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Abstract

We define local cohomology on a diagram of schemes, and discuss
basic properties of it. In particular, we prove the independence the-
orem and the flat base change for local cohomology on diagrams of
schemes. We also introduce the notion of G-localness of a G-scheme.
It is an equivariant analogue of localness of a scheme. As an appli-
cation, we prove that Cohen–Macaulay property is inherited by the
affine geometric quotient under the action of a linearly reductive group
scheme over a field. This generalizes the special case (that the ring
in question contains a field) of the theorem of Hochster and Eagon
on the Cohen–Macaulay property of an invariant subring under the
action of a finite group.

1. Introduction

Let S be a scheme, G a flat S-group scheme, and X a G-scheme (i.e.,
an S-scheme on which G acts). In [18], a G-linearization of an invert-
ible sheaf on X is defined. As quasi-coherent sheaves are important in
studying a scheme, G-linearized quasi-coherent sheaves are important in
studying a scheme with a group action. If S, G, and X = SpecA are all
affine, then the category Lin(G,X) of G-linearized quasi-coherent sheaves
on X is equivalent to the category of (G,A)-modules, see [8]. In partic-
ular, if S = Spec k = X with k a field, then Lin(G,X) is equivalent to
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the category of G-modules. However, the definition of a G-linearization
in [18] is complicated, and probably it is difficult to study the homolog-
ical algebra of Lin(G,X) only from the definition. In [9], the diagram
BM
G (X) of schemes is defined, and the category of quasi-coherent sheaves

Qch(G,X) = Qch(BM
G (X)) is studied. Note that Lin(G,X) and Qch(G,X)

are equivalent. The category Qch(X) of quasi-coherent sheaves on X is em-
bedded in the category of OX-modules Mod(X), and this embedding gives
some flexibility to the homological algebra of Qch(X). Similarly, Qch(G,X)
is embedded in Mod(G,X) := Mod(BM

G (X)), and the homological algebra
of Qch(G,X) is considered in Mod(G,X). Note that BM

G (X) is a diagram
of schemes of the form

G×S G×S X
1G×a−−→
µ×1X−−→
p23−−→

G×S X
a−−→
p2−−→ X,

where a : G×S X → X is the action, µ : G×S G→ G is the product, and p2

and p23 are appropriate projections. Thus the study of sheaves on diagrams
of schemes is important to study Lin(G,X).

Local cohomology is a powerful tool in commutative ring theory. Espe-
cially, the local cohomology H i

m on a local ring (A,m) is very important.
However, when we consider a group action, “local phenomena” sometimes
occur on non-affine schemes, see Example 8.19. Thus, to construct a the-
ory of equivariant local cohomology, it seems that we need to discuss local
cohomology on diagrams of not necessarily affine schemes.

The objective of this paper is to give foundations of local cohomology on
diagrams of schemes, and give an application to invariant theory. We also
introduce the notion of G-localness of a G-scheme.

The local cohomology is a derived functor of the local section functor ΓU,V
for a pair of open subdiagrams of schemes U and V of a diagram of schemes
X, such that U ⊃ V . As in the usual single schemes case, ΓU,V depends only
on U \ V . However, it is interesting to point out that U \ V may not be a
subdiagram of schemes. Moreover, not all families of locally closed subsets
(Zi) of Xi can be expressed as Zi = Ui \ Vi for a pair of open subdiagrams U
and V such that U ⊃ V .

As unbounded homological algebra is getting more and more important,
we discuss unbounded derived functor of ΓU,V . We introduce the notion of
K-flabby property over a diagram of schemes.
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Section 2 is preliminaries. Problems of commutativity of diagrams is
inevitable in studying sheaves over diagrams of schemes. In section 3, we
prove some basic commutativity of diagrams. We also prove that for a locally
quasi-coherent sheaf over a locally noetherian diagram of schemes, the local
section functor can be expressed in terms of some inductive limit of hom
functors. In section 4, we discuss local cohomology. We discuss K-flabby
property. In section 5, we slightly modify and discuss Kempf’s quasi-flabby
property. In section 6, we state and prove the flat base change. In the theory
of local cohomology for the usual single schemes, the flat base change and the
independence theorem (see Corollary 4.17) are important. We generalize and
prove these theorems. In section 7, we consider the group action. We consider
the local cohomology with a group action, the equivariant local cohomology.
This is realized as a cohomology on the diagram of schemes BM

G (X). We
prove that the local section functor ΓU,V is compatible with the G-invariance
functor. In section 8, we define an equivariant version of a local scheme, a G-
local G-scheme (Definition 8.13), give some examples, and prove some basic
properties. It seems that this notion has some importance in invariant theory,
since if G is a (strongly) geometrically reductive k-group scheme (see for the
definition, (8.22)), A a G-algebra, and p ∈ SpecAG, then Ap := A⊗AG AGp is
G-local (Proposition 8.27).

In section 9, applying equivariant local cohomology on a G-local G-
scheme, we prove

Theorem 9.5 Let k be a field, G a linearly reductive k-group scheme, and
X a Cohen–Macaulay noetherian G-scheme. Let π : X → Y be a geometric
quotient under the action of G in the sense of [18]. Assume that π is an
affine morphism. Then Y is noetherian and Cohen–Macaulay.

As we will show, this is a generalization of the special case (that the ring
in question contains a field) of the theorem of Hochster and Eagon on the
Cohen–Macaulay property of the invariant subrings under the action of finite
groups [11, Proposition 13].

The author is grateful to Professor Melvin Hochster for kindly communi-
cating Theorem 9.10 and Corollary 9.11 to the first named author.

2. Preliminaries

(2.1) We use the notation, terminology, and results from [9] freely (how-
ever, see (2.11)).
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(2.2) Let f : Y → X be a ringed continuous functor between ringed sites
as defined in [9, (2.3), (2.4), (2.19)]. As in [9], let PM(X) and Mod(X)
respectively denote the category of presheaves and sheaves of OX-modules.
Let f#

♥ : ♥(X) → ♥(Y) denote the canonical pull-back, and f♥# : ♥(Y) →
♥(X) denote its left adjoint, where ♥ denotes either PM or Mod.

For b, c ∈ Mod(Y), ∆Mod : fMod
# (b⊗ c)→ fMod

# b⊗ fMod
# c is the composite

of the following, see [9, (1.40), (2.19), (2.20), (2.52)]:

f#(b⊗ c) = af#qa(qb⊗p qc) ε−1⊗pε−1−−−−−→ af#qa(qaqb⊗p qaqc)
u⊗pu−−−→ af#qa(qaf#f#qb⊗p qaf#f#qc)

θ⊗pθ−−−→ af#qa(qf#af#qb⊗ qf#af#qc)
c⊗pc−−→ af#qa(f#qaf#qb⊗p f#qaf#qc)

mPM−−−→ af#qaf#(qaf#qb⊗p qaf#qc)

θ−→ af#qf
#a(qaf#qb⊗p qaf#qc)

c−→ af#f
#qa(qaf#qb⊗p qaf#qc)

ε−→ aqa(qaf#qb⊗p qaf#qc)
ε−→ a(qaf#qb⊗p qaf#qc) = f#b⊗ f#c.

See for the notation, [9, section 2]. It is easy to see that this composite map
agrees with

f#(b⊗ c) = af#qa(qb⊗p qc) u−1−−→ af#(qb⊗p qc) ∆PM−−−→
a(f#qb⊗p f#qc)

u⊗pu−−−→ a(qaf#qb⊗p qaf#qc) = f#b⊗ f#c,

see [9, Lemma 2.34].

