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1 Diagrams of schemes and modules over

them

Let I be a small category, Sch denote the category of schemes. We

think a contravariant functor X• : I → Sch. It can be thought as a

diagram of schemes and morphisms. For each i ∈ I, denote the scheme

X•(i) by Xi. And for a morphism φ in I, denote the morphism X•(φ) by

Xφ. We can define a category Zar(X•) as follows :

ob
(
Zar(X•)

)
:= {(i, U) | i ∈ ob(I), U ∈ Zar(Xi)},

Hom
(
(i, U), (j, V )

)
:= {(φ, h) | φ : i← j is a morphism in I, h : U → V

is a morphism such that it is the restriction of Xφ : Xi → Xj}

In the definiton, for a scheme S, Zar(S) denote the category consisting

of open subschemes of S and inclusion morphisms.

And we can define a Grothendieck topology on Zar(X•). A class of

morphisms {(hλ, φλ) : (iλ, Uλ) → (i, U)} is a covering of (i, U) if the

following hold :

(1) iλ = i and φλ = id for any λ, (2) U =
⋃

hλUλ.

So we can think sheaves over Zar(X•).
Moreover, we define the sheaf of commutative rings OX• on Zar(X•)

by

Γ
(
(i, U),OX•

)
:= Γ(U,OXi),



where OXi is the structure sheaf of Xi. So Zar(X•) is a ringed site, and

we can think OX•-module sheaves. Denote the category of OX•-modules

Mod(Zar(X•)) by Mod(X•), simply.

For i ∈ I, we can define a functor [−]i : Mod(X•)→ Mod(Xi) by

Γ(U,Mi) := Γ
(
(i, U),M).

This functor [−]i is called the restriction functor. The restriction functor

[−]i has both a left adjoint and a right adjoint, so [−]i preserves limits

and colimits, and it is exact (Hashimoto [3], (4.4)).

Let φ : i → j be a morphism in I. For (i, U) ∈ Zar(X•) and an

OX•-module M, a morphism βφ(M) :Mi → (Xφ)∗Mj is defined by the

following diagram of the sets of sections over U :

Γ(U,Mi) −−−→ Γ(X−1
φ U,Mj) Γ(U, (Xφ)∗Mi)∥∥∥
∥∥∥

Γ((i, U),M)
f−−−→ Γ((j,X−1

φ U),M)

where f is the restrction with respect to the morphism
(
φ, Xφ|X−1

φ U

)
.

And we can define a morphism αφ : X∗φ[−]i → [−]j to be the composite

X∗φ[−]i βφ−−−→ X∗φ(Xφ)∗[−]j ε−−−→ [−]j

where ε is the counit of the adjoint pair (X∗φ, (Xφ)∗).

Definition 1. Let M be an OX•-module.

(1)M is equivariant if αφ is an isomorphism for each morphism φ in I.

(2) M is locally coherent (resp. locally quasi-coherent) if each Mi

is a coherent (resp. quasi-coherent) OXi-module for any i ∈ I.

(3) M is coherent (resp. quasi-coherent) if M is locally coherent

(resp. locally quasi-coherent) and equivariant.

2 The diagram BM
G (X) and G-local G-scheme

Denote the set of natural numbers {0, 1, · · · , n} by [n]. Let ∆ be the

category defined as follows :

ob(∆) = {[0], [1], [2]},
Hom([i], [j]) = the set of order-preserving injective maps [i]→ [j].



∆ is represented by the following diagram (without identity maps) :

∆ =


[2]

i0←−−−
i1←−−−
i2←−−−

[1]
i0←−−−
i1←−−−

[0]




where is is the order-preserving injection whose image does not contain

s.

From now on, let S be a Noetherian scheme, G be an S-group scheme

flat of finite type and X be a Noetherian G-scheme. G-scheme is an

S-scheme with G-action. We define a diagram of schemes BM
G (X) ∈

Func(∆op, Sch) by

BM
G (X) :=


G×S G×S X

id×a−−−→
µ×id−−−→
p23−−−→

G×S X
a−−−→
p2−−−→

X




where a : G×X → X is the action, µ : G×G→ G is the product, and

p23 and p2 are projections.

