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Abstract

We introduce the homotopy category of unbounded complexes with
bounded homologies. We study a recollement of its a quotient by the
homotopy category of bounded complexes. This leads to the existence of
quotient categories which are equivalent to a homotopy category of acyclic
comlpexes, that is a stable derived category. In the case of a coherent ring
R of self-injective dimension both sides, we show that the above recolle-
ment are triangulated equivalent to a recollement of the stable module
category of Cohen-Macaulay R-modules.

1 Introduction

We study two types of triangulated categories in this paper. One is
the categories of homotopy classes of chain complexes, equipped with
triangles induced by chain maps and mapping cones. The other is
stable module categories that are module categories mod projective
modules. A stable module category is not triangulated in general. If
the module category is Frobenius, then it’s projective stabilization is
triangulated. This type of triangulates categories are called algebraic
triangulated categories. The well-known example is a stable module
category of Cohen-Macaulay modules over Gorenstein rings.

Let R be a two-sided noetherian ring. The catogories of right
R-modules, of finitely generated right R-modules and of finitely gen-
erated projective right R-modules are denoted by ModR and modR,
and proj R respectively. Let K = K(projR) be the category of ho-
motopy classes of complexes of finitely generated R-projective com-
plexes. The following triangulated subcategories of K are of our
concern.

K>®? = {C € K| H(C) = 0 (except for finite i’s)}
K=t = {C e K=t | ¢ = 0 (for sufficiently large i)}
K0 = {C e K |H(C) =0 (i € Z)}

KP = {C € K| C* =0 (except for finite i’s)}

Those triangulated categories are all épaisse, so the quotient cate-
gories are again triangulated.



Definition 1.1 ([Iw]) A two-sided noetherian ring is called Iwanaga-
Gorenstein if idpR < 0o and idpo» R < 00.

If R is an Iwanaga-Gorenstein ring, we define a subcategory
CM(R) of modR as CM(R) = {X € modR | ExtRz(X,R) =0 (i >
0)}.

Theorem 1.2 (Buchweitz [Bu]) Assume R is Iwanaga-Gorenstein.

The quotient category K= Y/K® is triangle equivalent to the stable
module category CM(R).

On the other hand, we observe the following.

Theorem 1.3 If R is Iwanaga-Gorenstein. The quotient category
Koot /K= is equivalent to the stable module category CM(R).

Naturally, the question arises: What is K>*/K®? Is it realizable
as a stable module category?

2 Operations and functors on K®?

For an object A of K>t define objects X 4 and T4 of Ko as follows.
Let I be the smallest integer such that H;(A*) # 0. Then Cok df;l
is a maximal Cohen-Macaulay module. Define X 4 € K>®? ag

TngA = TglA

and . . .

s XU S X L (Cokd) — 0
is exact. Then X4 is totally acyclic and id, dit induces a canon-
ical chain map €4 : X4 — A as &4 =id (i <1).

Similarly, let r be the largest integer such that H"(A) # 0. Then
Kerd', is a maximal Cohen-Macaulay module. Define Ty € Koo:0
as

TerA = 7'27-14

and
= T S T — (Kerdy) — 0

is exact. Then Ty is totally acyclic and id g, dr, induces a canonical
chain map (4 : A —»Tq as ¢fy =id (i > ).
Set a chain maps 4 : Ly — Aand rp, : Ly — Ry, as follows:

T<oLa = T<0Xa,T>1L4 = 7514,

TSOZA = T§0§A,7211A = TzlidA,
T<oRp, =T<0la,7>1Rp, = 7>1TL,,

T<oTL, = T<oldr,, T>17L, = T>1Ca



Obviously C(14) and C(ry,) belongs to Kb, hence as an object of
K>?/K®, A is isomorphic to the complex

RLA:~~~HXA71HXAOHTA1HTA2H~~

We may assume Ag = H°(7<04C4) : Cok d}i — Ker leA to be
surjective by adding some split exact sequence of projective modules
if necessary.

