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We refer the reader to [7] for detail and proofs.
Our aim is to study finite generation of symbolic Rees rings of the defining ideal of the

space monomial curves (ta, tb, tc) for pairwise coprime integers a, b, c such that (a, b, c) 6=
(1, 1, 1). If such a ring is not finitely generated over a base field, then it is a counterexample
to the Hilbert’s fourteenth problem. Finite generation of such rings is deeply related to
existence of negative curves on certain normal projective surfaces. We prove that, in the
case of (a + b + c)2 > abc, a negative curve exists. Using a computer, we shall show that a
negative curve exists if all of a, b, c are at most 300. As a corollary, the symbolic Rees rings
of space monomial curves are shown to be finitely generated if a base field is of positive
characteristic and all of a, b, c are less than or equal to 300.

1 Symbolic Rees rings of monomial curves and Hilbert’s

fourteenth problem

Throughout of this note, we assume that rings are commutative with unit.
For a prime ideal P of a ring A, P (r) denotes the r-th symbolic power of P , i.e.,

P (r) = P rAP ∩ A.

By definition, it is easily seen that P (r)P (r′) ⊂ P (r+r′) for any r, r′ ≥ 0, therefore,

⊕
r≥0

P (r)T r



is a subring of the polynomial ring A[T ]. This subring is called the symbolic Rees ring of
P , and denoted by Rs(P ).

Let k be a field and m be a positive integer. Let a1, . . . , am be positive integers. Consider
the k-algebra homomorphism

φk : k[x1, . . . , xm] −→ k[t]

given by φk(xi) = tai for i = 1, . . . , m, where x1, . . . , xm, t are indeterminates over k. Let
pk(a1, . . . , am) be the kernel of φk. We sometimes denote pk(a1, . . . , am) simply by p or pk

if no confusion is possible.

Theorem 1.1 Let k be a field and m be a positive integer. Let a1, . . . , am be positive
integers. Consider the prime ideal pk(a1, . . . , am) of the polynomial ring k[x1, . . . , xm].

Let α1, α2, β1, . . . , βm, t, T be indeterminates over k. Consider the following injective
k-homomorphism

ξ : k[x1, . . . , xm, T ] −→ k(α1, α2, β1, . . . , βm, t)

given by ξ(T ) = α2/α1 and ξ(xi) = α1βi + tai for i = 1, . . . , m.
Then,

k(α1β1+ta1 , α1β2+ta2 , . . . , α1βm+tam , α2/α1)∩k[α1, α2, β1, . . . , βm, t] = ξ(Rs(pk(a1, . . . , am)))

holds true.

Remark 1.2 Let k be a field. Let R be a polynomial ring over k with finitely many
variables. For a field L satisfying k ⊂ L ⊂ Q(R), Hilbert asked in 1900 whether the ring
L∩R is finitely generated as a k-algebra or not. It is called the Hilbert’s fourteenth problem.

The first counterexample to this problem was discovered by Nagata [10] in 1958. An
easier counterexample was found by Paul C. Roberts [11] in 1990. Further counterexamples
were given by Kuroda, Mukai, etc.

On the other hand, Goto, Nishida and Watanabe [2] proved that Rs(pk(7n − 3, (5n −
2)n, 8n − 3)) is not finitely generated over k if the characteristic of k is zero, n ≥ 4 and
n 6≡ 0 (3). By Theorem 1.1, we know that they are new counterexamples to the Hilbert’s
fourteenth problem.

Remark 1.3 With notation as in Theorem 1.1, we set

D1 = α1
∂

∂α1

+ α2
∂

∂α2

− β1
∂

∂β1

− · · · − βm
∂

∂βm

D2 = a1t
a1−1 ∂

∂β1

+ · · ·+ amtam−1 ∂

∂βm

− α1
∂

∂t
.

Assume that the characteristic of k is zero.
Then, one can prove that ξ(Rs(pk(a1, . . . , am))) is equal to the kernel of the derivations

D1 and D2, i.e.,

ξ(Rs(pk(a1, . . . , am))) = {f ∈ k[α1, α2, β1, . . . , βm, t] | D1(f) = D2(f) = 0}.