2.3 Lemma. Let the notation be as above. If ∆PM : f#(qb⊗p qc)→ f#qb⊗p
f#qc is an isomorphism, then so is ∆Mod : f#(b⊗ c)→ f#b⊗ f#c.

Proof. Follows immediately by the discussion above and [9, Lemma 2.18].

(2.4) The map Γ(x,∆PM), the map ∆PM at the section at x ∈ X, is given
as follows. It is the map

Γ(x, f#(b⊗p c)) = lim−→Γ(x,OX)⊗Γ(y,OY) (Γ(y, b)⊗Γ(y,OY) Γ(y, c))

→ Γ(x, f#b⊗p f#c) =

(lim−→Γ(x,OX)⊗Γ(y′,OY) Γ(y′, b))⊗Γ(x,OX) (lim−→Γ(x,OX)⊗Γ(y′′,OY) Γ(y′′, c))

given by α ⊗ (β ⊗ γ) 7→ (α ⊗ β) ⊗ (1 ⊗ γ), where the colimits are taken
over y, y′, y′′ ∈ (Ifx )op, respectively. This description is obtained from the
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definition of ∆ [9, (1.40)] and the explicit descriptions of u, m, and ε in [9,
(2.20), (2.50)]. If the category (Ifx )op (cf. [9, (2.6)]) is filtered, then mapping
(α⊗β)⊗(α′⊗γ) to αα′⊗(β⊗γ), the inverse of Γ(x,∆PM) is given explicitly.
Thus we have:

2.5 Lemma. Assume that (Ifx )op is filtered for every x ∈ X. Then ∆PM :
f#(b⊗p c)→ f#b⊗p f#c is an isomorphism for b, c ∈ PM(Y). Hence ∆Mod :
f#(b′ ⊗ c′)→ f#b

′ ⊗ f#c
′ is an isomorphism for b′, c′ ∈ Mod(Y).

Note also that C : f#OY → OX is also an isomorphism, if (Ifx )op is filtered
for every x ∈ X.

(2.6) For b, c ∈ Mod(X), the evaluation map ev : [b, c] ⊗ b → c is the
composite

[b, c]⊗ b = a(q[b, c]⊗p qc) H̄−→ a([qb, qc]⊗p qc) evPM−−−→ aqc
ε−→ c,

where [b, c] denotes HomOX(b, c) and so on.

(2.7) Let the notation be as in (2.2). Assume that for any x ∈ X, the
category (Ifx )op is filtered. Then by Lemma 2.5, ∆PM and ∆Mod are isomor-
phisms. Thus P : f#[b, c] → [f#b, f#c] is defined for b, c ∈ Mod(Y), see [9,
(1.50)]. It is the composite

f#[b, c] = af#q[b, c]
ε−1−−→ aqaf#q[b, c]

tr−→ a[qaf#qb, qaf#q[b, c]⊗p qaf#qb]

P̄−→ [aqaf#qb, a(qaf#q[b, c]⊗p qaf#qb)]
ε−1−−→ [af#qb, a(qaf#q[b, c]⊗p qaf#qb)]

(u⊗pu)−1

−−−−−→ [af#qb, a(f#q[b, c]⊗p f#qb)]
∆−1−−→ [af#qb, af#(q[b, c]⊗ qb)]

u−→ [af#qb, af#qa(q[b, c]⊗ qb)] H−→ [af#qb, af#qa([qb, qc]⊗ qb)]
ev−→ [af#qb, af#qaqc]

ε−→ [af#qb, af#qc] = [f#b, f#c]

by [9, (2.48)] and (2.2). It is straightforward to check that this composite
map agrees with

(1) f#[b, c] = af#q[b, c]
H̄−→ af#[qb, qc]

P−→
a[f#qb, f#qc]

P̄−→ [af#qb, af#qc] = [f#b, f#c].
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(2.8) Let X be as in (2.7). By the definition of P ([9, (1.50)]) and the
explicit descriptions of tr, ∆, and ev in [9, (2.42)], (2.4), and [9, (2.41)], PPM

is described as follows. It is the map

Γ(x, f#[b, c]) = lim−→Γ(x,OX)⊗Γ(y,OY) HomOY/y(b|y, c|y)
→ HomOX/x((f#b)|x, (f#c)|x) = Γ(x, [f#b, f#c])

which sends β ⊗ ϕ to the map which sends β′ ⊗ α to ββ′ ⊗ ϕ(α) for β ∈
Γ(x,OX), ϕ : b|y → c|y, β′ ∈ Γ(x′,OX), and α ∈ Γ(y′, b) for some commuta-
tive diagram

x′ //

��

fy′

fρ

��

y′

ρ

��
x // fy y,

where the colimit is taken over y ∈ (Ifx )op.
Thus we get

2.9 Lemma. Let j : U → X be an open immersion of ringed spaces. Then
P : j∗[b, c]→ [j∗b, j∗c] is an isomorphism for b, c ∈ ♥(X) for ♥ = PM,Mod.

Proof. First consider the case that ♥ = PM. Then for V ⊂ U , Γ(V, P ) :
Γ(V, j∗[b, c])→ Γ(V, [j∗b, j∗c]) is the identity map of HomOV (b|V , c|V ). Thus
it is an isomorphism.

Now consider the case that ♥ = Mod. Then PMod is the composite

j∗[b, c] = aj∗q[b, c]
H̄−→ aj∗[qb, qc]

PPM−−→ a[j∗qb, j∗qc]
P̄−→ [aj∗qb, aj∗qc]

as described in (2.7). Note that H̄ is an isomorphism by definition [9,
Lemma 2.38]. PPM is an isomorphism, as we have just seen. P̄ is also
an isomorphism, since j∗qc is a sheaf, see [9, (2.39)]. Thus PMod is also an
isomorphism.

2.10 Proposition. Let f : X → Y be a morphism of schemes and b, c ∈
Mod(Y ). If one of the following conditions hold, then P : f ∗[b, c]→ [f ∗b, f ∗c]
is an isomorphism:

1 f is locally an open immersion. That is, there is an open covering (Uλ) of
X such that f |Uλ is an open immersion for every λ.

2 f is flat and b is coherent.
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Proof. We prove 1. By [9, Lemma 1.54], we may assume that f is an open
immersion, and this case is Lemma 2.9.

We prove 2. By [9, Lemma 1.54] and Lemma 2.9, we may assume that
both X and Y are affine. So there is a presentation of the form OnY → OmY →
b → 0. By the five lemma, we may assume that b = OY , and this case is
easy.

(2.11) Let I be a small category. For a category C, the functor category
Func(Iop, C) is denoted by P(I, C). We denote the category of schemes by
Sch. An object of P(I, Sch) is called an Iop-diagram of schemes. Although
in [9], whose notation we mainly use, diagrams of schemes are denoted by
X•, Y•, Z• and so on, we write X, Y , Z and so on for simplicity of notation.
Similarly, morphisms in P(I, Sch) are denoted by f•, g•, h• and so on in [9],
but we use f , g, h and so on for simplicity.

