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Let R be a Noetherian ring of prime characteristic p and denote by R◦ the set of

elements of R that are not contained in any minimal prime ideal. The tight closure

I∗ of an ideal I ⊆ R is defined to be the ideal of R consisting of all elements x ∈ R

for which there exists c ∈ R◦ such that cxq ∈ I [q] for all large q = pe, where I [q]

is the ideal generated by the qth powers of all elements of I. The ring R is called

F-rational if J∗ = J for every ideal J ⊆ R generated by parameters.

Let a be a fixed proper ideal of R such that a ∩ R◦ ̸= ∅. To each ideal J of R

such that a ⊆
√

J , we associate an F-threshold as follows. For every q = pe, let

νJ
a (q) := max{r ∈ N|ar ̸⊆ J [q]},

where J [q] is the ideal generated by the qth powers of all elements of J . Since a ⊆
√

J ,

this is a nonnegative integer (if a ⊆ J [q], then we put νJ
a (q) = 0). We put

cJ
+(a) = lim sup

q→∞

νJ
a (q)

q
, cJ

−(a) = lim inf
q→∞

νJ
a (q)

q
.

When cJ
+(a) = cJ

−(a), we call this limit the F-threshold of the pair (R, a) (or simply

of a) with respect to J , and we denote it by cJ(a). The reader is referred to [3] and

[4] for basic properties of F-thresholds.

Example 1. Let R be a Noetherian local ring of characteristic p > 0, and let

J = (x1, . . . , xd), where x1, . . . , xd form a full system of parameters in R. It follows

from the Monomial Conjecture that (x1 · · ·xd)
q−1 ̸∈ J [q] for every q. Hence νJ

J (q) ≥
d(q − 1) for every q, and therefore cJ

−(J) ≥ d. On the other hand, it is easy to see

that cJ
+(J) ≤ d, and we conclude that cJ(J) = d.

We can describe the tight closure and the integral closure of parameter ideals in

terms of F-thresholds.

Theorem 2. Let (R, m) be a d-dimensional excellent analytically irreducible Noethe-

rian local domain of characteristic p > 0, and let J = (x1, . . . , xd) be an ideal gen-

erated by a full system of parameters in R. Given an ideal I ⊇ J , we have I ⊆ J∗ if



and only if cI
+(J) = d (and in this case cI(J) exists). In particular, R is F-rational

if and only if cI
+(J) < d for every ideal I ) J .

In order to prove Theorem 2, we start with the following lemma.

Lemma 3. Let (R, m) be an excellent analytically irreducible Noetherian local do-

main of positive characteristic p. Set d = dim(R), and let J = (x1, . . . , xd) be an

ideal generated by a full system of parameters in R, and let I ⊇ J be another ideal.

Then I is not contained in the tight closure J∗ of J if and only if there exists q0 = pe0

such that xq0−1 ∈ I [q0], where x = x1x2 · · · xd.

Proof. After passing to completion, we may assume that R is a complete local

domain. Suppose first that xq0−1 ∈ I [q0], and by way of contradiction suppose

also that I ⊆ J∗. Let c ∈ R◦ be a test element. Then for all q = pe, one has

cxq(q0−1) ∈ cI [qq0] ⊂ J [qq0], so that c ∈ J [qq0] : xq(q0−1) ⊆ (J [q])∗, by colon-capturing

[2, Theorem 7.15a]. Therefore c2 lies in
⋂

q=pe J [q] = (0), a contradiction.

Conversely, suppose that I * J∗, and choose an element f ∈ I r J∗. We choose

a coefficient field k, and let B = k[[x1, . . . , xd, f ]] be the complete subring of R gen-

erated by x1, . . . , xd, f . Note that B is a hypersurface singularity, hence Gorenstein.

Furthermore, by persistence of tight closure [2, Lemma 4.11a], f /∈ ((x1, . . . , xd)B)∗.

If we prove that there exists q0 = pe0 such that xq0−1 ∈ ((x1, . . . , xd, f)B)[q0], then

clearly xq0−1 is also in I [q0]. Hence we can reduce to the case in which R is Gorenstein.

Since I ̸⊆ J∗, it follows from a result of Aberbach [1] that J [q] : I [q] ⊆ mn(q), where

n(q) is a positive integer with limq→∞ n(q) = ∞. In particular, we can find q0 = pe0

such that J [q0] : I [q0] ⊆ J . Therefore xq0−1 ∈ J [q0] : J ⊆ J [q0] : (J [q0] : I [q0]) = I [q0],

where the last equality follows from the fact that R is Gorenstein.