We call a module over this diagram BM
G (X) a (G,OX)-module, and

denote the category of (G,OX)-modules Mod(BM
G (X)) by Mod(G,X).

And denote the fullsubcategory of locally quasi-coherent (G,OX)-modules,

of quasi-coherent (G,OX)-modules and of coherent (G,OX)-modules by

Lqc(G,X), Qch(G,X) and Coh(G,X), respectively.

Let Z be a closed subscheme of X. Denote the scheme theoritic image

of the action a : G×Z → X by Z∗. This subscheme Z∗ has the following

properties :

1. Z∗ is the smallest G-stable (i.e. the action a : G× Z∗ → X factors

through the inclusion Z∗ ↪→ X) closed subscheme which contains

Z. So if Z is G-stable, then Z∗ = Z.

2. Assume that G is an S-smooth group scheme with connected geo-

metric fibers. If Z is irreducible (resp. reduced), then so is Z∗. So

if Z is integral, then Z∗ is integral, too.

Definition 2. A quasi-compact G-scheme X is G-local if X is has a

unique minimal non-empty G-stable closed subscheme Y of X. In this

case, we say that (X,Y ) is G-local.

There are some examples of G-local G-schemes.



Example 3. (1) If G is trivial, a G-local G-scheme X is of the form

SpecA where A is a local ring.

(2) Let S = SpecZ, G = Gm (multiplicative group) and A be a G-algebra.

Let ω be the coaction A → A ⊗ Z[G] and X(G) the charactor group of

G. Now it holds X(G) ' Z as groups. For a character λ ∈ X(G), set

Aλ = {a ∈ A | ω(a) = a ⊗ λ}. Then A =
⊕

λ∈X(G) Aλ hold. And

for λ, µ ∈ X(G), AµAλ = {aλaµ | aλ ∈ Aλ, aµ ∈ Aµ} ⊂ Aλ+µ. So

the equation A =
⊕

Aλ means that Gm-algebras are Z-graded algebras

and that an ideal I of Gm-algebra A is Gm-stable if and only if it is

homogeneous.

So affine Gm-scheme X = SpecA is Gm-local if and only if A is an

H-local Z-graded ring in the sense of Goto and Watanabe [1].

(3) If S = Spec k with k an algebraically closed field, G is an linear

algebraic group and B is a Borel subgroup of G, then (G/B,G/B) is

G-local and (G/B,B/B) is B-local. But it is not affine unless G = B So

a G-local G-scheme is not neccesarily affine even if S and G are affine.

(4) Let k be a field, G a reductive group, C a k-algebra of finite type

with G-action, A := CG and P ∈ SpecA. Then X = SpecCP is a

G-local G-scheme.

Until the end of this article, let G be an S-smooth group scheme with

connected geometric fibers. For example, a connected algebraic group

over an algebraically closed field k has this property. And let (X,Y ) be

a Noetherian G-local G-scheme.

Under the assumption, the unique minimal non-empty G-stable closed

subscheme Y of X is integral. In fact, each irreducible component of Y

and the reduction Yred of Y is G-stable, so Y is irreducible and reduced

because of minimality of Y . So Y has the generic point. Let η be the

generic point of Y , I the defining ideal of Y and f : Y → X the inclusion.

The localization at η is very important and useful.

Lemma 4. The localization functor [−]η : Qch(G,X) → ModOX,η is

faithful and exact.

Proof. A localization functor is exact in general, so it is enough to prove

that [−]η is faithful, i.e. Mη 6= 0 for any quasi-coherent (G,OX)-module

M 6= 0. A quasi-coherent (G,OX)-module is represented as an inductive

limit of coherent (G,OX)-modules, so we may assume that M 6= 0 is

coherent. Then HomOX (M,M)) is coherent, and AnnM := ker(OX →



HomOX (M,M)) is a coherent G-ideal, so SuppM is a non-empty G-

stable closed subscheme. Since Y is minimal, η ∈ Y ⊂ SuppM. Then

Mη 6= 0. �

By the lemma, we can prove a G-analogue of Nakayama’s Lemma.