Let X ∈ P(I, Sch). For i ∈ I, X(i) is denoted by Xi. For φ ∈ Mor(I),
X(φ) is denoted by Xφ. For a property of schemes P, we say that X satisfies
P if Xi satisfies P for every i ∈ I. Let Q be a property of morphisms. We
say that X has Q arrows if Xφ satisfies Q for each φ ∈ Mor(I). Let S be a
scheme and consider the case X ∈ P(I, Sch/S). We say that X is Q over S
if the structure morphism Xi → S satisfies Q for each i. Let f : X → Y be a
morphism in P(I, Sch). We say that f is Q if fi is Q for each i. We say that
f is cartesian if the commutative diagram Yφfj = fiXφ is a cartesian square
for each (φ : i→ j) ∈ Mor(I).

For a subcategory J of I, the restriction of X• to J was written X•|J in
[9]. In this paper, X• is written X as mentioned before, and X|J is written
XJ for simplicity of notation. Similarly, for a morphism f of P(I, Sch), the
restriction of f to J is denoted by fJ rather than f |J .

(2.12) Let X ∈ P(I, Sch). As in [9], we denote the category ofOX-modules
by Mod(X). Let M ∈ Mod(X). The restriction of M to Xi is denoted by
Mi for i ∈ I. We say that M is locally quasi-coherent (resp. locally coher-
ent) if Mi is quasi-coherent (resp. coherent) for each i ∈ I. We say that
M is quasi-coherent (resp. coherent) if M is locally quasi-coherent (resp.
locally coherent) and equivariant [9, (4.14)]. We denote the full subcate-
gory of Mod(X) consisting of equivariant (resp. locally quasi-coherent, lo-
cally coherent, quasi-coherent, coherent) sheaves by EM(X) (resp. Lqc(X),
Lch(X), Qch(X), Coh(X)). The derived categories such as D(Mod(X)),
D+

Lqc(X)(Mod(X)), and Db
Qch(X)(Lqc(X)) are denoted by D(X), D+

Lqc(X),
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and Db
Qch(Lqc(X)), respectively for short.

2.13 Lemma. Let f : X → Y be a morphism in P(I, Sch), and b, c ∈
Mod(Y ). If one of the following holds, then

P : f ∗HomOY (b, c)→ HomOX (f ∗b, f ∗c)

is an isomorphism.

1 f is locally an open immersion and b is equivariant.

2 f is flat and b is coherent.

Proof. By [9, Lemma 1.59], the diagram

(?)if
∗[b, c] θ−1

//

P
��

f ∗i (?)i[b, c]
H // f ∗i [bi, ci]

P
��

(?)i[f
∗b, f ∗c] H // [(?)if

∗b, (?)if
∗c]

[θ,θ−1]// [f ∗i (?)ib, f
∗
i (?)ic]

is commutative for every i ∈ I, where [ , ] denotes the Hom sheaf. As b is
assumed to be equivariant in both cases, the horizontal arrows are isomor-
phisms by [9, Lemma 7.22] and [9, Lemma 6.33]. By Proposition 2.10, the
right-most vertical P is an isomorphism. Thus, the left most P is also an
isomorphism. As i is arbitrary, we are done.

A morphism of schemes is said to be concentrated if it is quasi-compact
and quasi-separated. A scheme X is said to be concentrated if the unique
morphism X → SpecZ is concentrated.

2.14 Lemma. Let

X ′
f ′ //

h
��

Y ′

g

��
X

f // Y

be a cartesian square in P(I, Sch), andM∈ Mod(Y ′). If one of the following
hold, then θ : f ∗g∗M→ h∗(f ′)∗M is an isomorphism.

1 f is locally an open immersion.

2 g is concentrated, f is flat, and M∈ Lqc(Y ′).
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Proof. Using [9, Lemma 1.22] twice, it is easy to see that the diagram

f ∗i (gi)∗(?)i
c //

θ
��

f ∗i (?)ig∗
θ // (?)if

∗g∗

θ
��

(hi)∗(f ′i)
∗(?)i

θ // (hi)∗(?)i(f
′)∗ c // (?)ih∗(f ′)∗

is commutative. As the horizontal arrows are isomorphisms, we may assume
that the all diagrams of schemes are single schemes.

We prove 1. The case that f is an open immersion is proved in the first
paragraph of the proof of [9, Lemma 7.12]. The general case follows from [9,
Lemma 1.23]. 2 is nothing but [9, Lemma 7.12].

3. Local section functor for diagrams

(3.1) Let X be an Iop-diagram of schemes. As in [9], the category of
presheaves and sheaves of abelian groups are denoted by PA(X) and AB(X),
respectively. Let U be an open subdiagram of schemes of X, and V be an
open subdiagram of schemes of U . Let f : U → X be the inclusion, and
g : V → U the inclusion.

For M ∈ Mod(X) or M ∈ AB(X), we denote the kernel of the unit of
adjunction

u : f∗f ∗M→ f∗g∗g∗f ∗M
by ΓU,V M. We denote the canonical inclusion ΓU,V M ↪→ f∗f ∗M by ι.
Note that the formation of ΓU,V is compatible with the forgetful functor
Mod(X)→ AB(X).

If U = X, there is an exact sequence

0→ ΓX,V M ι′−→M u−→ g∗g∗M,

where ι′ is the composite

ΓX,V M ι−→ (idX)∗(idX)∗M u−1−−→M.

3.2 Lemma. ΓU,V : Mod(X)→ Mod(X) is a left exact functor.
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Proof. Let 0 → L → M → N be an exact sequence in Mod(X). Since f ∗

and g∗ are exact and f∗ and g∗ are left exact, the diagram

0

��

0

��

0

��
0 // ΓU,V L ι //

��

f∗f ∗L u //

��

f∗g∗g∗f ∗L

��
0 // ΓU,V M ι //

��

f∗f ∗M u //

��

f∗g∗g∗f ∗M

��
0 // ΓU,V N ι // f∗f ∗N u // f∗g∗g∗f ∗N

has exact rows, and the second and the third columns are exact. Hence the
first column is exact, and the assertion follows.

(3.3) Let X, U , V , f , and g be as in (3.1). Let J be a subcategory of I.
Let M∈ Mod(X). Then we have a commutative diagram with exact rows

0→ ΓUJ ,VJMJ
ι // (fJ)∗f ∗JMJ

u //

c−1θ
��

(fJ)∗(gJ)∗g∗Jf
∗
JMJ

c−1c−1θθ
��

0→ (ΓU,V M)J
ι // (f∗f ∗M)J

u // (f∗g∗g∗f ∗M)J ,

where c−1θ is the composite isomorphism

(fJ)∗f ∗J (?)J
θ−→ (fJ)∗(?)Jf

∗ c−1−−→ (?)Jf∗f ∗,

see [9, Example 5.6, 2], [9, Lemma 6.25], and [9, Lemma 1.24]. Similarly,
c−1c−1θθ is the composite

(fJ)∗(gJ)∗g∗Jf
∗
J (?)J

θ−→ (fJ)∗(gJ)∗g∗J(?)Jf
∗ θ−→

(fJ)∗(gJ)∗(?)Jg
∗f ∗

c−1−−→ (fJ)∗(?)Jg∗g∗f ∗
c−1−−→ (?)Jf∗g∗g∗f ∗.

