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Let R be a Noetherian ring of prime characteristic p and denote by R° the set of
elements of R that are not contained in any minimal prime ideal. The tight closure
I* of an ideal I C R is defined to be the ideal of R consisting of all elements = € R
for which there exists ¢ € R° such that cz? € I9 for all large ¢ = p°, where 9
is the ideal generated by the ¢'" powers of all elements of I. The ring R is called
F-rational if J* = J for every ideal J C R generated by parameters.

Let a be a fixed proper ideal of R such that an R° # (). To each ideal J of R
such that a C v/.J, we associate an F-threshold as follows. For every ¢ = p°, let
v!(q) = max{r € N|a" ¢ JI},

a

where J19 is the ideal generated by the ¢*™" powers of all elements of J. Since a C v/J,
this is a nonnegative integer (if a C JI, then we put v/(q) = 0). We put
J J
¢’ (a) = limsup V“—@, ¢’ (a) = liminf V—(Q)
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When ¢ (a) = ¢/ (a), we call this limit the F-threshold of the pair (R,a) (or simply
of a) with respect to .J, and we denote it by ¢’(a). The reader is referred to [3] and
[4] for basic properties of F-thresholds.

Example 1. Let R be a Noetherian local ring of characteristic p > 0, and let
J = (x1,...,2q), where xy, ..., x4 form a full system of parameters in R. It follows
from the Monomial Conjecture that (z;---z4)?" & J@ for every q. Hence v4(q) >
d(q — 1) for every ¢, and therefore ¢’ (J) > d. On the other hand, it is easy to see
that ¢/ (J) < d, and we conclude that ¢/(J) = d.

We can describe the tight closure and the integral closure of parameter ideals in
terms of F-thresholds.

Theorem 2. Let (R, m) be a d-dimensional excellent analytically irreducible Noethe-
rian local domain of characteristic p > 0, and let J = (xy,...,24) be an ideal gen-
erated by a full system of parameters in R. Given an ideal I O J, we have I C J* if



and only if L. (J) = d (and in this case ¢'(J) ezists). In particular, R is F-rational
if and only if L. (J) < d for every ideal I 2 J.

In order to prove Theorem 2, we start with the following lemma.

Lemma 3. Let (R, m) be an excellent analytically irreducible Noetherian local do-
main of positive characteristic p. Set d = dim(R), and let J = (x1,...,x4) be an
ideal generated by a full system of parameters in R, and let I O J be another ideal.
Then I is not contained in the tight closure J* of J if and only if there exists gy = p°
such that x%©~1 € [[qO], where © = 1Ty -+ X4.

Proof. After passing to completion, we may assume that R is a complete local
domain. Suppose first that z%~' € ! and by way of contradiction suppose
also that I C J*. Let ¢ € R° be a test element. Then for all ¢ = p®, one has
cxd@=1) ¢ cJlawl ¢ Jlawl g0 that ¢ € Jlawol ; galo=1) C (Jld)* by colon-capturing
2, Theorem 7.15a]. Therefore ¢* lies in (| _,. J 4 = (0), a contradiction.
Conversely, suppose that I ¢ J*, and choose an element f € I ~ J*. We choose
a coefficient field k, and let B = k[[x1, ..., 24, f]] be the complete subring of R gen-
erated by x1, ..., x4, f. Note that B is a hypersurface singularity, hence Gorenstein.
Furthermore, by persistence of tight closure [2, Lemma 4.11al, f ¢ ((x1,...,24)B)".
If we prove that there exists gy = p® such that 297 € ((x1,..., 24, f)B)®! then
clearly 2%~ is also in 71%!, Hence we can reduce to the case in which R is Gorenstein.
Since I ¢ J*, it follows from a result of Aberbach [1] that J4: [14 C m™@  where
n(q) is a positive integer with lim, .., n(g) = co. In particular, we can find gy = p®
such that Jlol : [lol € J Therefore z0~! ¢ Jlol. j C Jlaol, (jlaol; flaoly = flaol,
where the last equality follows from the fact that R is Gorenstein. O]

Proof of Theorem 2. Note first that for every I D J we have ¢ (I) < d. Suppose
now that I C J*. It follows from Lemma 3 that J49=1 ¢ 19 for every ¢ = p°. This
gives v1(q) > d(q — 1) for all ¢, and therefore ¢ (J) > d. We conclude that in this
case ¢t (J) =cL(J) =d.

Conversely, suppose that I € J*. By Lemma 3, we can find gy = p® such that

b= (i, ..., 2% (v -aq)®0 ") C Jlaol,
If (z1,...,24)" € bl9, then
r<(qq0 —1)(d—1)+4q(qo—1) — 1 = qqd — g — d.

Therefore v5(q) < qqod — q — d for every g, which implies ¢®(J) < god — 1. Since gq
is a fixed power of p, we deduce

1 1 1
L) = =" < =) <d—— < d.
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Theorem 4. Let (R,m) be a d-dimensional formally equidimensional Noetherian
local ring of characteristic p > 0. If I and J are ideals in R, with J generated by a
full system of parameters, then

(1) ¢f(I) < d if and only if I C J.
(2) If, in addition, J C I, then I C J if and only if ¢ (I) = d.

Proof. Note that if J C I, then ¢’ (I) > ¢/ (J) = ¢/(J) = d, by Example 1. Hence
both assertions in (2) follow from the assertion in (1).

One implication in (1) is easy: if I C J, then we have ¢/ (I) < ¢/ (J) = ¢/(J) = d.
Conversely, suppose that ci(] ) < d. In order to show that I C .J, we may assume

that R is complete and reduced. Indeed, first note that the inverse image of J ﬁmd
in R is contained in J, hence it is enough to show that I ﬁred cJ ﬁred. Since J ﬁred
is again generated by a full system of parameters, and since we trivially have

/Bea(TReq) < /(1) < d,

we may replace R by }A%red.
Since R is complete and reduced, we can find a test element ¢ for R.

Claim. Let a,b be ideals of R such that a C v/b. Then cf (a) < « if and only if for
every power qo of p, we have al®d+4/% C pld for all ¢ = p® > ¢o.

Proof of Claim. First, assume that % (a) < a. By the definition of c% (a), for any
power qo of p, there exists ¢; such that v2(q)/q < a + 1/qy for all ¢ = p® > ¢;.
Thus, v%(¢q) < [aq] + q/q, that is, al®dl+@/@ C pld for all ¢ = p° > ¢;. For the
converse implication, note that by assumption, v%(q) < [aq] + ¢/qo — 1 for all large
q = p° > qo. Dividing by ¢ and taking the limit gives c%(a) < o+ 1/go. Since qp is
any power of p, we can conclude that cﬁ’r(a) <a. O

By the above claim, the assumption ¢ (I) < d implies that for all go = p* and

for all large ¢ = p°, we have
J9(d+1/a0)) C gldl.

Hence [2J2@=1+1/20)) C jlal and thus

17 C gl jad=1+(/a)) c (ja-d+i=(a/a))x

where the last containment follows from the colon-capturing property of tight closure
2, Theorem 7.15a]. We get ¢[? C cRNJI~4F1=(a/w0) C ¢ ja=d+1=(a/90)~ for some fixed
integer [ that is independent of ¢, by the Artin-Rees lemma. Since ¢ is a non-zero
divisor in R, it follows that

19 C Ja—d+1=(a/q0)=1 (1)



If v is a discrete valuation with center in m, we may apply v to (1) to deduce
qu(l) > (q —d+1- qio — l) v(J). Dividing by ¢ and letting ¢ go to infinity gives
v(l) > <1 — q%) v(J). We now let ¢y go to infinity to obtain v(/) > v(J). Since
this holds for every v, we have I C J. m

Two years ago (at the 27" Symposium on Commutative Algebra in Japan), we
proposed the following conjecture, generalizing a result in [5].

Conjecture 5 (cf. [6, Conjecture 3.2]). Let (R, m) be a d-dimensional Noetherian
local ring of characteristic p > 0. If J C m is an ideal generated by a full system of
parameters, and if a Cm is an m-primary ideal, then

e(a) > (%)d e(J).

Example 6. Let R = k[X,Y, Z]/(X?+Y?+ Z°) be a rational double point of type
Eg, with k a field of characteristic p > 0. Let a = (z,2) and J = (y,2). Then
e(a) = 3 and e(J) = 2. It is easy to check that ¢/(a) = 5/3 and ¢*(J) = 5/2. Thus,

e(@) =3 > ;—g _ (&?@)26(‘])’

e(J) =2 > % = <Ca(2j>)2e(a).

Two years ago, we reported the following result as an evidence of Conjecture 5.

Theorem 7 ([6, Proposition 3.3]). If (R, m) is a regular local ring of characteristic

p>0and J= (z7,...,25"), with x1, ..., x4 a full regular system of parameters for
R, and with ay, ...,aq positive integers, then the inequality given by Conjecture 5
holds.

We will conclude this article with a result related to the graded version of Con-
jecture 5.

Theorem 8. Let R = @dzo Ry be an n-dimensional graded Cohen-Macaulay ring
with Ry a field of characteristic p > 0. If a and J are ideals generated by full
homogeneous systems of parameters for R, then

e(a) > <C£”W)neu).

Proof. Suppose that a is generated by a full homogeneous system of parameters
x1,...,T, of degrees a; < --- < a, and J is generated by another homogeneous
system of parameters f1,..., f, of degrees d; < --- < d,. Fix a power g = p°¢ of p,



and define the nonnegative integers ¢\, ..., ¢\” | inductively as follows: ¢\ is the

least integer t such that «t € J4. If i > 2, then tl(-e) is the least integer ¢ such that

(e) (e) _
i T :Ez’:f 1:Bf € Jl4d. We also define the integer N®) to be the least integer N

such that IV C JI9. Note that N(© is greater than £\ + -+ + £/, — n 4+ 1. Since
the lim sup of the ratios (N© +n — 1)/p® is ¢ (a), it suffices to prove that

(N© +n—1)"ay---a, >n"¢"dy - - - d,.