Proof of Theorem 2. Note first that for every I ⊇ J we have cJ
+(I) ≤ d. Suppose

now that I ⊆ J∗. It follows from Lemma 3 that Jd(q−1) ̸⊆ I [q] for every q = pe. This

gives νI
J(q) ≥ d(q − 1) for all q, and therefore cI

−(J) ≥ d. We conclude that in this

case cI
+(J) = cI

−(J) = d.

Conversely, suppose that I ̸⊆ J∗. By Lemma 3, we can find q0 = pe0 such that

b := (xq0

1 , . . . , xq0

d , (x1 · · · xd)
q0−1) ⊆ I [q0].

If (x1, . . . , xd)
r ̸⊆ b[q], then

r ≤ (qq0 − 1)(d − 1) + q(q0 − 1) − 1 = qq0d − q − d.

Therefore νb
J(q) ≤ qq0d − q − d for every q, which implies cb(J) ≤ q0d − 1. Since q0

is a fixed power of p, we deduce

cI
+(J) =

1

q0

cI[q0]

+ (J) ≤ 1

q0

cb(J) ≤ d − 1

q0

< d.



Theorem 4. Let (R, m) be a d-dimensional formally equidimensional Noetherian

local ring of characteristic p > 0. If I and J are ideals in R, with J generated by a

full system of parameters, then

(1) cJ
+(I) ≤ d if and only if I ⊆ J .

(2) If, in addition, J ⊆ I, then I ⊆ J if and only if cJ
+(I) = d.

Proof. Note that if J ⊆ I, then cJ
−(I) ≥ cJ

−(J) = cJ(J) = d, by Example 1. Hence

both assertions in (2) follow from the assertion in (1).

One implication in (1) is easy: if I ⊆ J , then we have cJ
+(I) ≤ cJ

+(J) = cJ(J) = d.

Conversely, suppose that cJ
+(I) ≤ d. In order to show that I ⊆ J , we may assume

that R is complete and reduced. Indeed, first note that the inverse image of JR̂red

in R is contained in J , hence it is enough to show that IR̂red ⊆ JR̂red. Since JR̂red

is again generated by a full system of parameters, and since we trivially have

cJ bRred(IR̂red) ≤ cJ(I) ≤ d,

we may replace R by R̂red.

Since R is complete and reduced, we can find a test element c for R.

Claim. Let a, b be ideals of R such that a ⊆
√

b. Then cb
+(a) ≤ α if and only if for

every power q0 of p, we have a⌈αq⌉+q/q0 ⊆ b[q] for all q = pe ≫ q0.

Proof of Claim. First, assume that cb
+(a) ≤ α. By the definition of cb

+(a), for any

power q0 of p, there exists q1 such that νb
a(q)/q < α + 1/q0 for all q = pe ≥ q1.

Thus, νb
a(q) � ⌈αq⌉ + q/q0, that is, a⌈αq⌉+q/q0 ⊆ b[q] for all q = pe ≥ q1. For the

converse implication, note that by assumption, νb
a(q) ≤ ⌈αq⌉+ q/q0 − 1 for all large

q = pe ≫ q0. Dividing by q and taking the limit gives cb
+(a) ≤ α + 1/q0. Since q0 is

any power of p, we can conclude that cb
+(a) ≤ α.

By the above claim, the assumption cJ
+(I) ≤ d implies that for all q0 = pe0 and

for all large q = pe, we have

Iq(d+(1/q0)) ⊆ J [q].

Hence IqJq(d−1+(1/q0)) ⊆ J [q], and thus

Iq ⊆ J [q] : Jq(d−1+(1/q0)) ⊆ (Jq−d+1−(q/q0))∗,

where the last containment follows from the colon-capturing property of tight closure

[2, Theorem 7.15a]. We get cIq ⊆ cR∩Jq−d+1−(q/q0) ⊆ cJq−d+1−(q/q0)−l for some fixed

integer l that is independent of q, by the Artin-Rees lemma. Since c is a non-zero

divisor in R, it follows that

Iq ⊆ Jq−d+1−(q/q0)−l. (1)



If ν is a discrete valuation with center in m, we may apply ν to (1) to deduce

qν(I) ≥
(
q − d + 1 − q

q0
− l

)
ν(J). Dividing by q and letting q go to infinity gives

ν(I) ≥
(
1 − 1

q0

)
ν(J). We now let q0 go to infinity to obtain ν(I) ≥ ν(J). Since

this holds for every ν, we have I ⊆ J .

Two years ago (at the 27th Symposium on Commutative Algebra in Japan), we

proposed the following conjecture, generalizing a result in [5].

Conjecture 5 (cf. [6, Conjecture 3.2]). Let (R, m) be a d-dimensional Noetherian

local ring of characteristic p > 0. If J ⊆ m is an ideal generated by a full system of

parameters, and if a ⊆ m is an m-primary ideal, then

e(a) ≥
(

d

cJ
−(a)

)d

e(J).