Thus we get a unique natural map

γ̂ = γ̂U,V,J : ΓUJ ,VJ (?)J → (?)J ΓU,V

such that ιγ̂ = c−1θι. Note that γ̂ is an isomorphism by the five lemma.
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3.4 Lemma. Let the notation be as above, and K a subcategory of J . Then
the composite

ΓUK ,VK (?)K
c−→ ΓUK ,VK (?)K,J(?)J

γ̂−→ (?)K,J ΓUJ ,VJ (?)J
γ̂−→ (?)K,J(?)J ΓU,V

c−1−−→ (?)K ΓU,V

is γ̂U,V,K.

Proof. Consider the diagram

ΓUK ,VK (?)K

c

��

ι //

(a)

(fK)∗f ∗K(?)K

c

��

ED

BC

c−1θ

oo

ΓUK ,VK (?)K,J(?)J

γ̂
��

ι //

(b)

(fK)∗f ∗K(?)K,J(?)J

c−1θ
��

(e)

(?)K,J ΓUJ ,VJ (?)J
ι //

γ̂

��
(c)

(?)K,J(fJ)∗f ∗J (?)J

c−1θ
��

(?)K,J(?)J ΓU,V

c−1

��

ι //

(d)

(?)K,J(?)Jf∗f ∗

c−1

��
(?)K ΓU,V

ι // (?)Kf∗f ∗ .

The commutativity of (a) and (d) is trivial. The commutativity of (b) and
(c) is by the definition of γ̂. The commutativity of (e) follows from [9,
Lemma 1.4] and [9, Lemma 1.22]. So the whole diagram is commutative,
and the assertion follows from the definition of γ̂.

(3.5) Let

(2) V ′
g′ //

hV
��

(a)

U ′
f ′ //

hU
��

(b)

X ′

h
��

V
g // U

f // X

be a commutative diagram in P(I, Sch) such that the horizontal arrows are
inclusion maps of open subdiagrams.
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By [9, Lemma 1.24], we have a commutative diagram with exact rows

(3) 0 // ΓU,V h∗
ι // f∗f ∗h∗

cθ
��

u // f∗g∗g∗f ∗h∗

ccθθ
��

0 // h∗ ΓU ′,V ′
ι // h∗f ′∗(f

′)∗ u // h∗f ′∗g
′
∗(g
′)∗(f ′)∗,

where cθ is the composite

f∗f ∗h∗
θ−→ f∗(hU)∗(f ′)∗

c−→ h∗f ′∗(f
′)∗,

and ccθθ is the composite

f∗g∗g∗f ∗h∗
θ−→ f∗g∗g∗(hU)∗(f ′)∗

θ−→ f∗g∗(hV )∗(g′)∗(f ′)∗

c−→ f∗(hU)∗g′∗(g
′)∗(f ′)∗

c−→ h∗f ′∗g
′
∗(g
′)∗(f ′)∗.

So a unique natural map

γ̄ = γ̄U,V,U ′,V ′,h : ΓU,V h∗ → h∗ ΓU ′,V ′

such that ιγ̄ = cθι is induced. In particular, considering the case that X ′ = X
and h is the identity,

γ̄ = γ̄U,V,U ′,V ′ : ΓU,V → ΓU ′,V ′

is defined.

3.6 Lemma. Assume that (a) and (b) in the diagram (2) are cartesian.
Then γ̄U,V,U ′,V ′,h is an isomorphism.

Proof. By the five lemma, it suffices to show that cθ and ccθθ in (3) are
isomorphisms. This is an immediate consequence of Lemma 2.14.

3.7 Lemma. Let

V ′′
g′′ //

kV
��

U ′′
f ′′ //

kU
��

X ′′

k
��

V ′
g′ //

hV
��

U ′
f ′ //

hU
��

X ′

h
��

V
g // U

f // X

12



be a commutative diagram in P(I, Sch) such that the horizontal maps are
inclusions of open subdiagrams. Then the composite

ΓU,V (hk)∗
c−→ ΓU,V h∗k∗

γ̄−→ h∗ ΓU ′,V ′ k∗
γ̄−→ h∗k∗ ΓU ′′,V ′′

c−1−−→ (hk)∗ ΓU ′′,V ′′

equals γ̄.

Proof. Consider the diagram

ΓU,V (hk)∗
ι //

c

��
(a)

f∗f ∗(hk)∗

c

��

ED

BC

cθ

oo

ΓU,V h∗k∗

γ̄

��

ι //

(b)

f∗f ∗h∗k∗

cθ
��

(e)

h∗ ΓU ′,V ′ k∗
ι //

γ̄

��
(c)

h∗f ′∗(f
′)∗k∗

cθ
��

h∗k∗ ΓU ′′,V ′′

c−1

��

ι //

(d)

h∗k∗f ′′∗ (f ′′)∗

c−1

��
(hk)∗ ΓU ′′,V ′′

ι // (hk)∗f ′′∗ (f ′′)∗ .

The commutativity of (a) and (d) is trivial. The commutativity of (b) and
(c) is by the definition of γ̄. The commutativity of (e) follows from [9,
Lemma 1.4] and [9, Lemma 1.22]. So the whole diagram is commutative,
and the assertion follows from the definition of γ̄.

3.8 Lemma. Let (2) be as in (3.5) and J a subcategory of I. Then the
diagram

ΓUJ ,VJ (?)Jh∗
γ̂ //

c

��

(?)J ΓU,V h∗
γ̄ // (?)Jh∗ ΓU ′,V ′

c

��
ΓUJ ,VJ (hJ)∗(?)J

γ̄ // (hJ)∗ ΓU ′J ,V ′J (?)J
γ̂ // (hJ)∗(?)J ΓU ′,V ′

is commutative.

13



Proof. Consider the diagram

ΓUJ ,VJ (?)Jh∗
γ̂ //

ι

��

GF

@A

c

//

(a)

(?)J ΓU,V h∗
γ̄ //

ι

��
(b)

(?)Jh∗ ΓU ′,V ′

ι

��

ED

BC

c

oo

(c)

(fJ)∗f ∗J (?)Jh∗

c

��

c−1θ // (?)Jf∗f ∗h∗
cθ //

(d)

(?)Jh∗f ′∗(f
′)∗

c

��
(e)

(fJ)∗f ∗J (hJ)∗(?)J
cθ //

(f)

(hJ)∗(f ′J)∗(f ′J)∗(?)J

(g)

c−1θ // (hJ)∗(?)Jf
′
∗(f
′)∗

ΓUJ ,VJ (hJ)∗(?)J

ι

OO

γ̄ // (hJ)∗ ΓU ′J ,V ′J (?)J

ι

OO

γ̂ // (hJ)∗(?)J ΓU ′,V ′

ι

OO

.

By the definition of γ̂, (a) and (g) are commutative. By the definition of γ̄,
(b) and (f) are commutative. The commutativity of (c) and (e) is trivial.
The commutativity of (d) follows from [9, Lemma 1.4] and [9, Lemma 1.22].
Since ι is a monomorphism, the assertion follows.

3.9 Lemma. Let (2) be as in (3.5). Assume that X = X ′ and h = id.
If Ui \ Vi = U ′i \ V ′i for any i ∈ I, then γ̄U,V,U ′,V ′ : ΓU,V → ΓU ′,V ′ is an
isomorphism.