2 Symbolic Rees rings of space monomial curves

In the rest of this paper, we restrict ourselves to the case m = 3. For the simplicity of
notation, we write x, y, z, a, b, c for x1, x2, x3, a1, a2, a3, respectively. We regard the
polynomial ring k[x, y, z] as a Z-graded ring by deg(x) = a, deg(y) = b and deg(z) = c.

pk(a, b, c) is the kernel of the k-algebra homomorphism

φk : k[x, y, z] −→ k[t]

given by φk(x) = ta, φk(y) = tb, φk(z) = tc.
By a result of Herzog [3], we know that pk(a, b, c) is generated by at most three elements.
We are interested in the symbolic powers of pk(a, b, c). If pk(a, b, c) is generated by two

elements, then the symbolic powers always coincide with ordinary powers because pk(a, b, c)
is a complete intersection. However, it is known that, if pk(a, b, c) is minimally generated
by three elements, the second symbolic power is strictly bigger than the second ordinary
power.

We are interested in finite generation of the symbolic Rees ring Rs(pk(a, b, c)). It is
known that this problem is reduced to the case where a, b and c are pairwise coprime, i.e.,

(a, b) = (b, c) = (c, a) = 1.

In the rest of this paper, we always assume that a, b and c are pairwise coprime.
Let Pk(a, b, c) be the weighted projective space Proj(k[x, y, z]). Then

Pk(a, b, c) \ {V+(x, y), V+(y, z), V+(z, x)}

is a regular scheme. In particular, Pk(a, b, c) is smooth at the point V+(pk(a, b, c)). Let
π : Xk(a, b, c) → Pk(a, b, c) be the blow-up at V+(pk(a, b, c)). Let E be the exceptional
divisor, i.e.,

E = π−1(V+(pk(a, b, c))).

We sometimes denote pk(a, b, c) (resp. Pk(a, b, c), Xk(a, b, c) ) simply by p or pk (resp. P
or Pk, X or Xk) if no confusion is possible.

It is easy to see that
Cl(P) = ZH ' Z,

where H is the Weil divisor corresponding to the reflexive sheaf OP(1). Set H =
∑

i miDi,
where Di’s are subvarieties of P of codimension one. We may choose Di’s such that Di 63
V+(p) for any i. Then, set A =

∑
i miπ

−1(Di).
One can prove that

Cl(X) = ZA + ZE ' Z2.



Since all Weil divisor on X are Q-Cartier, we have the intersection pairing

Cl(X)× Cl(X) −→ Q,

that satisfies

A2 =
1

abc
, E2 = −1, A.E = 0.

Here, we have the following natural identification:

H0(X,OX(nA− rE)) =

{ [
p(r)

]
n

(r ≥ 0)
Sn (r < 0)

Therefore, the total coordinate ring (or Cox ring)

TC(X) =
⊕

n,r∈Z
H0(X,OX(nA− rE))

is isomorphic to the extended symbolic Rees ring

Rs(p)[T−1] = · · · ⊕ ST−2 ⊕ ST−1 ⊕ S ⊕ pT ⊕ p(2)T 2 ⊕ · · · .

It is well-known that Rs(p)[T−1] is Noetherian if and only if so is Rs(p).

Remark 2.1 By Huneke’s criterion [5] and a result of Cutkosky [1], the following four
conditions are equivalent:

(1) Rs(p) is a Noetherian ring, or equivalently, finitely generated over k.

(2) TC(X) is a Noetherian ring, or equivalently, finitely generated over k.

(3) There exist positive integers r, s, f ∈ p(r), g ∈ p(s), and h ∈ (x, y, z) \ p such that

`S(x,y,z)
(S(x,y,z)/(f, g, h)) = rs · `S(x,y,z)

(S(x,y,z)/(p, h)),

where `S(x,y,z)
is the length as an S(x,y,z)-module.

(4) There exist curves C and D on X such that

C 6= D, C 6= E, D 6= E, C.D = 0.

Here, a curve means a closed irreducible reduced subvariety of dimension one.
The condition (4) as above is equivalent to that just one of the following two conditions

is satisfied:



(4-1) There exist curves C and D on X such that

C 6= E, D 6= E, C2 < 0, D2 > 0, C.D = 0.

(4-2) There exist curves C and D on X such that

C 6= E, D 6= E, C 6= D, C2 = D2 = 0.

Definition 2.2 A curve C on X is called a negative curve if

C 6= E and C2 < 0.

It is proved that two distinct negative curves never exist.
In the case where the characteristic of k is positive, Cutokosky [1] proved that Rs(p) is

finitely generated over k if there exists a negative curve on X.
We remark that there exists a negative curve on X if and only if there exists positive

integers n and r such that
n

r
<
√

abc and [p(r)]n 6= 0.

We are interested in existence of a negative curve. Let a, b and c be pairwise coprime
positive integers. By the following lemma, if there exists a negative curve on Xk0(a, b, c)
for a field k0 of characteristic 0, then there exists a negative curve on Xk(a, b, c) for any
field k.

Lemma 2.3 Let a, b and c be pairwise coprime positive integers.

1. Let K/k be a field extension. Then, for any integers n and r,

[pk(a, b, c)(r)]n ⊗k K = [pK(a, b, c)(r)]n.

2. For any integers n, r and any prime number p,

dimFp [pFp(a, b, c)(r)]n ≥ dimQ[pQ(a, b, c)(r)]n

holds, where Q is the field of rational numbers, and Fp is the prime field of character-
istic p. Here, dimFp (resp. dimQ) denotes the dimension as an Fp-vector space (resp.
Q-vector space).

Remark 2.4 Let a, b, c be pairwise coprime positive integers. Assume that there exists a
negative curve on Xk0(a, b, c) for a field k0 of characteristic zero.

By Lemma 2.3, we know that there exists a negative curve on Xk(a, b, c) for any field k.
Therefore, if k is a field of characteristic positive, then the symbolic Rees ring Rs(pk) is
finitely generated over k by a result of Cutkosky [1]. However, if k is a field of characteristic
zero, then Rs(pk) is not necessary Noetherian. In fact, assume that k is of characteristic
zero and (a, b, c) = (7n−3, (5n−2)n, 8n−3) with n 6≡ 0 (3) and n ≥ 4 as in Goto-Nishida-
Watanabe [2]. Then there exists a negative curve, but Rs(pk) is not Noetherian.



Definition 2.5 Let a, b, c be pairwise coprime positive integers. Let k be a field.
We define the following three conditions:

(C1) There exists a negative curve on Xk(a, b, c), i.e., [pk(a, b, c)(r)]n 6= 0 for some positive
integers n, r satisfying n/r <

√
abc.

(C2) There exist positive integers n, r satisfying n/r <
√

abc and dimk Sn > r(r + 1)/2.

(C3) There exist positive integers q, r satisfying abcq/r <
√

abc and dimk Sabcq > r(r+1)/2.

Here, dimk denotes the dimension as a k-vector space.

By the following lemma, we know the implications

(C3) =⇒ (C2) =⇒ (C1)

since dimk[p
(r)]n = dimk Sn − dimk[S/p(r)]n.

Lemma 2.6 Let a, b, c be pairwise coprime positive integers. Let r and n be non-negative
integers. Then,

dimk[S/p(r)]n ≤ r(r + 1)/2

holds true for any field k.

Remark 2.7 It is easy to see that [pk(a, b, c)]n 6= 0 if and only if dimk Sn ≥ 2. Therefore,
if we restrict ourselves to r = 1, then (C1) and (C2) are equivalent.

On can prove that, if (C1) is satisfied with r ≤ 2 for a field k of characteristic zero, then
(C2) is satisfied.

Assume that k is a field of characteristic zero. Let a, b and c be pairwise coprime integers
such that 1 ≤ a, b, c ≤ 300. As we shall see in Theorem 5.1, a negative curve exists unless
(a, b, c) = (1, 1, 1). In these cases, calculations by a computer show that (C2) is satisfied if
(C1) holds with r ≤ 5.

We shall discuss the difference between (C1) and (C2) in Section 5.1.

Remark 2.8 Let a, b and c be pairwise coprime positive integers. Assume that pk(a, b, c)
is a complete intersection, i.e., generated by two elements.

Permuting a, b and c, we may assume that

pk(a, b, c) = (xb − ya, z − xαyβ)

for some α, β ≥ 0 satisfying αa + βb = c. If ab < c, then

deg(xb − ya) = ab <
√

abc.

If ab > c, then
deg(z − xαyβ) = c <

√
abc.

If ab = c, then (a, b, c) must be equal to (1, 1, 1). Ultimately, there exists a negative curve
if (a, b, c) 6= (1, 1, 1).



3 The case where (a + b + c)2 > abc

In the rest of this paper, we set ξ = abc and η = a + b + c for pairwise coprime positive
integers a, b and c.

For v = 0, 1, . . . , ξ − 1, we set

S(ξ,v) = ⊕q≥0Sξq+v.

This is a module over S(ξ) = ⊕q≥0Sξq.

Lemma 3.1

dimk[S
(ξ,v)]q = dimk Sξq+v =

1

2

{
ξq2 + (η + 2v)q + 2 dimk Sv

}

holds for any q ≥ 0.

Lemma 3.2 Assume that a, b and c are pairwise coprime positive integers such that
(a, b, c) 6= (1, 1, 1). Then, η −√ξ 6= 0, 1, 2.

Theorem 3.3 Let a, b and c be pairwise coprime integers such that (a, b, c) 6= (1, 1, 1).
Then, we have the following:

1. Assume that
√

abc 6∈ Z. Then, (C3) holds if and only if (a + b + c)2 > abc.

2. Assume that
√

abc ∈ Z. Then, (C3) holds if and only if (a + b + c)2 > 9abc.

3. If (a + b + c)2 > abc, then, (C2) holds. In particular, a negative curve exists in this
case.

Remark 3.4 If (a + b + c)2 > abc, then Rs(p) is Noetherian by a result of Cutkosky [1].
If (a + b + c)2 > abc and

√
abc 6∈ Q, then the existence of a negative curve follows

from Nakai’s criterion for ampleness, Kleimann’s theorem and the cone theorem (e.g. The-
orem 1.2.23 and Theorem 1.4.23 in [8], Theorem 4-2-1 in [6]).

The condition (a+ b+ c)2 > abc is equivalent to (−KX)2 > 0. If −KX is ample, then the
finite generation of the total coordinate ring follows from Proposition 2.9 and Corollary 2.16
in Hu-Keel [4].

If (a, b, c) = (5, 6, 7), then the negative curve C is the proper transform of the curve
defined by y2−zx. Therefore, C is linearly equivalent to 12A−E. Since (a+ b+ c)2 > abc,
(−KX)2 > 0. Since

−KX .C = (18A− E).(12A− E) = 0.028 · · · > 0,

−KX is ample by Nakai’s criterion.



If (a, b, c) = (7, 8, 9), then the negative curve C is the proper transform of the curve
defined by y2−zx. Therefore, C is linearly equivalent to 16A−E. Since (a+ b+ c)2 > abc,
(−KX)2 > 0. Since

−KX .C = (24A− E).(16A− E) = −0.23 · · · < 0,

−KX is not ample by Nakai’s criterion.

4 Degree of a negative curve

Proposition 4.1 Let a, b and c be pairwise coprime integers, and k be a field of charac-
teristic zero. Suppose that a negative curve exists, i.e., there exist positive integers n and
r satisfying [pk(a, b, c)(r)]n 6= 0 and n/r <

√
abc.

Set n0 and r0 to be

n0 = min{n ∈ N | ∃r > 0 such that n/r <
√

ξ and [p(r)]n 6= 0}
r0 = b n√

ξ
c+ 1,

where b n√
ξ
c is the maximum integer which is less than or equal to n√

ξ
.

Then, the negative curve C is linearly equivalent to n0A− r0E.

Remark 4.2 Let a, b and c be pairwise coprime integers, and k be a field of characteristic
zero. Assume that the negative curve C exists, and C is linearly equivalent to n0A− r0E.

Then, by Proposition 4.1, we obtain

n0 = min{n ∈ N | [p(b n√
ξ
c+1)

]n 6= 0}
r0 = b n0√

ξ
c+ 1.