3 The category of morphisms

We define category Mor(R) as follows: objects of Mor(R) are the
morphisms « : X, — T of Mod(R). For «, 3 € mor(R), we define

Mor(R)(av, 8) = {(fx, fr) € Homg(Xa, Xp) x Homg(To,Ts) | fra = Bfx}.

And the subcategory morS™ (R) of Mor(R) consists of the objects a :
Xo — Ty of CM(R) that are surjective. The structure of mor¢ (R)
is obtained by the next lemma.

Lemma 3.1 Let T5(R) be the category of 2 x 2 upper triangular ma-
trices with entries in R. Then Mod(T2(R)) is equivalent to Mor(R).
And morSM (R) is equivalent to the category CM(Ta(R)).

S

proof. An object f : Xy — Tt of Mor(R) corresponds to an
T»(R)-module My = Xy x Ty where (x t) <Z 8) = (za f(x)b+tc).
This correspondence gives an equivalence between CM(T%2(R)) and
mor{™ (R) consisting of injective maps « : X — Ty, with X, T, Cokf €
CM(R). Obviously mor{M (R) is equivalent to mor{™(R). (q.e.d.)

Thus morgM (R) is a Frobenius category together with projective-
injective objects consisting of p € morSM(R) that X, and T}, are
projective modules. Hence the stable category mor$™ (R) is triangu-
lated. We shall construct a functor between K> /K” and mor¢ (R).

Let a : X, — T, be an object of mor¢(R) and let Fx, and
Fr, be acyclic projective complexes such that H(7<oFx,) = X,
and HO(7<oFr,) = To. Set natural maps p : Fy  — X, and € :

T, — Fr,. Make a projective complex F, as
TS()FQ = TSOFXaa TZlFa = TZIFTQ; dFa = €Qp.

Lemma 3.2 1) A morphism f € morS™(R)(a, 3) induces a chain
map Fy: Fy — Fpg.

2) For morphisms f € morS™(R)(a, 8) and g € morS™(R)(3,7),
Fop = Fyly.

3) An exact sequence 0 — « EN 3L~y — 0 in morSM(R) induces

F F, .
an ezact sequence 0 — Fo, =% Fg =3 F, — 0 in C°P,



4) An object p of morSM(R) is projective if and only if F, is a
bounded complez.

Lemma 3.3 The operation F gives a functor morS™ (R) — Kb,
And F induces a functor F : morS™ (R) — K>t /Kb,

Proposition 3.4 The functor F : mor¢™(R) — K>*/K? is trian-
gulated.

proof Let
i g b
be a triangle in mor¢ ( ). That is, the injective hull « S q of

« and f make a push—out diagram which implies a commutative
diagram in CM(A*) with exact rows:

Lq&ZaHO

Tf o1

Oﬂﬂi’yﬂEaHO.

(
0 —

This induces a commutative diagram in C°* with exact rows:

0 - F, 5 B 5% Ry - o0

|z | I

0 - F 3 B 5B R, - 0

It remains to show that there is a functorial isomorphism Fy, = X F,
in K> /Kb,

0 F, —f s F, " Ry, 0
I
0 Fy F, Fra 0

induces a morphism between triangles in K°:

F. Fﬂ

Fa Fq FEQLEFO(

T T

Fs F, Py, —— NF,

Since Fy € K®, it is easy to see that 7, is a functorial isomorphism
in K=?/K® and we have a triangle in K>? /K?:

F. 2 py B g et v,
(q.e.d.)



Theorem 3.5 The category K>t /K? is triangle equivalent to mor®™ (R).

S
We shall show that F is a category equivalence. We have already

seen that F is dense from the previous section. For proving F is
fully faithful, we use the notion of ¢-strucrture.

4 Stable t-structures

Definition 4.1 ([Mil]) For full subcategories U and V of a trian-
gulate category C, (U,V) is called a stable t-structure in C provided
that

o U and V are stable for translations.
e Home(U,V) = 0.

o For every X € C, there exists a triangle U — X — V — XU
with U €U and V € V.