Proof. In view of Lemma 3.8, we may assume that X is a single scheme.
Let M ∈ AB(X) or M ∈ Mod(X). For any open set W ⊂ X, we have a
commutative diagram with exact rows

0 // Γ(W,ΓU,V M) ι //

γ̄

��

Γ(W ∩ U,M) res //

res

��

Γ(W ∩ V,M)

res

��
0 // Γ(W,ΓU ′,V ′M) ι // Γ(W ∩ U ′,M) res // Γ(W ∩ V ′,M)

By assumption, U = V ∪ U ′ and V ′ = V ∩ U ′. So

0→ Γ(W ∩ U,M)→ Γ(W ∩ V,M)⊕ Γ(W ∩ U ′M)→ Γ(W ∩ V ′,M)

is exact. So γ̄ is bijective, as can be seen easily.
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(3.10) Let X ∈ P(I, Sch). Let Y be a cartesian closed subdiagram of
schemes of X. That is, Y is a subdiagram of schemes such that the inclusion
Y ↪→ X is a cartesian closed immersion. Let Z be a cartesian closed subdi-
agram of schemes of Y . Then letting Ui = Xi \ Zi, U = U(Z) is a cartesian
open subdiagram of schemes of X, and letting Vi = Xi \ Yi, V = U(Y ) is
a cartesian open subdiagram of schemes of U . Thus ΓY ;Z := ΓU(Z),U(Y ) is
defined.

If Z is empty, ΓY ;∅ is denoted by ΓY . There is an exact sequence

0→ ΓY
ι′−→ Id

u−→ g∗g∗,

where g : U(Y )→ X is the inclusion.
For a subcategory J of I, U(Y )J = U(YJ) and U(Z)J = U(ZJ). Thus the

isomorphism

γ̂Y ;Z;J := γ̂U(Z),U(Y ),J : ΓYJ ;ZJ
(?)J → (?)J ΓY ;Z

is defined, see (3.3). We denote γ̂Y ;∅;J by γ̂Y ;J .

(3.11) Let the notation be as above, and h : X ′ → X a morphism in
P(I, Sch). Then Y ′ := h−1(Y ) is a cartesian closed subdiagram of X ′,
and Z ′ := h−1(Z) is a cartesian closed subdiagram of Y ′. Thus γ̄Y ;Z;h :=
γ̄U(Z),U(Y ),U(Z′),U(Y ′),h is defined, see (3.5). We denote γ̄Y ;∅;h by γ̄Y ;h. By
Lemma 3.6, we immediately have

3.12 Lemma. Let the notation be as above. Then γ̄Y ;Z;h is an isomorphism.

(3.13) Let X ∈ P(I, Sch). A collection Z = (Zi)i∈I is called a locally
closed system of X if there exist some open subdiagram of schemes U of X
and an open subdiagram of schemes V of U such that Zi = Ui \ Vi. Such a
pair (U, V ) is called a UV-pair of Z. If Z is a locally closed system of X,
then Zi is a locally closed subset of Xi for any i. If ((Uλ, Vλ)) is a family
of UV-pairs of Z, then (

⋃
Uλ,
⋃
Vλ) is also a UV-pair of Z. So if Z is a

locally closed system of X, there is a largest UV-pair (U(Z), V (Z)) of Z.
We define ΓZ := ΓU(Z),V (Z) for a locally closed system Z of X. If (U, V ) is
a UV-pair of Z, then γ̄ : ΓZ → ΓU,V is an isomorphism by Lemma 3.9. If Z
is a cartesian closed subdiagram of schemes of X, then Z can be viewed as
a locally closed system of X, and ΓZ is defined. This definition of ΓZ agrees
with that defined in (3.10), and there is no confliction.
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(3.14) Let the commutative diagram (2) be as in (3.5). Assume that h is
flat. Then there is a commutative diagram with exact rows

0 // h∗ ΓU,V
ι // h∗f∗f ∗

dθ
��

u // h∗f∗g∗g∗f ∗

ddθθ
��

0 // ΓU ′,V ′ h
∗ ι // f ′∗(f

′)∗h∗ u // f ′∗g
′
∗(g
′)∗(f ′)∗h∗,

where dθ is the composite

h∗f∗f ∗
θ−→ f ′∗h

∗
Uf
∗ d−→ f ′∗(f

′)∗h∗,

and ddθθ is the composite

h∗f∗g∗g∗f ∗
θ−→ f ′∗h

∗
Ug∗g

∗f ∗
θ−→ f ′∗g

′
∗h
∗
V g
∗f ∗

d−→ f ′∗g
′
∗(g
′)∗h∗Uf

∗ d−→ f ′∗g
′
∗(g
′)∗(f ′)∗h∗.

So there is a unique natural map δ̄ = δ̄U,V,U ′,V ′,h : h∗ ΓU,V → ΓU ′,V ′ h
∗ such

that ιδ̄ = dθι.

3.15 Lemma. Assume that the squares (a) and (b) in (2) are cartesian, and
h is flat. Let M ∈ Mod(X). If one of the following conditions holds, then
δ̄ : h∗ ΓU,V M→ ΓU ′,V ′ h

∗M is an isomorphism.

1 h is locally an open immersion.

2 f and g are quasi-compact and M is locally quasi-coherent.

Proof. In both cases, θ : h∗f∗ → f ′∗h
∗
U and θ : h∗Ug∗ → g′∗h

∗
V are isomorphisms

by Lemma 2.14. The assertion follows from the five lemma.

(3.16) Let the notation be as in (3.11). Assume that h is flat. Then
we define δ̄Y ;Z;h := δ̄U(Z),U(Y ),h−1(U(Z)),h−1(U(Y )),h. By Lemma 3.15, if h is
locally an open immersion, or X is locally noetherian andM is locally quasi-
coherent, then δ̄Y ;Z;h is an isomorphism.

3.17 Lemma. Let the notation be as in Lemma 3.7. Assume that h and k
are flat. Then the composite

(hk)∗ ΓU,V
d−1−−→ k∗h∗ ΓU,V

δ̄−→ k∗ ΓU ′,V ′ h
∗ δ̄−→ ΓU ′′,V ′′ k

∗h∗
d−→ ΓU ′′,V ′′(hk)∗

is δ̄.
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Proof. Consider the diagram

(hk)∗ ΓU,V
ι //

d−1

��
(a)

(hk)∗f∗f ∗

d−1

��

ED

BC

dθ

oo

k∗h∗ ΓU,V

δ̄
��

ι //

(b)

k∗h∗f∗f ∗

dθ
��

(e)

k∗ ΓU ′,V ′ h
∗ ι //

δ̄
��

(c)

k∗f ′∗(f
′)∗h∗

dθ
��

ΓU ′′,V ′′ k
∗h∗

d
��

ι //

(d)

f ′′∗ (f ′′)∗k∗h∗

d
��

ΓU ′′,V ′′(hk)∗ ι // f ′′∗ (f ′′)∗(hk)∗ .

The commutativity of (a) and (d) is trivial. The commutativity of (b) and (c)
is by the definition of δ̄. The commutativity of (e) follows from the opposite
assertion of [9, Lemma 1.4] and [9, Lemma 1.23]. So the whole diagram is
commutative, and the assertion follows from the definition of δ̄.

