A modification of Ikeda's theorem

Shin-ichiro Iai

1 Introduction

Let (A, \mathfrak{m}) be a Noetherian local ring and let I be an ideal of A with grade $I \geq 2$. Assume that A is a homomorphic image of a Gorenstein local ring and that the field A/\mathfrak{m} is infinite. Let t be an indeterminate over A. We define $\mathbb{R}(I) := A[It] \subseteq$ $A[t], \mathbb{R}'(I) := A[It, t^{-1}] \subseteq A[t, t^{-1}]$, and $\mathbb{G}(I) := \mathbb{R}'(I)/t^{-1}\mathbb{R}'(I)$ and call them respectively the Rees algebra, the extended Rees algebra, and the associated graded ring of I. Let $\mathbb{K}_{\mathbb{R}(I)}, \mathbb{K}_{\mathbb{R}'(I)}$, and $\mathbb{K}_{\mathbb{G}(I)}$ denote the graded canonical modules of $\mathbb{R}(I)$, $\mathbb{R}'(I)$, and $\mathbb{G}(I)$, respectively. Let $\mathfrak{a}(\mathbb{G}(I))$ stand for the *a*-invariant of $\mathbb{G}(I)$. We always assume A is a quasi-Gorenstein ring, which means that the canonical module of A is a free A-module of rank 1. The purpose of this paper is to prove the following result, which is a modification of theorem given by Ikeda [I].

Theorem 1.1. Assume that R(I) is a Cohen-Macaulay ring and a(G(I)) = -2. Then the following two conditions are equivalent.

- (1) R(I) is a Gorenstein ring.
- (2) $K_{R'(I)} \cong R'(I)(-1)$ as graded R'(I)-modules.

Let us give some consequences of the theorem above. We define $\widetilde{I} := \bigcup_{n \geq 0} I^{n+1}$: I^n , which is called the Ratliff-Rush closure of I. We set $\mathcal{F} = {\widetilde{I}^i}_{i \in \mathbb{Z}}$ and $\mathbf{R}'(\mathcal{F}) := \sum_{i \in \mathbb{Z}} \widetilde{I^i} t^i \subseteq A[t, t^{-1}]$. Let k be a positive integer. With this notation, the first corollary can be stated as follows.

Corollary 1.2. Assume that $R(I^k)$ is a Cohen-Macaulay ring and $a(G(I^k)) = -2$. Then the following two conditions are equivalent.

- (1) $R(I^k)$ is a Gorenstein ring.
- (2) $K_{R'(I)} \cong R'(\mathcal{F})(-k)$ as graded R'(I)-modules.

To state the second corollary of the theorem, we set up some notation. We put $d = \dim A$. Let $\mathfrak{a}(A) := \prod_{i=0}^{d-1}(0) :_A \operatorname{H}^i_{\mathfrak{m}}(A)$ and let $\operatorname{NCM}(A) := \{\mathfrak{p} \in \operatorname{Spec} A \mid A_{\mathfrak{p}}$ is not a Cohen-Macaulay ring $\}$. Then $\operatorname{NCM}(A) = \operatorname{V}(\mathfrak{a}(A))$. Put $s = \dim \operatorname{NCM}(A)$

and there is a system of parameters x_1, x_2, \ldots, x_d for A such that $x_{s+1}, x_{s+2}, \ldots, x_d \in \mathfrak{a}(A)$. For each $i \leq s$, we put $J_i := (x_{i+1}, x_{i+2}, \ldots, x_d)$. Then we have

Corollary 1.3. Assume that $d \ge 2$. Let s = 0 and $I = J_0$. Then the following two conditions are equivalent.

- (1) $R(I^k)$ is a Gorenstein ring.
- (2) A is a Cohen-Macaulay ring and k = d 1.

The implication $(2) \Rightarrow (1)$ is already known (see [O], 4.3). The converse implication $(1) \Rightarrow (2)$ is a result in this paper. The third one is the following

Corollary 1.4. Assume that $d \ge 3$. Let $s \le 1$ and $I = \bigcup_{\ell \ge 0} J_1 : x_1^{\ell}$. Then the following two conditions are equivalent.