Theorem 5 (G-Nakayama’s lemma). For a coherent (G,OX)-module

M, if f ∗M = 0 then M = 0.

Proof. κ(η)⊗OX,ηMη = (f ∗M)η = 0, so Mη = 0 by the usual Nakayama’s

lemma for the local ring OX,η. And [−]η is faithful, so M = 0. �

By localization at η, we also have criteria for coherentness and length-

finiteness of quasi-coherent (G,OX)-modules.

Proposition 6. (1) For M∈ Qch(G,X), the following are equivalent :

(a) M is a Noetherian object of Qch(G,X).

(b) M[0] is a coherent OX-module.

(c) M is a coherent (G,OX)-module.

(d) Mη is a Noetherian OX,η-module.

(2) For M∈ Qch(G,X), the following are equivalent :

(a) M is of finite length in Qch(G,X).

(b) M is a coherent (G,OX)-module, and InM = 0 for some n.

(c) Mη is OX,η-module of finite length.

Proof. (1) (a)⇔(b). Hashimoto [3], Lemma 12.8. (b)⇒(c)⇒(d) are triv-

ial. (d)⇒(a). Since [−]η is faithful and exact, then an ascending chain

N0 ⊂ N1 ⊂ N2 ⊂ · · · of (G,OX)-submodules ofM is stable if and only if

an ascending chain [N0]η ⊂ [N1]η ⊂ [N2]η · · · of OX,η-submodules of Mη

is stable.

(2) (a)⇒(b). M is a coherent by (1). A descending chain M⊃ I1M⊃
I2M⊃ · · · is stable by (a). If InM = In+1M, then InηMη = In+1

η Mη.

So InηMη = 0 by usual Nakayama’s lemma, and then InM = 0 by

faithfulness of [−]η. (b)⇒(c) is trivial. (c)⇒(a) is similar to (1) (d)⇒(a)

for a descending chain of (G,OX)-submodules of M. �

3 G-dualizing complex

For a Noetherian G-scheme Z, a complex F ∈ D(Mod(G,Z)) is G-

dualizing if F has equivariant cohomology sheaves and if F[0] ∈ D(ModZ)



is a dualizing complex of Z. Since ∆ is a finite ordered category, F is G-

dualizing if and only if F has finite injective dimension, has coherent

cohomology sheaves, and the natural map OBMG (Z) → RHom•(F,F) is a

quasi-isomorphism, see [3] Lemma 31.6.

For example, if Z is Gorenstein of finite Krull dimension, then OZ itself

is a G-dualizing complex of Z.

From now on, assume that X has a fixed G-dualizing complex I.

4 The local cohomology

Let g : X \ Y ↪→ X be the open immersion. u : Id → g∗g∗ denote the

unit of the adjoint pair (g∗, g∗). Then we think a functor ΓY = keru :

Mod(G,X)→ Mod(G,X).

The functor ΓY is a left exact functor preserving Lqc(G,X) and Qch(G,X),

see [4] Lemma 3.2. ForM∈ Lqc(G,X), ΓY (M) is computed as follows :

ΓY (M) = lim−→
n

HomOX (OX/In,M),

see [4] Lemma 3.21.

And the derived functor RΓY : D(Mod(G,X))→ D(Mod(G,X)) pre-

serves DQch(Mod(G,X)), see [4] Lemma 4.11. For M ∈ D(Mod(G,X)),

Ri ΓY (M) is denoted by Hi
Y (M).

Lemma 7. For a G-dualizing complex F of X, the local cohomology

sheaves Hi
Y (F) vanish except for only one i.

Proof. Over a Noetherian scheme S, A ∈ QchS is an injective object

of ModS if and only if it is an injective object of QchS. So we can

assume that each term of a dualizing complex FS of S is quasi-coherent

and injective. As this, we can assume that F is a K-injective complex

whose terms are locally quasi-coherent.