3.18 Lemma. Let the notation be as in Lemma 3.8. Assume that h is flat.
Then the diagram

h∗J(?)J ΓU,V
γ̂−1

//

θ
��

h∗J ΓUJ ,VJ (?)J
δ̄ // ΓU ′J ,V ′J h

∗
J(?)J

θ
��

(?)Jh
∗ ΓU,V

δ̄ // (?)J ΓU ′,V ′ h
∗ γ̂−1

// ΓU ′J ,V ′J (?)Jh
∗

is commutative.
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Proof. Consider the diagram

h∗J(?)J ΓU,V

ι

��

GF

@A

θ

//

(a)

h∗J ΓUJ ,VJ (?)J
γ̂oo δ̄ //

ι

��
(b)

ΓU ′J ,V ′J h
∗
J(?)J

ι

��

ED

BC

θ

oo

(c)

h∗J(?)Jf∗f ∗

θ
��

h∗J(fJ)∗f ∗J (?)J
dθ //c−1θoo

(d)

(f ′J)∗(f ′J)∗h∗J(?)J

θ
��

(e)

(?)Jh
∗f∗f ∗

dθ //

(f)

(?)Jf
′
∗(f
′)∗h∗

(g)

(f ′J)∗(f ′J)∗(?)Jh
∗c−1θoo

(?)Jh
∗ ΓU,V

ι

OO

δ̄ // (?)J ΓU ′,V ′ h
∗

ι

OO

ΓU ′J ,V ′J (?)Jh
∗

ι

OO

γ̂oo .

By the definition of γ̂, (a) and (g) are commutative. By the definition of δ̄,
(b) and (f) are commutative. The commutativity of (c) and (e) is trivial.
The commutativity of (d) follows from [9, Lemma 1.22] and [9, Lemma 1.23].
Since ι is a monomorphism, the assertion follows.

3.19 Lemma. Let

VX′
gX′ //

hV

��

UX′
fX′ //

hU

��

X ′

h

��

VZ′

k′V
==zzzzzzzz gZ′ //

h̄V

��

UZ′

k′U
<<zzzzzzzz fZ′ //

h̄U

��

Z ′

k′
>>}}}}}}}}

h̄

��

V
g // U

f // X

VZ

kV

<<zzzzzzzz gZ // UZ

kU

<<yyyyyyyy fZ // Z

k
>>||||||||

be a commutative diagram in P(I, Sch). Assume that f , fZ, fX′, fZ′, g, gZ,
gX′, and gZ′ are inclusions of open subdiagrams. Assume that h and h̄ are
flat. Then the diagram

h∗k∗ ΓUZ ,VZ

θ
��

h∗ ΓU,V k∗
δ̄ //γ̄oo ΓUX′ ,VX′ h

∗k∗

θ
��

k′∗h̄
∗ ΓUZ ,VZ

δ̄ // k′∗ ΓUZ′ ,VZ′ h̄
∗ ΓUX′ ,VX′ k

′
∗h̄
∗γ̄oo

is commutative.
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Proof. Consider the diagram

h∗k∗ ΓUZ ,VZ

ι

��

GF

@A

θ

//

(a)

h∗ ΓU,V k∗
δ̄ //γ̄oo

ι

��
(b)

ΓUX′ ,VX′ h
∗k∗

ι

��

ED

BC

θ

oo

(c)

h∗k∗(fZ)∗f ∗Z

θ
��

h∗f∗f ∗k∗
dθ //cθoo

(d)

(fX′)∗f ∗X′h
∗k∗

θ
��

(e)

k′∗h̄
∗(fZ)∗f ∗Z

dθ //

(f)

k′∗(fZ′)∗f
∗
Z′h̄
∗

(g)

(fX′)∗f ∗X′k
′
∗h̄
∗cθoo

k′∗h̄
∗ ΓUZ ,VZ

ι

OO

δ̄ // k′∗ ΓUZ′ ,VZ′ h̄
∗

ι

OO

ΓUX′ ,VX′ k
′
∗h̄
∗γ̄oo

ι

OO

.

By the definition of γ̄, (a) and (g) are commutative. By the definition of δ̄,
(b) and (f) are commutative. The commutativity of (c) and (e) is trivial.
The commutativity of (d) follows from [9, Lemma 1.22] and [9, Lemma 1.23].
Since ι is a monomorphism, the assertion follows.

(3.20) Let X ∈ P(I, Sch). Assume that X has flat arrows. Let Y be a
cartesian closed subdiagram of schemes of X (that is, a closed subdiagram
such that the inclusion j : Y ↪→ X is cartesian) so that the defining ideal I
of Y is quasi-coherent. Set U := X \ Y . Then U is an open subdiagram of
schemes of X. Note that f : U → X is also cartesian.

As the sequence

I ⊗OX I ⊗OX · · · ⊗OX I → OX → OX/In → 0

is exact, OX/In is coherent for n ≥ 1, since coherent sheaves are closed under
tensor products and cokernels. Applying (?)i to the exact sequence, we have
that (OX/In)i ∼= OXi/Ini .

For M∈ Mod(X), there is a canonical monomorphism

ΦY : lim−→HomOX (OX/In,M)→M
induced by the obvious maps

Φn : HomOX (OX/In,M)→ HomOX (OX ,M) ∼=M.

The composite

(4) HomOX (OX/In,M)
ΦY−−→M u−→ f∗f ∗M
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factors through

f∗f ∗HomOX (OX/In,M) ∼= f∗HomOX (f ∗(OX/In), f ∗M).

As f ∗(OX/In) = 0, (4) is zero, and the monomorphism

ρY : lim−→HomOX (OX/In,M)→ ΓY M

such that ι′ρY = ΦY is induced.
By [9, Lemma 1.47], the diagram

(?)iHomOX (OX/In, ?)
Φn //

H
��

(?)i

id

��
HomOXi (OXi/I

n
i , ?)(?)i

Φn // (?)i

is commutative. Hence

(5) (?)i lim−→HomOX (OX/In, ?)
ρY //

∼=
��

(?)i ΓY

γ̂−1
Y ;i

��

lim−→(?)iHomOX (OX/In, ?)

H
��

lim−→HomOXi (OXi/I
n
i , ?)(?)i

ρYi // ΓYi(?)i

is also commutative.

3.21 Lemma. Let X ∈ P(I, Sch) be locally noetherian with flat arrows, and
Y its cartesian closed subdiagram. If M∈ Lqc(X), then

ρY : lim−→HomOX (OX/In,M)→ ΓY M

is an isomorphism.

Proof. SinceOX/In is coherent, H in (5) is an isomorphism by [9, Lemma 6.33].
Thus we may assume that X is a single scheme. This case is a special case
of [6, Theorem 2.8].
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4. Local cohomology for diagrams

(4.1) Let the notation be as in (3.1). For a complex M of Mod(X), the
right derived functor Ri ΓU,V M is denoted by H i

U,V (M), and we call it the
ith local cohomology sheaf of M.

For a cartesian closed subdiagram Y of X and a cartesian closed subdi-
agram Z of Y , Ri ΓY ;ZM is denoted by H i

Y ;Z(M). H i
Y ;∅(M) is denoted by

H i
Y (M).

(4.2) Let F ∈ K(Mod(X)). We say that F is K-flabby if for any i ∈ I, Fi
is K-flabby in the sense of [21]. By [9, Lemma 8.17], a weakly K-injective
complex is K-flabby. By [9, Proposition 8.2], a K-flabby complex is K-limp.
A single sheaf M ∈ Mod(X) is said to be flabby, if it is K-flabby as a
complex. By [21, Proposition 5.13],M is flabby if and only ifMi is a flabby
sheaf on the topological space Xi in the usual sense.