First, we will show the following inequality for every i =1,...,n — 1:
90+ + 6%, > q(dy + -+ dy). (2)
(€) . {9 4l q 4l 91 9 -1 4
Let I;” be the ideal of R generated by z' .:1:1 Ty, xl ezt oxt L By

the definition of tge), Lt

) Ve )

we have that ] cJ [q]. The natural surjection of
R/ Ii(e) onto R/J induces a comparison map between the minimal free resolutions.
Looking at the i** free modules, we have the map

R(—t9a; — - — tge)ai) — @ R(—qd,, — -+ — qd,,).

1< << <n

In particular, unless this map is zero, tge)al 44 tge)ai must be at least as large as
the minimum of the twists, which is g(d; + - - - +d;). So it remains to see the reason
why this map cannot be zero. Assume it is zero: then the map

Tor®(R/I'”, R/b;) — TorF(R/J9, R/b;)

will be zero, where b; is the ideal generated by x1,...,z;. On the other hand, using
the Koszul complex on zq,...,x;, we see that this map can be identified with the
natural map
(1 6:) /1 — (J1 2 ;) 71,
(e) () _
Since the ideal I, (€) : b; is generated by xtl . a:fl " modulo Ii(e), the map is zero
© (@)

if and only if xi R ~xfl “is in J. However, this contradicts the definition of
(e)

4,

Next, we will prove the following estimate:
a4+ 4+t a4+ (N = — D~ Day > q(di+ -+ dy). (3)

Since a¥) C Jl@ we have that

(@, aNO) T C @ V) eV = (N N DN ),

The ideal (V' ... aN") 1 J14) is of the form (2, . .. N(e>,y(€)), where the extra

? TL

generator y(© has degree N (a; + --- +a,) — q(dy + - - - + d,,). We write

y(e) — E rm1...mnx7in1 e ZIZ’ZL”
mi+-+mp=(n—1)(N©-1)



e)

N© N(e)) {1

modulo (z7" ,...,z, ). Since zy' ---mn"_ffl is not in J9 we see that y(© is
not in (a:iV(E)_t§8>+l, . ,xg_(el)_tiezlﬂ,xnjv(e)). To check this, suppose that y(© is in
mi\f((i)*t(le)ﬂ, . ,xfj,(el)_tglﬂ, 2N, Then Jl = (2N 2N") 1 4© will contain
(N Ny ($11V<e)_tge>+1, . ,:B,]:[_(?itifllﬂ, Ny 5 :Btlge)_l E f}i_fil Thus,

SOMEe Ty, .m, Must be nonzero, where m; < N — tge) for 1 <i<n-—1and
m, < N© —1. Since the degree of D is greater than or equal to the minimal degree

of monomials 7" ... &' with r,,, ., nonzero, we can conclude that

degD = N9(a; + - +a,) — qld + -+ +d,)
> (N — Ny 4o+ (N =t Y+ (189 + -+ 89—t Da,

n—1 n—1 "

which implies the desired estimate.
To finish the proof, we will use the following claim.

Claim. Let ay,...,a, and (y, ..., 3, be two n-tuple of real numbers, and let 1 =
71 < v9 < - < 7, be another one. Assume that vy +---+va; > 101+ +706
foralle=1,...,n. Then oy +---+a, > 31+ -+ B,.

Proof of Claim. Let \; = a; — 3; for 1 <4 < n. Then 1A\ +--- + ;. A; > 0 for all
1 =1,...,n. We will prove that A\;+-- -4+, > 0 by induction on n. We may assume
that n is greater than one. The assertion is obvious if every A; > 0. Suppose that
A; < 0 for some i. Clearly ¢ > 2. Since v; > 7,_1, it follows from that v;A; < ;1 A;.
We then define v; = v; for 1 < j <4 —1and 7 = ;41 for i < j <n —1. Define
also Ny = Ay for 1 <j<i—2, N ) =N+ Nand X = \jp fori <j<n—1
Since Y1 A} + -+ +79j\; > 0 for all j = 1,...,n— 1, the induction hypothesis implies
that Ay +---+ A, =M +---+ X, _;, >0. O

Set o = tz(e) for1 <i<n-1and a, = N© —tge)—---—tffll%—n—l.
Set 3; = qd;/a; and v; = a;/aq for 1 < ¢ < n. Then 3 < --- < ~,, because

a; < --- < a,. The inequalities yyaq + -+ v > 71+ -+ b for 1 <1< n
follow from the estimates (1) and (2). Using the above claim, we can conclude that

d d,
N(e)—l-n—l:Oll‘i-"'—i-Oanﬂl‘l'---ﬁn:q(&—1+"'+a—)-
1 n

Comparing the arithmetic and geometric means of {qd;/a;};, we see that
(N(e) +n—1)"a...a, >n"¢"dy...d,.
[

Remark 9. Theorem 8 does not imply the graded (Cohen-Macaulay) version of Con-
jecture 5, because a minimal reduction of an R -primary homogeneous ideal is not
necessarily homogeneous.
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