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Abstract
We study category equivalences between some additive subcategories

of module categories. As its application, we show that the group of aut-
ofunctors of the category of reflexive modules over a normal domain is
isomorphic to the divisor class group.

1 A necessary condition for equivalences of

additive subcategories

Let R be a commutative ring. We denote the category of all finitely generated R-
modules by R-mod, and the full subcategory of R-mod consisting of all reflexive
modules by ref(R). If R is a Cohen-Macaulay local ring, we denote the category
of maximal Cohen-Macaulay modules by CM(R) as a full subcategory of R-mod.
By an additive subcategory we always mean a full subcategory which is closed
under finite direct sums and direct summands.

Theorem 1. Let A and B be commutative rings. Let C (resp. D) be an additive
full subcategory of A-mod (resp. B-mod) which contains a nontrivial free module.
If there is a category equivalence between C and D, then A ∼= B as a ring.

Moreover, if F and G are the functors which give the equivalences above, then
F and G are of the forms F (X) ∼= HomA(G(B), X) and G(Y ) ∼= HomB(F (A), Y )
for each X ∈ C, Y ∈ D.

proof. Let F : C → D and G : D → C be functors satisfying F · G ∼= 1D and
G · F ∼= 1C. We denote the B-module F (A) by M and the A-module G(B) by
N. Since F and G are fully faithful functors, there exist isomorphisms as rings
EndB(M) ∼= EndA(A) = A and EndA(N) ∼= EndB(B) = B. Thus there are
natural maps as follows:

B
β−−−→ EndB(M)

∼=−−−→ A
α−−−→ EndA(N)

∼=−−−→ B (1.1)

b −−−→ bM −−−→ a −−−→ aN −−−→ b′,

where bM (resp. aN) denotes the multiplication map on M (resp. N) by b (resp.
a).

The title of the talk had been changed.



First of all, we claim that b − b′ ∈ AnnBM for such b and b′ as above. Since
M is finitely generated B-module, we can take a finite free cover of M and get
the following diagram.

B⊕n −−−→ M
�b′B

�bM

B⊕n −−−→ M

Applying the functor G to this diagram, we have a diagram

N⊕n −−−→ A
�aN

�aA

N⊕n −−−→ A,

which is commutative. Since G is an equivalence, this implies that the first
diagram is also commutative. Hence we have b − b′ ∈ AnnBM as desired.

We denote AnnBM by b and AnnAN by a. Note that the map A
α→ EndA(N) ∼=

B induces an injective mapping q : A/a → B. We define the map p : B → A/a

as the composition of B
β→ EndB(M) ∼= A with the natural projection A → A/a.

Secondly, we claim that Ker p = b. Since β(b) = 0, it is clear that Ker p ⊇ b.
To prove the converse let b ∈ Ker p. Then, since β(b) ∈ a, we have b′ = 0 as in the
notation as in (1.1). Since we have shown that b − b′ ∈ b, we have b ∈ b and the
equality Ker p = b is proved. Therefore the mapping p induces an isomorphism
A/a ∼= B/b.

Thirdly we note that any object Y ∈ D has structure of a (B, A)-bimodule.
In fact, the category D is a full subcategory of B-mod, therefore Y is naturally
equipped with left B-module structure. Since F is a dense functor, there exists
an object X ∈ C such that F (X) ∼= Y and there is a natural ring homomorphism

A → EndA(X) ∼= EndB(Y ),

which maps a to F (aX). Now, for any a ∈ A and y ∈ Y , we define y ◦ a :=
F (aX)(y). Since A is a commutative ring, it yields right A-module structure for
Y ∈ D. Since the equality (b ◦ y) ◦ a = F (aX)(by) = bF (aX)(y) = b ◦ (y ◦ a) holds
for a ∈ A, b ∈ B and y ∈ Y , we see that Y has structure of a (B, A)-bimodule.
Similarly any object X ∈ C has structure of an (A, B)-bimodule.

Since F is an equivalence, there exists an isomorphism as A-modules for any
object X ∈ C:

AX = HomA(AA, AX) ∼= HomB(BMA, BF (X)).

The second part of the theorem follows from this isomorphism.



To complete the proof, we need to show a = b = (0). For this, we note from
the definition of bimodule structure that N is isomorphic to HomB(BMA, B) as
an (A, B)-bimodule. In particular, there are isomorphisms of B-modules;

B ∼= EndAN ∼= EndA(HomB(BMA, B)).

Since any element b ∈ b acts as a zero map on HomB(BMA, B), it must be zero as
an element of EndA(HomB(BMA, B)). Consequently we have b = 0. Thus b = 0,
and a = 0 as well.

Corollary 2. Let A and B be Cohen-Macaulay local rings. Then CM(A) and
CM(B) are equivalent as additive categories if and only if A is isomorphic to B
as a ring.

Our theorem is somehow a generalization of Morita equivalence theorem which
deals with abelian categories over non-commutative rings. See [3]. The difference
is that, assuming rings are commutative, we are concerned with additive sub-
categories which are not necessarily abelian and our functors are not necessarily
exact.

2 Groups of autofunctors over additive sub-

categories

Let R be a commutative ring and let C be an additive subcategory of R-mod. By
an autofunctor F on C, we mean a covariant functor F : C → C which gives rise to
an equivalence of categories. We denote by Aut(C) the group of all isomorphism
classes of autofunctors over C. By an easy observation using Morita equivalence,
it is known that Aut(R-mod) is isomorphic to the Picard group Pic(R). As an
application of Theorem 1 we can show the following theorem.

Theorem 3. Let A be a Noetherian normal domain. Then there is an isomor-
phism of groups

Aut(ref(A)) ∼= C�(A),

where C�(A) denotes the divisor class group of A.

proof. It follows from Theorem 1 that any F ∈ Aut(ref(A)) has a description
F ∼= HomA(M, ) for some reflexive A-module M . Since F is an autofunctor,
there exists a functor G of the form HomB(N, ) for some N ∈ ref(A) satisfying
F ·G ∼= G ·F ∼= 1ref(A). Hence we have a sequence of isomorphisms of A-modules

A ∼= G · F (A) ∼= HomA(N, HomA(M, A)) ∼= HomA(M ⊗A N, A),

which forces rankM = 1. Thus M defines the divisor class [M ] in C�(A). We
define a homomorphism α : Aut(ref(A)) → C�(A) by mapping an autofunctor
F ∼= HomR(M, ) to [M ].



We should remark that α is a well-defined mapping. But it is clear from
Yoneda’s lemma which claims that if HomR(M, ) ∼= HomR(M ′, ) as functors on
ref(A) for M, M ′ ∈ ref(A), then M ∼= M ′ as A-modules. It is also not difficult
to verify that α is a homomorphism of groups. In fact this follows from the
isomorphism of functors on ref(A);

HomA(M, ) · HomA(N, ) ∼= HomA((M ⊗A N)∗∗, ).

We only have to show that α is an isomorphism. It is obvious from the
definition that α is injective. In the rest we shall show that α is surjective. For
this let [I] ∈ C�(A) be an arbitrary element, where I is a divisorial fractional
ideal of A. It is enough to see that HomA(I, ) is a well-defined autofunctor on
ref(A).

First we remark from Bourbaki [2, Chapter VII, §2] that an A-lattice M is
reflexive if and only if the equality M =

⋂
p∈H(R) Mp holds, where H(A) is the

set of all prime ideal of height one. Secondly we note that that the equality

HomA(X, Y ) =
⋂

p∈H(R)

HomA(Xp, Yp)

holds for X, Y ∈ ref(A). In fact, any f ∈ ⋂
p∈H(R) HomA(Xp, Yp) maps X to Yp

for all p ∈ H(A), hence f(X) ⊆ ⋂
p∈H(R) Yp = Y , and thus f ∈ HomA(X, Y ).

Combining the above two claims we see that HomA(I, X) is a reflexive lattice
for any X ∈ ref(A). Hence HomA(I, ) yields a functor from ref(A) to itself.

Since I is a divisorial ideal, there exists an ideal J with [J ] = −[I] in C�(A),
i.e. (I ⊗A J)∗∗ ∼= A where ( )∗ denotes HomA( , A).

Therefore there are isomorphisms of functors on ref(A);

HomA(J, HomA(I, )) ∼= HomA(I ⊗A J, ) ∼= HomA((I ⊗A J)∗∗, )
∼= HomA(A, ) = 1ref(A).

This shows that Hom(I, ) is an autofunctor over ref(A) as desired, and the proof
is completed.

Corollary 4. Let A be a normal domain of dimension at most two. Then
Aut(CM(A)) ∼= C�(A).

proof. In fact, the equality CM(A) = ref(A) holds in this case.

Compared with the corollary, the groups of autofunctors of CM(A) are ex-
pected to be rather small for higher dimensional rings A. In fact we can prove
the following theorem.



Theorem 5. Let A be a Cohen-Macaulay local ring. Suppose that A has only
an isolated singularity with dimA ≥ 3. Then Aut(CM(A)) is a trivial group.

proof. Let F be an autofunctor over CM(A). By virtue of Theorem 1, there
exists a maximal Cohen-Macaulay module M with F ∼= HomA(M, ). Assume
that M is not free, and we shall show a contradiction. For this, take a free cover
F of M and we obtain an exact sequence

0 −→ Ω(M) −→ F −→ M −→ 0.

Recall that Ω(M) is also a maximal Cohen-Macaulay module. Apply HomA(M, )
to the sequence, and we get an exact sequence

0 → Hom(M, Ω(M)) → Hom(M, F ) → Hom(M, M)
f−→ Ext1(M, Ω(M)) .

Note that f 	= 0 holds, since M is not free. Because A is an isolated singu-
larity, we see that Mp is free for any p ∈ Spec(R) except the maximal ideal of
A. This implies that the image Im(f) is a nontrivial A-module of finite length.
On the other hand, we notice that the modules Hom(M, M) and Hom(M, F )
have depth at least two. (Actually this follows from a general fact that if
depthY ≥ 2 and if HomA(X, Y ) 	= 0, then depth HomA(X, Y ) ≥ 2 for X, Y ∈
A-mod.) Hence we conclude from the depth argument [1, Proposition 1.2.9] that
depth(Hom(M, Ω(M))) = 2. This is a contradiction, because Hom(M, Ω(M)) ∼=
F (Ω(M)) is a maximal Cohen-Macaulay over A and depth(A) ≥ 3.

Example 6. Let k be a field and set A = k[[x, y, z]]/(x2 − yz). Let p be a prime
ideal of A generated by {x, y}. It is known that A is a normal Gorenstein domain
of dimension two and p is a unique indecomposable non-free maximal Cohen-
Macaulay module over A. The class group C�(A) is generated by the class of p

and it is isomorphic to Z/2Z. Hence we have Aut(ref(A)) ∼= Z/2Z. In fact, the
functor F = HomA(p, ) is a unique nontrivial autofunctor over ref(A).
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