4.3 Proposition. Let the notation be as in (3.1). Let I be a K-flabby complex
in Mod(X). Then I is ΓU,V -acyclic.

Proof. Let ϕ : I→ J be a K-injective resolution, which exists, since Mod(X)
is Grothendieck, see [3]. Note that J is K-flabby. So replacing I by the
mapping cone of ϕ, we may assume that I is exact, and we need to prove that
ΓU,V (I) is exact. It suffices to prove that for any i ∈ I, (?)i ΓU,V (I) ∼= ΓUi,Vi(Ii)
is exact. So we may assume that X is a single scheme. To verify that ΓU,V (I)
is exact, it suffices to show that Γ(W,ΓU,V (I)) is exact for any open subset
W of X. Applying the functor Γ(W, ?) to the exact sequence

0→ ΓU,V
ι−→ f∗f ∗

u−→ f∗g∗g∗f ∗,

we get an exact sequence

0→ Γ(W, ?) ◦ ΓU,V → Γ(U ∩W, ?)
res−→ Γ(V ∩W, ?).

Letting Z := (U \ V ) ∩W , Γ(W, ?) ΓU,V is isomorphic to HomOX (OZ⊂X , ?).
By [21, Proposition 5.21], Γ(W,ΓU,V (I)) ∼= Hom•OX (OZ⊂X , I) is exact. This
is what we wanted to prove.

(4.4) Let (X,OX) be a ringed space, and F ∈ K(Mod(X)). Then F is
K-flabby if and only if F is K-flabby as a complex of sheaves of abelian
groups. To verify this, it suffices to show that if F is a K-injective complex
in Mod(X), then F is K-flabby as a complex of sheaves of abelian groups.
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Let G be a bounded above exact complex of sheaves of abelian groups, and
assume that each term of G is a direct sum of sheaves of the form ZZ⊂X for
some locally closed subset Z of X. Since G is Z-flat, G′ = OX ⊗ZG is again
exact. Thus

Hom•Z(G,F) ∼= Hom•OX (G′,F)

is exact by the K-injectivity of F. So F is K-flabby as a complex of sheaves
of abelian groups.

Similarly, a complex of OX-modules on a ringed site (X,OX) is K-limp if
and only if it is K-limp as a complex of sheaves of abelian groups.

4.5 Lemma ([21, Proposition 5.15]). Let f : X → Y be a continuous
map between topological spaces. If F is a K-flabby complex of sheaves of
abelian groups, then so is f∗F.

Similarly, If f : Y→ X is an admissible continuous functor (see [9, (2.8)])
between sites, and F is a K-limp complex of sheaves of abelian groups on X,
then f#F is also K-limp, see [9, Lemma 3.31].

4.6 Lemma. Let X be a topological space, U an open subset of X, and F
a K-flabby (resp. K-limp) complex of abelian groups. Then F|U is again
K-flabby (resp. K-limp).

Proof. Let ϕ : F → I be a K-injective resolution. Let i : U ↪→ X be the
inclusion. As i∗ has an exact left adjoint i!, i∗I is K-injective. Since i∗ is
exact, i∗ϕ : i∗F → i∗I is a K-injective resolution. Let J be the mapping
cone of ϕ. It suffices to show that for any locally closed subset Z (resp. open
subset V ) of U , ΓZ(U, i∗J) (resp. Γ(V, i∗J)) is exact. This is trivial, since
ΓZ(U, i∗J) ∼= ΓZ(X, J) (resp. Γ(V, i∗J) ∼= Γ(V, J)).

4.7 Lemma. Let X be a topological space, U , V , W , W ′ open subsets of X
such that V ⊂ U and W ′ ⊂ W . Set Z := W \W ′. Let F be a flabby sheaf of
abelian groups on X. Then the canonical map

ΓZ∩U(X,F )→ ΓZ∩V (X,F )

is surjective.

Proof. Let α ∈ ΓZ∩V (X,F ) = Ker(Γ(W ∩ V, F ) → Γ(W ′ ∩ V, F )). Then
there is a unique section α̃ ∈ Γ((W ′ ∩ U) ∪ (W ∩ V ), F ) such that the
restriction of α̃ to W ∩ V is α, and the restriction of α̃ to W ′ ∩ U is zero.
Since F is flabby, α̃ is extended to an element β of Γ(W ∩ U, F ). Then
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β ∈ Ker(Γ(W ∩U, F )→ Γ(W ′ ∩U, F )) = ΓZ∩U(X,F ), and the restriction of
β to W ∩ V is α. This shows that the canonical map

ΓZ∩U(X,F )→ ΓZ∩V (X,F )

is surjective.

4.8 Lemma (cf. [6, Lemma 1.6]). Let the notation be as in (3.1). Let I
be a K-flabby complex in Mod(X). Then ΓU,V I is again K-flabby.

Proof. We may assume that X is a single scheme.
Let W ′ ⊂ W ⊂ X be open subsets, and Z := W \W ′. As in the proof of

Proposition 4.3, it is easy to check that ΓZ(X, ?) ◦ ΓU,V is isomorphic to the
kernel of the map

Γ(U ∩W, ?)→ Γ(V ∩W, ?)⊕ Γ(U ∩W ′, ?).

Since this map factors through the injective map

Γ((V ∩W ) ∪ (U ∩W ′), ?)→ Γ(V ∩W, ?)⊕ Γ(U ∩W ′, ?),

ΓZ(X, ?)◦ΓU,V is isomorphic to ΓE(X, ?), where E is the locally closed subset
(U ∩W ) \ ((V ∩W ) ∪ (U ∩W ′)) = (U \ V ) ∩ (W \W ′).

First we consider the case that I is strictly injective (i.e., K-injective with
each term injective). Then

(6) 0→ ΓU,V I
ι−→ f∗f ∗I

u−→ f∗g∗g∗f ∗I→ 0

is exact, since each term of I is flabby. By Lemma 4.5 and Lemma 4.6,
f∗f ∗I and f∗g∗g∗f ∗I are K-flabby. So the (−1)-shift of the mapping cone of
u : f∗f ∗I → f∗g∗g∗f ∗I is a K-flabby resolution of ΓU,V I. So to verify that
ΓU,V I is K-flabby, it suffices to show that (6) remains exact after applying
ΓZ(X, ?) for any locally closed subset Z of X. Applying ΓZ(X, ?) to (6), we
get a sequence

(7) 0→ ΓE(X, I)→ ΓU∩Z(X, I)→ ΓV ∩Z(X, I)→ 0,

which is exact by Lemma 4.7, as can be seen easily, where E = (U \ V )∩Z.
Thus the case that I is strictly injective is done.

Next consider the general case. Let ϕ : I → J be a strictly injective
resolution, which exists, as Mod(X) is Grothendieck, see [3]. Since ΓU,V J
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is K-flabby, it suffices to show that for any locally closed subset Z of X,
ΓZ(X,ΓU,V I) → ΓZ(X,ΓU,V J) is a quasi-isomorphism. So letting K the
mapping cone of ϕ, it suffices to show that ΓZ(X,ΓU,V K) is exact. But this
is trivial, since ΓZ(X,ΓU,V K) ∼= ΓE(X,K), and K is K-flabby exact, where
E = (U \ V ) ∩ Z.

4.9 Lemma. Let X be a topological space, and F a complex of sheaves of
abelian groups. If F is K-limp and each term of F is flabby, then F is K-
flabby.