- (1) $R(I^k)$ is a Gorenstein ring.
- (2) A has finite local cohomology modules and k = d 2.

The implication $(2) \Rightarrow (1)$ is already shown in the last symposium. The converse implication $(1) \Rightarrow (2)$ is a result in this paper.

2 Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1. We put R = R(I), R' = R'(I), and G = G(I). To begin with we note

Lemma 2.1. Let a be an integer and let $\kappa = {\kappa_i}_{i \ge -a-1}$ be an *I*-filtration of A such that $\kappa_{-a-1} = A$ and $\kappa_{-a-1} \supseteq \kappa_{-a}$. Set $\operatorname{gr}_A(\kappa) = \bigoplus_{i \ge -a} \kappa_{i-1}/\kappa_i$ that is a graded G-module. If there is an embedding $G(a) \hookrightarrow \operatorname{gr}_A(\kappa)$ of graded G-modules, then $\kappa_i = I^{i+a+1}$ for all integers $i \ge -a - 1$.

Proof. See the proof of Theorem 3.2 in the paper [GI].

Let the ideal I be generated by elements $a_1, a_2, \ldots, a_n \in A$. We may assume a_1 is an regular element of A. Let X_1, X_2, \ldots, X_n, Y are indeterminates over A. We consider the A-algebra homomorphisms

$$\varphi: A[X_1, X_2, \dots X_n] \to R$$

such that $\varphi(X_i) = a_i t$ for all $1 \le i \le n$ and

$$\varphi': A[X_1, X_2, \dots, X_n, Y] \to R'$$

such that $\varphi'(X_i) = a_i t$ for all $1 \leq i \leq n$ and $\varphi'(Y) = t^{-1}$. Put $P = A[X_1, X_2, \dots, X_n]$ and $F_i = X_i Y - a_i$. Then we get the following equality.

Claim 2.2. ker $\varphi' = (F_1, F_2, \dots, F_n)P[Y] + \ker \varphi P[Y].$

Proof. Take any element $F \in \ker \varphi'$. Dividing F by $F_1, F_2, \ldots F_n$, we can write $F = \sum_{i=1}^n Q_i F_i + H + H'$, where $Q_i \in P[Y]$, $H \in P$, and $H' \in A[Y]$. Then $\varphi'(F) = H(a_1t, a_2t, \ldots, a_nt) + H'(t^{-1})$, which is an element of $A[t, t^{-1}]$. Since $\varphi'(F) = 0$, we get $H' \in A$, and hence $H + H' \in \ker \varphi$.

Set $f_i = a_i tY - a_i$, which is an element of R[Y]. We note f_1 is a regular element on R[Y] because so is a_1 . Look at the graded *R*-algebra homomorphism

$$\psi: R[Y] \to R'$$

induced by the injection $R \to R'$ of graded rings such that $\psi(Y) = t^{-1}$. Then the claim above implies the following equality.

Lemma 2.3. ker $\psi = (f_1, f_2, \dots, f_n)$.

Therefore we get the exact sequence $0 \to \frac{\ker \psi}{f_1 R[Y]} \to \frac{R[Y]}{f_1 R[Y]} \to R' \to 0$ of graded R[Y]-modules. Let us now prove the theorem.

Proof of Theorem 1.1. Assume that R is a Gorenstein ring. Then $K_{R[Y]} \cong R[Y](m)$ for some $m \in \mathbb{Z}$. Taking the $K_{R[Y]}$ -dual of the graded exact sequence

$$0 \to R[Y](1) \xrightarrow{Y} R[Y] \to R \to 0$$

of graded R[Y]-modules, we get the graded exact sequence

$$0 \to R[Y](m) \xrightarrow{Y} R[Y](m-1) \to R(-1) \to 0$$

of graded R[Y]-modules because $K_R \cong R(-1)$ as graded R-modules. Therefore m = 0. Put $S = \frac{R[Y]}{f_1 R[Y]}$ and we obtain that S is a Gorenstein graded ring with $K_S \cong S$ as graded S-modules (recall that deg $f_1 = 0$). Since Y is a regular element on S, we have $K_{S/YS} \cong [S/YS](-1)$ as graded S-modules. Put $L = \frac{\ker \psi}{f_1 R[Y]}$. Then $R' \cong S/L$ and $G \cong S/YS + L$ as graded rings, so that $K_{R'} \cong \operatorname{Hom}_{S/Y}(S/YS + L, [S/YS](-1))$ as graded S-modules. Hence we get $K_{R'} \cong (0) :_S L$ and $K_G \cong [YS :_S L/YS](-1)$ as graded S-modules. We can check