Example 6. Let R = k[[X,Y, Z]]/(X2 +Y 3 +Z5) be a rational double point of type

E8, with k a field of characteristic p > 0. Let a = (x, z) and J = (y, z). Then

e(a) = 3 and e(J) = 2. It is easy to check that cJ(a) = 5/3 and ca(J) = 5/2. Thus,

e(a) = 3 >
72

25
=

(
2

cJ(a)

)2

e(J),

e(J) = 2 >
48

25
=

(
2

ca(J)

)2

e(a).

Two years ago, we reported the following result as an evidence of Conjecture 5.

Theorem 7 ([6, Proposition 3.3]). If (R, m) is a regular local ring of characteristic

p > 0 and J = (xa1
1 , . . . , xad

d ), with x1, . . . , xd a full regular system of parameters for

R, and with a1, . . . , ad positive integers, then the inequality given by Conjecture 5

holds.

We will conclude this article with a result related to the graded version of Con-

jecture 5.

Theorem 8. Let R =
⊕

d≥0 Rd be an n-dimensional graded Cohen-Macaulay ring

with R0 a field of characteristic p > 0. If a and J are ideals generated by full

homogeneous systems of parameters for R, then

e(a) ≥
(

n

cJ
−(a)

)n

e(J).

Proof. Suppose that a is generated by a full homogeneous system of parameters

x1, . . . , xn of degrees a1 ≤ · · · ≤ an and J is generated by another homogeneous

system of parameters f1, . . . , fn of degrees d1 ≤ · · · ≤ dn. Fix a power q = pe of p,



and define the nonnegative integers t
(e)
1 , . . . , t

(e)
n−1 inductively as follows: t

(e)
1 is the

least integer t such that xt
1 ∈ J [q]. If i ≥ 2, then t

(e)
i is the least integer t such that

x
t
(e)
1 −1

1 · · · xt
(e)
i−1−1

i−1 xt
i ∈ J [q]. We also define the integer N (e) to be the least integer N

such that IN ⊆ J [q]. Note that N (e) is greater than t
(e)
1 + · · · + t

(e)
n−1 − n + 1. Since

the lim sup of the ratios (N (e) + n − 1)/pe is cJ
+(a), it suffices to prove that

(N (e) + n − 1)na1 · · · an ≥ nnqnd1 · · · dn.

First, we will show the following inequality for every i = 1, . . . , n − 1:

t
(e)
1 a1 + · · · + t

(e)
i ai ≥ q(d1 + · · · + di). (2)

Let I
(e)
i be the ideal of R generated by x

t
(e)
1

1 , x
t
(e)
1 −1

1 x
t
(e)
2

2 , . . . , x
t
(e)
1 −1

1 · · · xt
(e)
i−1−1

i−1 x
t
(e)
i

i . By

the definition of t
(e)
1 , . . . , t

(e)
i , we have that I

(e)
i ⊆ J [q]. The natural surjection of

R/I
(e)
i onto R/J [q] induces a comparison map between the minimal free resolutions.

Looking at the ith free modules, we have the map

R(−t
(e)
1 a1 − · · · − t

(e)
i ai) →

⊕
1≤v1�···�vi≤n

R(−qdv1 − · · · − qdvi
).

In particular, unless this map is zero, t
(e)
1 a1 + · · ·+ t

(e)
i ai must be at least as large as

the minimum of the twists, which is q(d1 + · · ·+ di). So it remains to see the reason

why this map cannot be zero. Assume it is zero: then the map

TorR
i (R/I

(e)
i , R/bi) → TorR

i (R/J [q], R/bi)

will be zero, where bi is the ideal generated by x1, . . . , xi. On the other hand, using

the Koszul complex on x1, . . . , xi, we see that this map can be identified with the

natural map

(I
(e)
i : bi)/I

(e)
i → (J [q] : bi)/J

[q].

Since the ideal I
(e)
i : bi is generated by x

t
(e)
1 −1

1 · · · xt
(e)
i −1

i modulo I
(e)
i , the map is zero

if and only if x
t
(e)
1 −1

1 · · · xt
(e)
i −1

i is in J [q]. However, this contradicts the definition of

t
(e)
i .

Next, we will prove the following estimate:

t
(e)
1 a1 + · · ·+ t

(e)
n−1an−1 + (N (e) − t

(e)
1 − · · · − t

(e)
n−1 + n− 1)an ≥ q(d1 + · · ·+ dn). (3)

Since aN(e) ⊆ J [q], we have that

(xN(e)

1 , . . . , xN(e)

n ) : J [q] ⊆ (xN(e)

1 , . . . , xN(e)

n ) : aN(e)

= (xN(e)

1 , . . . , xN(e)

n ) + a(n−1)(N(e)−1).

The ideal (xN(e)

1 , . . . , xN(e)

n ) : J [q] is of the form (xN(e)

1 , . . . , xN(e)

n , y(e)), where the extra

generator y(e) has degree N (e)(a1 + · · · + an) − q(d1 + · · · + dn). We write

y(e) =
∑

m1+···+mn=(n−1)(N(e)−1)

rm1...mnxm1
1 . . . xmn

n



modulo (xN(e)

1 , . . . , xN(e)

n ). Since x
t
(e)
1 −1

1 · · · xt
(e)
n−1−1

n−1 is not in J [q], we see that y(e) is

not in (x
N(e)−t

(e)
1 +1

1 , . . . , x
N(e)−t

(e)
n−1+1

n−1 , xN(e)

n ). To check this, suppose that y(e) is in

(x
N(e)−t

(e)
1 +1

1 , . . . , x
N(e)−t

(e)
n−1+1

n−1 , xN(e)

n ). Then J [q] = (xN(e)

1 , . . . , xN(e)

n ) : y(e) will contain

(xN(e)

1 , . . . , xN(e)

n ) : (x
N(e)−t

(e)
1 +1

1 , . . . , x
N(e)−t

(e)
n−1+1

n−1 , xN(e)

n ) ∋ x
t
(e)
1 −1

1 · · · xt
(e)
n−1−1

n−1 . Thus,

some rm1...mn must be nonzero, where mi ≤ N (e) − t
(e)
i for 1 ≤ i ≤ n − 1 and

mn ≤ N (e) −1. Since the degree of D is greater than or equal to the minimal degree

of monomials xm1
1 . . . xmn

n with rm1...mn nonzero, we can conclude that

deg D = N (e)(a1 + · · · + an) − q(d1 + · · · + dn)

≥ (N (e) − t
(e)
1 )a1 + · · · + (N (e) − t

(e)
n−1)an−1 + (t

(e)
1 + · · · + t

(e)
n−1 − n + 1)an,

which implies the desired estimate.

To finish the proof, we will use the following claim.

Claim. Let α1, . . . , αn and β1, . . . , βn be two n-tuple of real numbers, and let 1 =

γ1 ≤ γ2 ≤ · · · ≤ γn be another one. Assume that γ1α1 + · · ·+γiαi ≥ γ1β1 + · · ·+γiβi

for all i = 1, . . . , n. Then α1 + · · · + αn ≥ β1 + · · · + βn.

Proof of Claim. Let λi = αi − βi for 1 ≤ i ≤ n. Then γ1λ1 + · · · + γiλi ≥ 0 for all

i = 1, . . . , n. We will prove that λ1+· · ·+λn ≥ 0 by induction on n. We may assume

that n is greater than one. The assertion is obvious if every λi ≥ 0. Suppose that

λi < 0 for some i. Clearly i ≥ 2. Since γi ≥ γi−1, it follows from that γiλi ≤ γi−1λi.

We then define γ′
j = γj for 1 ≤ j ≤ i − 1 and γ′

j = γj+1 for i ≤ j ≤ n − 1. Define

also λ′
j = λj for 1 ≤ j ≤ i − 2, λ′

i−1 = λi−1 + λi and λ′
j = λj+1 for i ≤ j ≤ n − 1.

Since γ′
1λ

′
1 + · · ·+ γ′

jλ
′
j ≥ 0 for all j = 1, . . . , n− 1, the induction hypothesis implies

that λ1 + · · · + λn = λ′
1 + · · · + λ′

n−1 ≥ 0.

Set αi = t
(e)
i for 1 ≤ i ≤ n − 1 and αn = N (e) − t

(e)
1 − · · · − t

(e)
n−1 + n − 1.

Set βi = qdi/ai and γi = ai/a1 for 1 ≤ i ≤ n. Then γ1 ≤ · · · ≤ γn, because

a1 ≤ · · · ≤ an. The inequalities γ1α1 + · · · + γiαi ≥ γ1β1 + · · · + γiβi for 1 ≤ i ≤ n

follow from the estimates (1) and (2). Using the above claim, we can conclude that

N (e) + n − 1 = α1 + · · · + αn ≥ β1 + . . . βn = q

(
d1

a1

+ · · · + dn

an

)
.

Comparing the arithmetic and geometric means of {qdi/ai}i, we see that

(N (e) + n − 1)na1 . . . an ≥ nnqnd1 . . . dn.

Remark 9. Theorem 8 does not imply the graded (Cohen-Macaulay) version of Con-

jecture 5, because a minimal reduction of an R+-primary homogeneous ideal is not

necessarily homogeneous.
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