Proposition 4.2 ([BBD], [Mil]) LetC be a triangulated category.
The following hold.
1 Let (U, V) be a stable t-structure in C, i, : U — C and j, : V —
C the canonical embeddings. Then there are a right adjoint
i' : C — U of iy and a left adjoint j* : C — V of j. which
satisfy the following.
(a) j*i, =0, i'j. = 0.
(b) The adjunction arrows i.i' — 1lc and le¢ — j.j* imply a
triangle i,i'X — X — j,j*X — %ii' X for any X € C.
In this case, j*(resp., i!) implies the triangulated equivalence
C/U~V (resp., C/V ~U).
2 If {C,C"; j*, j«} (resp., {C,C";j1,7*}) is a localization (resp.,
a colocalization) of C, thai is, j. (resp., i) is a fully faith-
ful right (resp., left) adjoint of i, then (Kerj*,Imj.) (resp.,
(Imjy, Kerj*)) is a stable t-structure. In this case, the adjunc-
tion arrow 1¢ — j.j* (resp., jij* — 1c) implies triangles

U—X— 40" X —>3%U
(resp., 17°X - X =V — 555 X)

with U € Kerj*, j.j*X € Imj, (resp., jij*X € Imj, V €
Kerj*) for all X € C.

Proposition 4.3 Let R be a coherent ring. Then we have the fol-
lowing.
o (K0 K>®) s a stable t-structure of K. Hence (K= /Kb K>0)
is a stable t-structure of K™ /KP.

o (KT?/KP K=P/K®) is a stable t-structure of K= /KP.



e If R is Iwanaga-Gorenstein, then (K> /Kb KT:2/KP) is a sta-
ble t-structure of K>t /Kb,

Let R be an Iwanaga-Gorenstein ring. Let CM,, (resp., CM,,
CM,,) be the full subcategory of mor¢M (R) consisting of objects of

S

the form X — 0 (resp., S — S, P — T, with P being projective).
Proposition 4.4 The following are stable t-structures of mor¢™ (R).
(CMy,CM,), (CM, CMy), (CM,,CM,).
Proposition 4.5 The triangulated functor F induces equivalences
F lem,: CMy — K70 /K,
Elepm,: CM; — K=,
and Flem,: CM,, — KT /K",
Now we focus on the stable t-structures (K—? /K2 K>:9) of K0 /Kb,

and (CM,,CM,) of mor®M(R). For a given object A of K=t /K?,
there uniquely exists a triangle

A — A— A, — ZA_

with A_ € K=?/K? and A,. € K°°7®/Kb. And for each object « of
mor&M(R), there uniquely exists a triangle

Qg — @ — ap — Lay

with ay € CMp and o; € CM;. From Proposition 4.5, we have
(F,)- 2 F, and (F)e=F, .

CM

Lemma 4.6 For objects a and 3 of morg ™ (R), E induces an iso-

morphism
Homyoron (ry (., B,)) = Homgoe s ko (Eg)acs (Eg)-)-

The proof of Theorem 3.5. We have only to show that F is
fully faithful. Let o and 3 be objects of mor®™ (R). The triangles
Qg — a— a; — Xay,

By — B— B, — X8,
induce a diagram of abelian groups with exact rows and columns

mor{ M (R)(ax, fo) —— mor{™ (R)(as,8) —— mor{™ (R) (o, 51)

I l !

MSM(R)(O‘aﬂ(J) I MEM(R)(OZ,ﬂ) — MEM(R)(aaﬂl)

l l l

mor{™(R)(aw, Bo) —— mor{™(R)(ag, 8) —— mor{(R)(a, 1)



From Proposition 4.5, mor™ (R)(a, o) = Kl /K (Fy) -, (Fg)-)
and mor{™ (R) (a1, B1) = K= /KP (£ ) ac (Fg)ac) By Lemma 4.6,

m_SM( )1, Bo) = Ko b/Kb((_g)ac, (E )—). These together give
us

mor{ (R)(ax, B) 2 K /K ((Eq )ac, Ey) and mor™ (R)(ao, fo) =
K>t /Kb (E,, (Fﬁ) ). Since (CM,,CM;) and (K—b/Kb, K>®?) are
stable t-structures of mor¢™(R) and K>*/K’ respectively, both
mor®™(R)(ay, 41) and K< PIKE((E,) -, (Eg)ac) vanish. Therefore
mor® (R)(a, 61) & mor® (R)(ar, B1) = K= /K*((E)acs (Fp)ac) =
K> /Kb (F (Eﬁ) ¢). Similarly morS™ (R)(ao, B) = K>=*/K*((E. )—7E5)~
Now morCM(R)( ,B) =2 K=t /KP((E,), Fg )comes from Five lemma.
(q.e.d.)

Together with Theorem 3.1, we obtain Buchweitz-type theorem:

Theorem 4.7 If R is Iwanaga-Gorenstein, then K< /K? is triangle
equivalent to CM(T2(R)).

5 Recollements

Let U, V and W be triangulated subcategories of a triangulated
category C. Suppose (U, V) and (V, W) are both stable t-structures
of C. From Prop 4.2, the canonical embedding j, : V — C and
the quotient s* : C — C/V have right adjoints j' : C — V and
s* : C/V — C since (U,V) is a stable t-structure. And a stable
t-structure (V, W) produeces left adjoints j* : C — V of j, and
s1:C/V — C of s* : C/V — C respectively.

Definition 5.1 ([BBD]) A nine-tuple {C',C,C";j*, jx,J", 51, 5%, 54}
consisting of triangulated categories and functors

J Sy
C/ I s* C//
— N
Nl s
j *
P

is called a recollement if it satisfies the following:
® j., s1, and S« are fully faithful.
o (5*,74), (Ger 3", (s1,8%), and (s*, s.) are adjoint pairs.
o j*s1=0, 55, =0, and j's, = 0.
e For each object C' of C has triangles

§.j'C — C — s15*C — %j,j'C,
8487C — C — j,j*C — Xs,s*C.



Proposition 5.2 ([BBD], [Mil]) 1) If (U,V) and (V, W) are sta-
ble t-structures of C, then the canonical embedding j. : V — C pro-
duces a recollement

]'* S
Vv 2 Cc =,/
N S

J
PR

2) If{C',C,C"; 5%, jx, 5", 51, 8%, 5. } is a recollement, then (Imj,,Ims,)
and (Imsy, Imj,) are stable t-structures.

Remember that if R is Iwanaga-Gorenstein, three triangulated
subcategories K—?/K?, K= and K+:*/K? form three stable t-structures
in Koot (K= /K K0y (Kool K0 /KP) and (K0 /KP, K= /KDY).
This implies there are three recollements with respect to the canon-
ical embeddings of each subcategories to K.

Definition 5.3 Let Uy, Uz, Us be triangulated subcategories of a tri-
angulated category C. We call (Ur,Us,Us) a triangle of recollements
in C if (Ur,Us, (Uz,Us, and (Us,Us are stable t-structures of C. In
this case, there are recollements

29 Jn!
It
. ”
U, i ¢ 9 e,

Jnx
— —

for any n mod 3 such that the essential image Imj, is Up,—1, and
that the essential image Imj,. s Upy1. Therefore, Uy, Us and Us
are triangulated equivalent.

Theorem 5.4 If R is Iwanaga-Gorenstein, then (K= /Kb K0 K+ /KP)

is a triangle of recollements in K> /K. There is a triangulated
equivalence between morSM (R) = CM(T»(R)) and K>*/K® that in-

duces the correspondence between a triangle of recollements (CM,, Ml,mp)

and (K= /Kb K0 KHb/Kb).
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