Claim 2.4. $YS :_S L = [(0) :_S L] + YS.$

The above claim implies that the natural map $\pi : (0) :_S L \to [YS :_S L]/YS$ is surjective. And we have ker $\pi = Y[(0) :_S L]$. Therefore $K_{R'}/t^{-1}K_{R'} \cong K_G(1)$ as graded *G*-modules. Thanks to [I], we get $K_{R'}/t^{-1}K_{R'} \cong G(-1)$ as graded *G*modules. Let $\omega = {\omega_i}_{i \in \mathbb{Z}}$ stand for the canonical *I*-filtration of *A* (see [GI], 1.1 and notice that the canonical filtration exists if the base ring *A* satisfies Serre's condition (S₂)), namely the *I*-filtration ω fulfills $I^i \subseteq \omega_{i-a-1}$ for all $i \in \mathbb{Z}$ and $K_{R'(I)} \cong \sum_{i \in \mathbb{Z}} \omega_i t^i \subseteq A[t, t^{-1}]$ as graded R'(I)-modules. Therefore we get $\omega_{i+1} = I^i$ by Lemma 2.1, and hence $K_{R'(I)} \cong R'(I)(-1)$ as graded R'(I)-modules.

Conversely, assume that $K_{R'(I)} \cong R'(I)(-1)$ as graded R'(I)-modules. Hence $K_{R'}/t^{-1}K_{R'} \cong G(-1)$ as graded G-modules. The embedding $K_{R'}/t^{-1}K_{R'}(-1) \hookrightarrow K_G$ follows from the exact sequence $0 \to R'(1) \xrightarrow{t^{-1}} R' \to G \to 0$ of graded R'-modules, so that we can find an embedding $G(-2) \hookrightarrow K_G$ of graded R'-modules. By [TVZ], there is an I-filtration $\kappa = \{\kappa_i\}_{i\geq 0}$ of A such that $\kappa_1 = A, \kappa_1 \supseteq \kappa_2, K_R \cong \bigoplus_{i\geq 1} \kappa_i$ as a graded R-module, and $K_G = \bigoplus_{i\geq 2} \kappa_{i-1}/\kappa_i$ as a graded G-module because R is a Cohen-Macaulay ring. Therefore we get $\kappa_i = I^{i-1}$ by Lemma 2.1, and hence $K_{R(I)} \cong R(I)(-1)$ as graded R(I)-modules. Then R is a Gorenstein ring.

We remark that Corollary 1.3 does not hold true without the assumption that the ring A is quasi-Gorenstein. Let us close this paper with the following typical example in [HR], (2.2).

Example 2.5. Let k[[s,t]] be a formal power series ring over a field k. Let $A = k[[s^2, t, s^3, st]]$ and $I = (s^2, t)$. Then $R(I^2)$ is a Gorenstein ring but A is not a Cohen-Macaulay ring.

References

- [GI] S. Goto and S.-i. Iai, Embeddings of certain graded rings into their canonical modules, J. Algebra, 228 (2000), 377-396.
- [HR] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Mathematics, 13 (1974), 115-175.
- S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya Math. J. 102 (1986), 135-154.
- [O] A. Ooishi, On the Gorenstein property of the associated graded ring and the Rees algebra of an ideal, J. Algebra, 115 (1993), 397-414.
- [TVZ] N. V. Trung, D. Q. Viêt, and S. Zarzuela, When is the Rees algebra Gorenstein?, J. Algebra 175 (1995), 137-156.

Mathematics laboratory Hokkaido University of Education Sapporo 002-8502 JAPAN e-mail: iai@sap.hokkyodai.ac.jp