\theta'/2}(\mathbb{R}^d)$ satisfying the following (i)-(iii).

(i)
$$\lim_{N\to\infty} w(N) = w$$
 in $W_{m,\theta'/2}(\mathbb{R}^d)$.

(ii)
$$\lim_{N\to\infty} C(w(N), w(N))$$
 converges in
 $W_{m,\theta}(\Delta \to \mathbb{R}^d \otimes \mathbb{R}^d).$

(iii)
$$\lim_{N \to \infty} C(w(N)^{\perp}, w(N))$$
 and
 $\lim_{N \to \infty} C(w(N), w(N)^{\perp})$ converge to 0 in
 $W_{m, \theta}(\Delta \to \mathbb{R}^d \otimes \mathbb{R}^d).$

Then Ω^c is a slim set, $H \subset \Omega$ and $\Omega + H \subset \Omega$.

For
$$w = (w^1, \dots, w^d) \in \Omega$$
, we define
 $C(w, w)_{s,t} = \lim_{N \to \infty} C(w(N), w(N))_{s,t}$
 $C(w^i, w^j)_{s,t} = \lim_{N \to \infty} C(w(N)^i, w(N)^j)_{s,t}$
For $w, z \in \Omega$, let
 $d_{\Omega}(w, z)$
 $= \max \Big\{ \|w - z\|_{m, \theta'/2}, \|C(w, w) - C(z, z)\|_{m, \theta} \Big\}$
Let $\varphi \in (W^d)^*$, where $(W^d)^* (\subset H^* \simeq H)$ is the set of

functions whose first derivatives are bounded variation.

We define a ball like set in rough path analysis.

$$egin{aligned} U_{r,arphi} &= igg\{w\in\Omega \ \Big| egin{aligned} &\max_{1\leq i\leq d} \|w^i\|_{m, heta'/2} < r, \ &\max_{1\leq j< k\leq d} \|C(w^j,w^k)\|_{m, heta} < r, \ &\max_{1\leq i\leq j\leq d} \|C(arphi^i,w^j)\|_{m, heta} < r, \ &\sup_{1\leq i\leq j\leq d} \|C(w^i,arphi^j)\|_{m, heta} < rigg\}. \end{aligned}$$

Let

$$U_r(arphi) = \{w + arphi \mid w \in U_{r,arphi}\}$$
 .

Poincaré type vanishing theorem

Theorem 5 Let $\beta \in L^2(W^d, H^*)$ and assume $\beta \in \mathbb{D}^{\infty,p}(W^d, H^*)$ for some p > 1. Let $\varphi \in (W^d)^*$. Suppose that $d\beta = 0$ on $U_r(\varphi)$. Then for any r' < r, there exists $f \in \mathbb{D}^{\infty,p}(W^d, \mathbb{R}) \cap \mathbb{D}^{1,2}(W^d, \mathbb{R})$ such that $df = \beta$ on $U_{r'}(\varphi)$.

Remark 6 The sets $U_r(\varphi), U_{r,\varphi}$ are not *H*-convex.

Sketch of Proof in the case where d=2, arphi=0

$$egin{aligned} U_{r,0} &= igg\{w = (w^1,w^2) \in \Omega \mid \max_{i=1,2} \|w^i\|_{m, heta'/2} < r, \ \|C(w^1,w^2)\|_{m, heta} < rigg\}. \end{aligned}$$

We use the notation

$$egin{array}{rcl} \Omega_N &=& \{w(N) \mid w \in \Omega \} \ \Omega_N^ot &=& \{w(N)^ot \mid w \in \Omega \} \end{array}$$

and we write

$$w(N)=\xi, \hspace{1em} w(N)^{\perp}=\eta$$

$$egin{aligned} R_N &= ig\{\eta \in \Omega_N^ot ig| \ \max_{i=1,2} \|\eta^i\|_{m, heta'/2} < r/4, \ \|C(\eta^1,\eta^2)\|_{m, heta} < r/4 ig\}. \end{aligned}$$

$$egin{aligned} U_{r,0}(\eta) &= igg\{ \xi \in \Omega_N \ \Big| \ w = \xi + \eta \in U_{r,0}, \ &\| C(\xi^1,\eta^2) \|_{m, heta} < r/4, \ &\| C(\eta^1,\xi^2) \|_{m, heta} < r/4 igg\} \end{aligned}$$

$$egin{aligned} U_{r,0,N} &=& \left\{w=\xi+\eta\in\Omega\mid \xi\in U_{r,0}(\eta), \ && \eta\in R_N
ight\} \end{aligned}$$

• Poincaré's inequality on $U_{r,0}(\eta)\subset \Omega_N$:

For
$$f \in C_b^\infty(\Omega_N)$$
 with $\int_{U_{r,0}(\eta)} f d\mu_N = 0$, $\|f\|_{L^2(U_{r,0}(\eta),\mu_N)}^2 \leq C \int_{U_{r,0}(\eta)} |Df(\xi)|_H^2 d\mu_N(\xi),$

where C is a positive constant independent of N, η . μ_N is the Wiener measure on Ω_N .