Proposition 4.3 Let a, b and c be pairwise coprime positive integers such that
√

ξ > η.
Assume that (C2) is satisfied, i.e., there exist positive integers n1 and r1 such that n1/r1 <√

ξ and dimk Sn1 > r1(r1 + 1)/2. Suppose n1 = ξq1 + v1, where q1 and v1 are integers such
that 0 ≤ v1 < ξ.

Then, q1 <
2 dimk Sv1√

ξ−η
holds.

In particular,

n1 = ξq1 + v1 <
2ξ max{dimk St | 0 ≤ t < ξ}√

ξ − η
+ ξ.



5 Calculation by computer

5.1 Examples that do not satisfy (C2)

Suppose that (C2) is satisfied, i.e., there exist positive integers n1 and r1 such that n1/r1 <√
ξ and dimk Sn1 > r1(r1 + 1)/2. Put n1 = ξq1 + v1, where q1 and v1 are integers such that

0 ≤ v1 < ξ. If
√

ξ > η, then q1 <
2 dimk Sv1√

ξ−η
holds by Proposition 4.3.

By a following programming on MATHEMATICA ([7]), we can check whether (C2) is
satisfied or not in the case where

√
ξ > η.

Calculations by a computer show that (C2) is not satisfied in some cases, for example,
(a, b, c) = (9, 10, 13), (13, 14, 17).

The examples due to Goto-Nishida-Watanabe [2] have negative curves with r = 1. There-
fore, by Remark 2.7, they satisfy the condition (C2).

In the case where (a, b, c) = (9, 10, 13), (13, 14, 17), the authors do not know whether
Rs(pk) is Noetherian or not in the case where the characteristic of k is zero, however the
negative curve do exists as in Theorem 5.1 below.

If we input (a, b, c) = (5, 26, 43), then the output is (n, r) = (1196, 16). Therefore, (C2)
is satisfied with (n, r) = (1196, 16). However, the negative curve on XC(5, 26, 43) is linearly
equivalent to 515A− 7E by a calculation in the next subsection.

5.2 Existence of a negative curve

Theorem 5.1 Let a, b and c be pairwise coprime positive integers such that (a, b, c) 6=
(1, 1, 1). Assume that the characteristic of k is zero.

If all of a, b and c are at most 300, then there exists a negative curve on X.

Let a, b and c be pairwise coprime positive integers such that (a, b, c) 6= (1, 1, 1) and
1 ≤ a, b, c ≤ 300. Then, by Theorem 5.1, there exists a negative curve in the case where
k is of characteristic zero. Then, by Remark 2.4, Rs(pk(a, b, c)) is Noetherian in the case
where k is of positive characteristic. Thus, we obtain the following corollary immediately.

Corollary 5.2 Let a, b and c be pairwise coprime positive integers such that all of a, b
and c are at most 300. Assume that the characteristic of k is positive.

Then the symbolic Rees ring Rs(pk(a, b, c)) is Noetherian.

Remark 5.3 Assume that the characteristic of k is zero. Let a, b and c be pairwise coprime
positive integers such that a + b + c <

√
abc, (a, b, c) 6= (1, 1, 1) and 1 ≤ a ≤ b ≤ c ≤ 300.

More than 90% in these cases satisfy (C2).
Using this program, it is possible to know n0 and r0 such that the negative curve is

linearly equivalent to n0A− r0E (cf. Remark 4.2).



Calculations show the following.
The maximal value of r0 is nine.
In the case where r0 ≤ 5, (C2) is satisfied, i.e.,

dimk Sn0 > r0(r0 + 1)/2.

Suppose (a, b, c) = (9, 10, 13). In the case where the characteristic of k is zero, the
negative curve is linearly equivalent to 305A − 9E. We know that the negative curve is
also linearly equivalent to 305A− 9E if the characteristic of k is sufficiently large. On the
other hand, the negative curve is linearly equivalent to 100A − 3E if the characteristic of
k is three as in Morimoto-Goto [9]. Therefore, the linear equivalent class that contains the
negative curve depends on the characteristic of a base field. Assume that the characteristic
is a sufficiently large prime number. Let C be the negative curve and D be a curve that
satisfies (4-1) in Remark 2.1. Suppose that D is linearly equivalent to n1A − r1E. Since
C.D = 0, we know

n1

r1

=
92 · 10 · 13

305
.

Therefore, r must be a multiple of 305.
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