Then the following diagram commutes :

X \ Z g−−−→ X

f ′
x f

x
SpecOX,η \ {η} g′−−−→ SpecOX,η

.

We calculate the functor f ∗ ΓY = f ∗ ker(Id
u−→ g∗g∗) by the commu-

tative diagram :

f ∗ ΓZ = f ∗ ker(Id
u−→ g∗g∗) ' ker(f ∗ −→ f ∗g∗g∗)

φ−−−→ ker(f ∗ −→ g′∗g
′∗f ∗) ' ker(Id −→ g′∗g

′∗)f ∗ = ΓIηf
∗.



Each term of F is locally quasi-coherent, so φ is isomorphic. So it holds

[ΓZ(F)]η ' ΓIη(Fη). By definition, Fη is a dualizing complex of OX,η.
In general, for a local ring (A,m), local cohomology groups Hi

m(F) of

a dualizing complex F of A with support {m} vanish except for only

one i, see Hartshorne [2] V.6. The functor [−]η is faithful and exact, so

cohomology Hi
Y (F) vanish except for only one i. �

Let F be a G-dualizing complex of X. If it holds H0
Y (F) 6= 0, a G-

dualizing complex F is called G-normalized. Assume that our G-dualizing

complex I is G-normalized.

Definition 8. For aG-normalizedG-dualizing complex I, the non-vanishing

local cohomology H0
Y (I) with support Y is denoted by EX , and we call it

a G-sheaf of Matlis.

For a local ring (A,m), the non-vanishing local cohomology group

Hi
m(F) of a dualizing complex F of A with support {m} is the injective

envelope EA(A/m) of the residue field A/m. So we get an isomprphism

[EX ]η ' EOX,η(κ(η)) where κ(η) is the residue field of the local ring OX,η.
A G-sheaf of Matlis EX corresponds to the injective envelope EA(A/m)

of the residue field A/m for a local ring (A,m). But it is not necesarily

an injective (G,OX)-module.

Example 9. Let k be a field of characteristic 2, V = k2 and G = GL(V ).

Let X = SpecA where A = SymV ∗. Then EX is a (G,OX)-module

which is defined by A† (A† denote the graded dual module of A). It is

not injective as a G-module, so EX is not injective in Qch(G,X).

Moreover, G-sheaf of Matlis EX = H0
Y (I) depends on G-normalized

G-dualizing complex I, so it is not necesarily unique.

5 Main theorems

Theorem 10 (G-Matlis duality). Let T be the functor HomOX (−, EX) :

Mod(G,X)→ Mod(G,X), F denote the category of (G,OX)-modules of

finite length. Then the followings hold :

(1) T is an exact functor on Coh(G,X).

(2) If M ∈ F , then TM ∈ F and the canonical map M→ TTM is an

isomorphism.

So the functor T : F → F is an anti-equivalence.



Proof. (1) IfN ∈ Coh(G,X) thenNη is a finitely generatedOX,η-module,

see Lemma 6. So it holds

[
HomOX (N , EX)

]
η
' HomOX,η(Nη, [EX ]η). (])

[EX ]η is an injective OX,η-module, so the functor HomOX,η([−]η, [EX,η]) is

exact. Then T = HomOX (−, EX) is exact because [−]η is faithful and

exact.

(2) By Lemma 6, Mη is an OX,η-module of finite length for M ∈ F .

Because of the isomorphism (]) and usual Matlis duality for the local

ring OX,η, [TM]η is an OX,η-module of finite length. By Lemma 6 again,

TM is of finite length.

M and TM are both coherent, then

[TTM]η ' HomOX,η
(
HomOX,η(Mη, [EX ]η), [EX ]η

)
.

By usual Matlis duality, it is isomorphic toMη. So it holds TTM'M
because of faithfulness of [−]η. �

Finally, we state a G-analogue of local duality theorem.

Theorem 11 (G-local duality). Let E be a bounded below complex in

Mod(G,X) with coherent cohomology. Then there is an isomorphism in

Qch(G,X) :

Hi
Y (E) ' HomOX

(
Ext−iOX (E, I), EX

)
.
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