• Poincaré lemma on $U_{r,0}(\eta)$:

Let heta be a smooth closed 1-form on $U_{r,0}(\eta)$. Then there exists a smooth function g on $U_{r,0}(\eta)$ such that dg = heta on $U_{r,0}(\eta)$. • (General results) Let us consider a bounded open subset $U(\subset \mathbb{R}^{n+m}) \ni z = (x, y), x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $A = \{x \mid (x, y) \in U\}, B = \{y \mid (x, y) \in U\}, U_x = \{y \in \mathbb{R}^m \mid (x, y) \in U\}, U_y = \{x \in \mathbb{R}^n \mid (x, y) \in U\}.$ Let μ be the standard normal distribution on $\mathbb{R}^{n+m}, \mathbb{R}^n, \mathbb{R}^m$. Assume

$$egin{array}{lll} (1) & U_x, U^y ext{ are convex sets } orall x \in A, orall y \in B. \ 0 \in U_x \ orall x \in A. \ A ext{ is convex}. \end{array}$$

(2) $\delta = \inf_{x,x' \in A} \mu(U_x \cap U_{x'}) > 0$

Poincaré's inequality and Poincaré's lemma holds on U and the Poincaré constant depends only on $\mu(U)$ and δ . Let $\beta_N = P_N \beta$.

deta = 0 implies $d_N eta_N = 0$ on $U_{r,0}(\eta)$ for a.s. $\eta \in R_N$. As already explained, $\exists f_N(w) = f_N(\xi, \eta)$ on $U_{r,0,N}$ such that $\int_{U_{r,0}(\eta)} f_N(\xi, \eta) d\mu_N(\xi) = 0$ and $d_N f_N = \beta_N$. Let $\hat{f}_N = f_N \mathbb{1}_{U_{r,0,N}}$.

By the Poincaré inequality

$$egin{aligned} \|\hat{f}_N\|_{L^2(U_{r,0})} &= \|f_N\|_{L^2(U_{r,0,N})} &\leq & C\|eta_N\|_{L^2(U_{r,0,N})} \ &\leq & C\|eta_N\|_{L^2(U_{r,0})} \ &\leq & C\|eta\|_{L^2(U_{r,0})}. \end{aligned}$$

Therefore there exists a subsequence $\hat{f}_{N(k)}$ which converges weakly to some \hat{f}_{∞} in $L^2(W^d, d\mu)$. We can show that $d\hat{f}_{\infty} = \beta$ on $U_{r'}(\varphi)$.

Stochastic differential equations

Let G be a compact Lie group $(\dim G = d)$. Let us consider the SDE on G:

$$egin{array}{rcl} dX(t,a,w) &=& (L_{X(t,a,w)})_* \circ dw_t, \ X(0,a,w) &=& a \in G. \end{array}$$

Here $L_g a = ga$ is the left-multiplication and w_t is the d-dimensional standard Brownian motion on $\mathbb{R}^d \simeq \mathfrak{g} \simeq T_e(G)$ whose starting point is 0.

Theorem 7 There exists a measurable map $X: [0,\infty) \times G \times \Omega \to G$ which satisfies the following. (1) X(t, a, w) is a version of the solution to the SDE (1). (2) For any t, a, the map $w \to X(t, a, w)$ is continuous in the sense that for any $w,z\in \Omega$ with $\max(d_{\Omega}(0,w), d_{\Omega}(0,z)) \leq R$, there exists C(R) > 0such that

 $\sup_{0\leq t\leq 1}d(X(t,a,w),X(t,a,z)) \ \leq \ C(R)d_\Omega(w,z).$

Precise statements of Theorem 1

Below we assume that

G is a simply connected compact Lie group.

Let $\boldsymbol{\varepsilon}$ be a sufficiently small positive number and set

$$\mathcal{D}_arepsilon = \{w \in \Omega \mid d(e, X(1, e, w)) < arepsilon \}.$$

Let u_e be the pinned Brownian motion measure on $L_e(G)$. First theorem is a vanishing theorem on $\mathcal{D}_{\varepsilon}$.

Theorem A Let us fix p > 1. Assume

(1) $eta\in\mathbb{D}^{\infty,p}(W^d,H^*)$ and $eta\in L^2(U_r(arphi),d\mu)$ for any r>0 and $arphi\in(W^d)^*$

(2) $d\beta = 0$ on $\mathcal{D}_{\varepsilon}$.

Then there exist $\{\varphi_i\}_{i=1}^{\infty} \subset (W^d)^*$, $r_i > 0$, $f_i \in \mathbb{D}^{\infty,p}(W^d, \mathbb{R}) \cap \mathbb{D}^{1,2}(W^d, \mathbb{R}) \ (i \ge 1)$ and a measurable function F on $\mathcal{D}_{\varepsilon}$ such that

$$egin{array}{rl} \mathcal{D}_arepsilon &=& \cup_{i=1}^\infty U_{r_i}(arphi_i) \ df_i &=& eta & ext{a.s. on } U_{r_i}(arphi_i) \ F(w) &=& f_i(w) & ext{a.s. on } U_{r_i}(arphi_i) \end{array}$$

Theorem B Let

 $lpha\in \mathbb{D}^{1,2}(\wedge^1T^*L_e(G),d
u_e)\cap \mathbb{D}^{\infty,p}(\wedge^1T^*L_e(G),d
u_e)$ and assume that dlpha=0 $\
u_e-a.s.$ on $L_e(G).$ Let

 $H_0 = \{h \in H^1([0,1] o T_e(G)) \mid h(0) = h(1) = 0\}.$

There exists a measurable function f on $L_e(G)$ such that for any $h\in H_0$, arepsilon>0,

$$f(e^{arepsilon h} \cdot) - f(\cdot) \in L^q(L_e(G), d
u_e)$$

and for any $1 \leq q < p$,

$$\lim_{arepsilon
ightarrow 0} \Bigl\|rac{f(e^{arepsilon h}\cdot)-f(\cdot)}{arepsilon}-(lpha,h)\Bigr\|_{L^q(
u_e)}=0.$$

Let

$$egin{array}{rll} {\cal E}(lpha,lpha) \ = \ (dlpha,dlpha)_{L^2(
u_e)} + (d^*lpha,d^*lpha)_{L^2(
u_e)} \ \ lpha \ \in \ {rak S} C^\infty_b(\wedge^1 T^*L_e(G)) \end{array}$$

The Hodge-Kodaira operator \Box is the generator corresponding to the closed form which is the closure of \mathcal{E} .

Theorem C Let G be a simply connected compact Lie group. Then ker $\Box = \{0\}$.

Proof of Theorem A

- (1) By the *H*-connectedness of $\mathcal{D}_{\varepsilon}$, there exist $\{U_{r_i}(\varphi_i)\}_{i=1}^{\infty}$ such that $\mathcal{D}_{\varepsilon} = \cup_{i=1}^{\infty} U_{r_i}(\varphi_i)$ and $\mu\left((\cup_{i=1}^k U_{r_i}(\varphi_i)) \cap U_{r_{k+1}}(\varphi_{k+1})\right) > 0$ (for any *k*).
- (2) By Poincaré's vanishing theorem, there exist $f_i \in \mathbb{D}^{\infty,p}(W^d,\mathbb{R}) \cap \mathbb{D}^{1,2}(W^d,\mathbb{R}) \ (1 such that <math>df_i = \beta$ on $U_{r_i}(\varphi_i)$.
- (3) Using the H-connectedness and H-simply connectedness of $\mathcal{D}_{\varepsilon}$ and the Stokes theorem in H-direction, we see that there exists a measurable

function F on $\mathcal{D}_{arepsilon}$ and $c_i \in \mathbb{R}$ such that for any $i \in \mathbb{N}$,

$$F(w)=f_i(w)+c_i$$
 μ -a.s. $w\in U_{r_i}(arphi_i).$

These F and $f_i + c_i$ are desired functions.

We explain (3). We denote $D_k = \bigcup_{i=1}^k U_{r_i}(\varphi_i)$. We assume that there exists a measurable function F_k on D_k and constants c_i $(1 \le i \le k)$ such that $F_k = f_i + c_i$ on $U_{r_i}(\varphi_i)$ for all $1 \le i \le k$.

It suffices to prove that there exists c_{k+1} such that $F_k=f_{k+1}+c_{k+1}$ on $D_k\cap U_{r_{k+1}}(arphi_{k+1}).$

Take a $h\in (W^d)^*$ and r>0 such that $U_r(h)\subset D_k\cap U_{r_{k+1}}(arphi_{k+1}).$ Since $d(F_k-f_{k+1})=eta-eta=0$ on $U_r(h),$

(by the irreducibility of the Dirichlet form on $U_r(h)$) there exists a constant c_{k+1} such that

$$F_k=f_{k+1}+c_{k+1}$$
 on $U_r(h).$

We prove that

 $F_k=f_{k+1}+c_{k+1}$ on $D_k\cap U_{r_{k+1}}(arphi_{k+1}).$

Suppose that there exists $B\subset D_k\cap U_{r_{k+1}}(arphi_{k+1})$ and $\delta>0$ such that

$$|F_k-(f_{k+1}+c_{k+1})|>\delta$$
 on $B.$

Then by the H-connectedness of D_k and $U_{r_{k+1}}(\varphi_{k+1})$, there exists $A \subset U_r(h)$ and $h_0(\cdot), h_1(\cdot) \in H^1([0,1] \to H \mid h(0) = 0)$ such that $h_0(1) = h_1(1) = v$, $A + v \subset B$ and

$$A+h_0(au)\subset D_k, \ \ A+h_1(au)\subset U_{r_{k+1}}(arphi_{k+1})$$
 for all $0\leq au\leq 1.$

By the *H*-simply connectedness of
$$\mathcal{D}_{\varepsilon}$$
, there exists
 $\mathcal{H}(\sigma, \tau) \in H \ (0 \leq \sigma, \tau \leq 1)$ such that for all τ, σ
 $\mathcal{H}(0, \tau) = h_0(\tau), \quad \mathcal{H}(1, \tau) = h_1(\tau),$
 $\mathcal{H}(\sigma, 0) = 0, \quad \mathcal{H}(\sigma, 1) = v(=h_0(1) = h_1(1))$
 $A + \mathcal{H}(\sigma, \tau) \subset \mathcal{D}_{\varepsilon}.$

It holds that for almost all $w \in A$

$$egin{aligned} F_k(w+v) - F_k(w) &= & \int_0^1 \left(eta(w+h_0(au)), dh_0(au)
ight) \ f_{k+1}(w+v) - f_{k+1}(w) &= & \int_0^1 \left(eta(w+h_1(au)), dh_1(au)
ight) \end{aligned}$$

Also we have (Stokes theorem),

$$egin{aligned} &\int_0^1 \left(eta(w+h_1(au)), d_ au h_1(au)
ight) \ &-\int_0^1 \left(eta(w+h_0(au)), d_ au h_0(au)
ight) \ &= \iint_{(\sigma, au)\in[0,1]^2} (deta)(w+\mathcal{H}(\sigma, au)) \left(d_\sigma\mathcal{H}(\sigma, au), d_ au\mathcal{H}(\sigma, au)
ight) \ &= 0. \end{aligned}$$

This shows

 $F_k(w+v)-f_{k+1}(w+v)=c_{k+1}$ for almost all $w\in A.$ This is a contradiction.

Proof of Theorem B

Let $\mathcal{D}'_{2\varepsilon} = \{\gamma \in L_e(G) \mid d(\gamma(1), e) < 2\varepsilon\}$. Define a map $\Psi: \mathcal{D}'_{2arepsilon} o L_e(G)$ by $\Psi(\gamma)(t) = \exp(-t\log\gamma(1))\gamma(t).$ Let $eta=arphi_arepsilon(X(1,e,w))(\Psi\circ X)^*lpha~\in \mathbb{D}_n^\infty(W^d,H^*),$ $arphi_arepsilon(x)=1 \ (d(x,e)\leq 3arepsilon/2), arphi_arepsilon(x)=0 \ (d(x,e)\geq 2arepsilon).$ Then deta=0 on $\mathcal{D}_{arepsilon}$.

By Theorem A, $\exists g$ such that dg = eta. $f(\gamma) = g\left(X^{-1}(\gamma)
ight) \ (\gamma \in L_e(G))$ is the desired function.

Proof of Theorem C

Suppose $\Box \alpha = 0$.

(1) Weitzenböck type formula:

$$\square =
abla^*
abla + I + T_{b(1)} + T_2 + T_3,$$

where $b(t) = \int_0^t \circ d\gamma(s) \gamma(s)^{-1}$.

(2) Using the Weitzenböck formula and the hypoellipticity of $abla^*
abla$, $\alpha \in \bigcap_{1 . Since <math>\Box \alpha = 0$ implies $d\alpha = 0$, there exists f such that $df = \alpha$ by Theorem B. For any C_b^1 -function ψ , $\psi(f) \in \mathbb{D}^{1,2}(L_e(G))$ and $d(\psi(f)) = \psi'(f)\alpha$.

Let
$$\psi$$
 be a C_b^1 -function such that $\psi(x) = x \ (|x| \le 1)$.
Let $\psi_K(x) = K\psi(x/K)$. Using $d^*\alpha = 0$,
 $\int_{L_e(G)} |\alpha(\gamma)|^2_{T_{\gamma}L_e(G)} d\nu_e(\gamma)$
 $= \lim_{K \to \infty} \int_{L_e(G)} (\alpha(\gamma), \psi'_K(f)\alpha(\gamma))_{T_{\gamma}L_e(G)} d\nu_e(\gamma)$
 $= \lim_{K \to \infty} \int_{L_e(G)} (\alpha(\gamma), d(\psi_K(f)))_{T_{\gamma}L_e(G)} d\nu_e(\gamma)$
 $= \lim_{K \to \infty} \int_{L_e(G)} (d^*\alpha)(\gamma)\psi_K(f)d\nu_e(\gamma) = 0$

which implies lpha=0.

Final Remarks

- $\inf\{\sigma(\Box)\setminus\{0\}\}>0?$
- Higher dimensional case: Let eta be a closed p-form on $U_r(arphi).$ Then $\exists \; (p-1)$ -form γ such tha $d\gamma=eta?$
- Other kind of non-convex domain? Non-smooth boundary? Local-Sobolev spaces?
- ullet Probably similar kind of theorem holds in the case of $L_x(M)$ when $H^1(L_x(M),\mathbb{R})=\{0\}.$
- The case $H^1(L_x(M),\mathbb{R})
 eq \{0\}?$

References

• S.Aida, Vanishing of one dimensional *L*²-cohomologies of loop group, Journal of Functional Analysis, Vol.261, issue 8, page 2164–2213, 2011, arXiv:1108.5564.

 S.Kusuoka, de Rham cohomology of Wiener-Riemannian manifolds, *Proceedings of the International Congress of Mathematicians*, Vol. I,II (Kyoto, 1990), 1075–1082, Math. Soc. Japan, Tokyo, 1991.

S. Kusuoka, Analysis on Wiener spaces, I, II
J. Funct. Anal. 98,(1991), 122–168. J. Funct. Anal. 103 (1992), 229–274.

Appendix: Kusuoka's result

- Submanifolds in Wiener spaces
- M : compact Riemannian manifold
- $M \subset \mathbb{R}^d$: isometry
- Let $P(x): \mathbb{R}^d
 ightarrow T_x M$ be the projection operator and

$$egin{array}{rll} dX(t,x,w) &=& P(X(t,x,w))\circ dw_t, \ X(0,x,w) &=& x\in M. \end{array}$$

There exists a probability measure $d\mu_x = p(1,x,x)^{-1} \delta_x(X(1,x,w)) d\mu$ on the

submanifold:

$$S=\{w\in W^d\mid X(1,x,w)=x\}\subset W^d.$$

The exterior differential operator on S as the submanifold is well-defined and some Sobolev calculus were developped by many people.

Shigeo Kusuoka defined a local Sobolev spaces

 $\mathcal{D}^{\infty,q}_{loc}(U,d\mu)$

where U is a subset of W^d and q is the index of the integrability. Based on this Sobolev spaces, he proved the

following (ICM proceedings 1990, Kyoto): **Theorem 8**

$$H^p(\mathcal{D}^{\infty,q}_{loc}(\wedge^p T^*S))\simeq H^p(\mathcal{M}_x,\mathbb{R})$$

where

$$\mathcal{M}_x = \left\{ h \in H \mid \xi(1,x,h) = x, where \ \xi(t,x,h) ext{ is the solution to}
ight.$$

 $\dot{\xi}(t,x,h) = P(\xi(t,x,h))\dot{h}(t), \xi(0,x,h) = x \ t \ge 0
ight\}$
Note that H^1 loop space $H^1L_x(M)$ and \mathcal{M}_x is C^∞ -homotopy equivalent.

Let $\Box = d_S^* d_S + d_S d_S^*$ and $\Box|_p$ be the restriction on p-forms. They are defined as the Friedrichs extension of them on some cores.

Theorem 9 (S.Kusuoka) There exists a map $j_p : \ker \Box|_p \to H^p(\mathcal{M}_x, \mathbb{R})$ such that (1) j_p is surjective for p = 0, 1, 2, ...

(2) j_p is injective for p = 0, 1.