Proof. Let ϕ : F→ I be a strictly injective resolution. Note that I is K-limp,
and each term of I is flabby. So replacing F by the mapping cone of ϕ, we
may assume that F is exact, and we are to prove that ΓZ(X,F) is exact for
any locally closed subset Z of X. Let V ⊂ U ⊂ X be open subsets of X such
that U \ V = Z. Since each term of F is flabby,

0→ ΓZ(X,F)→ Γ(U,F)→ Γ(V,F)→ 0

is a short exact sequence of complexes. Since F is K-limp exact, Γ(U,F) and
Γ(V,F) are exact. Hence ΓZ(X,F) is also exact.

4.10 Lemma. Let the notation be as in (3.1). Then there is a triangle of
the form

RΓU,V
ι−→ Rf∗f ∗

u−→ Rf∗Rg∗g∗f ∗ → RΓU,V [1].

Proof. Let I be a K-limp complex with each term of I flabby. Then there is
a short exact sequence of complexes

0→ ΓU,V I
ι−→ f∗f ∗I

u−→ f∗g∗g∗f ∗I→ 0.

The lemma follows immediately.

4.11 Corollary. Let the notation be as in (3.1). If f and g are quasi-
compact, then RΓU,V (DLqc(X)) ⊂ DLqc(X). If f and g are quasi-compact
cartesian and X has flat arrows, then RΓU,V (DQch(X)) ⊂ DQch(X).

Proof. This follows from Lemma 4.10, [9, Lemma 8.5], [9, Lemma 8.7], and
[9, Lemma 8.20].

4.12 Lemma. Let the notation be as in (3.1). Assume that f : U ↪→ X and
g : V ↪→ U are quasi-compact. If X is quasi-compact and I is finite, then
RΓU,V : DLqc(X)→ DLqc(X) is way-out in both directions.
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Proof. Obvious by [9, Lemma 8.5] and Lemma 4.10.

4.13 Lemma. Let J be a subcategory of I. Then the canonical functor
ζ : R(ΓUJ ,VJ (?)J)→ RΓUJ ,VJ (?)J is an isomorphism.

Proof. This is because if I is a strictly injective complex of Mod(X), then IJ
is K-flabby.

By the lemma, we have an isomorphism

RΓUJ ,VJ (?)J
ζ−1−−→ R(ΓUJ ,VJ (?)J)

Rγ̂−→ R((?)J ΓU,V )
ζ−→ (?)JRΓU,V ,

which we denote simply by γ̂.

4.14 Lemma. Let the notation be as in (3.5). Then the canonical map
ζ : R(ΓU,V h∗)→ RΓU,V Rh∗ is an isomorphism.

Proof. Let I be a K-injective complex of OX′-modules. Then h∗I is K-flabby
by Lemma 4.5. So h∗I is ΓU,V -acyclic by Proposition 4.3, and the assertion
follows.

(4.15) By the lemma, the canonical map

RΓU,V Rh∗
ζ−1−−→ R(ΓU,V h∗)

γ̄−→ R(h∗ ΓU ′,V ′)
ζ−→ Rh∗RΓU,V ′ ,

which we denote by γ̄, is defined.

4.16 Lemma. Let the notation be as in (3.5). Then the canonical map
ζ : R(h∗ ΓU ′,V ′)→ Rh∗RΓU ′,V ′ is an isomorphism.

Proof. If I is a strictly injective complex of OX′-modules, then ΓU ′,V ′ I is
K-flabby by Lemma 4.8. The lemma follows immediately.

4.17 Corollary (Independence Theorem, cf. [2, (4.2.1)]). Let the no-
tation be as in (3.5), and assume that (a) and (b) in the diagram (2) are
cartesian. Then γ̄ : RΓU,V Rh∗ → Rh∗RΓU ′,V ′ is an isomorphism.

Proof. Follows immediately by the lemma and Lemma 3.6.
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(4.18) Let the notation be as in (3.1). Let W ⊂ V be an open subdiagram
of schemes, and h : W ↪→ V the inclusion. Let I be a complex in Mod(X).
Assume that each term of Ii is flabby for any i ∈ I. Then the diagram

0

��
0

��

0

��

ΓV,W I

d−1cι
��

0 // ΓU,V I ι //

γ̄

��

f∗f ∗I u //

id

��

f∗g∗g∗f ∗I //

u

��

0

0 // ΓU,W I ι // f∗f ∗I

��

uu // f∗g∗h∗h∗g∗f ∗I

��

// 0

0 0

is commutative with exact rows and columns, where d−1cι is the composite

ΓV,W
ι−→ (fg)∗(fg)∗

c−→ f∗g∗(fg)∗
d−1−−→ f∗g∗g∗f ∗.

Utilizing the snake lemma, it is easy to see that the sequence

0→ ΓU,V I
γ̄−→ ΓU,W I

γ̄−→ ΓV,W I→ 0

is exact. Thus we have a triangle

RΓU,V
γ̄−→ RΓU,W

γ̄−→ RΓV,W
δ̂−→ RΓU,V [1],

where δ̂ is induced by

ΓV,W
� � // Cone(ΓU,W

γ̄−→ ΓV,W ) ΓU,V [1],
γ̄

'
oo

where ' means a quasi-isomorphism.

5. Quasi-flabby sheaves

(5.1) The following definition is due to Kempf [16], although we make a
slight modification here.
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5.2 Definition. Let X be a topological space. A presheaf M of abelian
groups on X is said to be quasi-flabby if the restriction map Γ(U,M) →
Γ(V,M) is surjective for any quasi-compact open subsets U and V such that
U ⊃ V .

Note that a flabby sheaf is quasi-flabby. For the sake of completeness, we
list Kempf’s results for this modified definition.

5.3 Lemma ([16]). Let X be a topological space such that the intersection
of two quasi-compact open subsets is again quasi-compact. Let

0→ L →M→N → 0

be a short exact sequence of sheaves of abelian groups. If L is quasi-flabby
and U is a quasi-compact open subset of X, then the sequence

0→ Γ(U,L)→ Γ(U,M)→ Γ(U,N )→ 0

is exact.

5.4 Corollary. Let X be as in the lemma. Let

0→ L →M→N → 0

be a short exact sequence of sheaves of abelian groups. If L and M are
quasi-flabby, then so is N .

5.5 Corollary. Let X be as in the lemma. If L is quasi-flabby and U is a
quasi-compact open subset, then H i(U,L) = 0 for i > 0.

5.6 Lemma. Let f : X → Y be a continuous map of topological spaces.
Assume that Y has an open basis consisting of quasi-compact open subsets,
and f−1(U) is quasi-compact if U is a quasi-compact open subset of Y . As-
sume moreover that Y has an open covering (Uλ) such that for any λ and
quasi-compact open subsets V , V ′ of f−1(Uλ), V ∩V ′ is again quasi-compact.
Then for a short exact sequence

0→ L →M→N → 0

of sheaves of abelian groups on X with L quasi-flabby, the sequence

0→ f∗L → f∗M→ f∗N → 0

is exact.
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Proof. It suffices to show that (f |f−1(Uλ))∗M|f−1(Uλ) → (f |f−1(Uλ))∗N|f−1(Uλ)

is surjective for each λ. Since L|f−1(Uλ) is quasi-flabby for each λ, we may
assume that for any two quasi-compact open subsets V , V ′ of X, V ∩ V ′ is
quasi-compact, replacing f : X → