Auslander-Reiten conjecture on Gorenstein rings¹

Tokuji Araya

Nara University of Education

Email: araya@math.okayama-u.ac.jp

1. INTRODUCTION

The generalized Nakayama conjecture which was given by M. Auslander and I. Reiten is as follows [3] : Let Λ be an artin algebra. Any indecomposable injective Λ -module appears as a direct summand in the minimal injective resolution of Λ .

They showed that above conjecture holds for all artin algebras if and only if the following conjecture holds for all artin algebras.

Let Λ be an Artin algebra and M be a finitely generated Λ -module. If $\operatorname{Ext}^{i}_{\Lambda}(M, M \oplus \Lambda) = 0$ $(\forall i > 0)$, then M is projective.

M. Auslander, S. Ding, and \emptyset . Solberg widened the context to algebras over commutative local rings [2].

(ARC) Let R be a commutative Noetherian local ring and M be a finitely generated *R*-module. If $\operatorname{Ext}^{i}_{R}(M, M \oplus R) = 0 \; (\forall i > 0)$, then M is free.

They showed in [2] that if R is a complete intersection, then R satisfies (ARC). We shall show the following main theorem.

Theorem 1. Let R be a Gorenstein ring. If R_p satisfies (ARC) for all $p \in \text{Spec}R$ with $\text{ht } p \leq 1$, then R_p satisfies (ARC) for all $p \in \text{Spec}R$.

2. Main Results

Through in this paper, we denote by R the d-dimensional commutative Gorenstein local ring with the unique maximal ideal \mathfrak{m} . We also denote by mod R the category of finitely generated R-modules and by CM R the full subcategory of mod R consisting of all maximal Cohen-Macaulay modules.

We give a following condition to consider the Auslander-Reiten conjecture.

(ARC) For $M \in \text{mod } R$, suppose $\text{Ext}_{R}^{i}(M, M \oplus R) = 0$ (i > 0), then M is free.

The main theorem of this paper is following;

Theorem 1. If R_p satisfies (ARC) for all $p \in \text{Spec}R$ with $\operatorname{ht} p \leq 1$, then R_p satisfies (ARC) for all $p \in \text{Spec}R$.

It is difficult to check the freeness of modules in general. We give a following theorem to check the freeness of vector bundles.

Theorem 2. We assume dim $R = d \ge 2$. Let $M \in CMR$ be a vector bundle. Suppose $\operatorname{Ext}_{R}^{d-1}(M, M) = 0$, then M is free.

¹The detailed version of this paper will be submitted for publication elsewhere.

We say M is a vector bundle if M_p is a free R_p -module for all prime ideal p which is not maximal ideal \mathfrak{m} . We want to omit the assumption M is a vector bundle in Theorem 2. But there is a counterexample if M is not a vector bundle.

Example 3. Let k be a field. We set R = k[x, y, z]/(xy) be a 2-dimensional hypersurface and M = R/(x). In this case, we can check that $\operatorname{Ext}_{R}^{i}(M, M) = 0$ if and only if i is odd. In particular, we see that $\operatorname{Ext}_{R}^{2-1}(M, M) = 0$ even if M is not free.

We prepare a lemma to show Theorem 2.

Lemma 4. [9, Lemma 3.10.] Let R be a d-dimensional Cohen-Macaulay local ring and ω be a canonical module. We denote by $(-)^{\vee}$ the canonical dual Hom_R $(-, \omega)$. For vector bundles M and $N \in \text{CM } R$, we have a following isomorphism;

 $\operatorname{Ext}_{R}^{d}(\operatorname{Hom}(N, M), \omega) \cong \operatorname{Ext}_{R}^{d+1}(M, (\operatorname{tr} N)^{\vee})$

Here, $\underline{\operatorname{Hom}}(N, M)$ is the set of stable homomorphisms.

Proof of Theorem 2. Let $M \in CM R$ be a vector bundle and we assume $\operatorname{Ext}_{R}^{d-1}(M, M) = 0$. We take a minimal free resolution of M;

$$F_{\bullet}:\cdots \to F_1 \to F_0 \to M \to 0.$$

Apply $(-)^* := \operatorname{Hom}_R(-, R)$, we get exact sequence;

$$0 \to M^* \to F_0^* \to F_1^* \to \operatorname{tr} M \to 0.$$

Since R is Gorenstein and M is maximal Cohen-Macaulay, we have $\Omega^2 M \cong (\operatorname{tr} M)^* (\cong (\operatorname{tr} M)^{\vee})$. Therefore, we have

$$\operatorname{Ext}_{R}^{d+1}(M,(\operatorname{tr} N)^{\vee}) \cong \operatorname{Ext}_{R}^{d+1}(M,(\operatorname{tr} N)^{*})$$
$$\cong \operatorname{Ext}_{R}^{d+1}(M,\Omega^{2}M)$$
$$\cong \operatorname{Ext}_{R}^{d-1}(M,M) = 0.$$

Since M is vector bundle,

$$\underline{\operatorname{Hom}}_{R}(M, M)_{p} \cong \underline{\operatorname{Hom}}_{R_{p}}(M_{p}, M_{p}) = 0 \ (\forall p \neq \mathfrak{m}).$$

Thus we have $\underline{\operatorname{Hom}}_{R}(M, M)$ has finite length and we have

$$\underbrace{\operatorname{Hom}_{R}(M,M)}_{\cong} \cong \operatorname{Ext}_{R}^{d}(\operatorname{Ext}_{R}^{d}(\operatorname{Hom}_{R}(M,M),R),R) \\ \cong \operatorname{Ext}_{R}^{d}(\operatorname{Ext}_{R}^{d+1}(M,(\operatorname{tr} M)^{\vee}),R) = 0$$

T is free. \Box

Thus we get M is free.

Proof of Theorem 1. We put $\mathfrak{P} := \{ p \in \operatorname{Spec} R \mid R_p \text{ does not satisfy (ARC)} \}$ and assume $\mathfrak{P} \neq \phi$. Let q be a minimal element in \mathfrak{P} and replace R with R_q . By the minimality, R is a $d(\geq 2)$ -dimensional Gorenstein local ring which does not satisfy (ARC) but R_p satisfy (ARC) for all prime $p \neq \mathfrak{m}$. There exists $M \in \operatorname{mod} R$ s.t. $\operatorname{Ext}^i_R(M, M \oplus R) = 0 \ (\forall i > 0)$ but M is not free. Since $\operatorname{Ext}^i_R(M, R) = 0 \ (i > 0)$, M is maximal Cohen-Macaulay. For any $p \neq \mathfrak{m}$, $\operatorname{Ext}^i_{R_p}(M_p, M_p \oplus R_p) = 0 \ (\forall i > 0)$ and R_p satisfies (ARC), we have M_p is a free

 R_p -module. Thus we get M is vector bundle. Furthermore, $\operatorname{Ext}_R^{d-1}(M, M) = 0$ implies M is free. (:Theorem 2.) Therefore we get contradiction and we have $\mathfrak{P} = \phi$.

Finally, we remark that normal domain satisfies Serre's (R_1) -condition and regular local ring satisfies (ARC), we get the following as a corollay of Theorem 1.

Corollary 5. Gorenstein normal domain satisfies (ARC).

References

- T. Araya and Y. Yoshino, Remarks on a depth formula, a grade inequality and a conjecture of Auslander, Comm. Algebra 26 (1998), no. 11, 3793–3806.
- M. Auslander, S. Ding and Ø.Solberg, Liftings and Weak Liftings of Modules, J. Algebra 156 (1993), 273–317.
- M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69–74.
- L. L. Avramov and R. Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), no. 2, 285–318.
- C. Huneke and G. J. Leuschke, On a conjecture of Auslander and Reiten, J. Algebra 275 (2004), no. 2, 781–790.
- C. Huneke, L. M. Şega, and A. N. Vraciu, Vanishing of Ext and Tor over some Cohen-Macaulay local rings, Illinois J. Math. 48 (2004), no. 1, 295–317.
- D. A. Jorgensen and L. M. Şega, Nonvanishing cohomology and classes of Gorenstein rings, Adv. Math. 188 (2004), no. 2, 470–490.
- L. M. Şega, Vanishing of cohomology over Gorenstein rings of small codimension, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2313–2323 (electronic).
- 9. Y. Yoshino, *Cohen-Macaulay modules over Cohen-Macaulay rings*, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990.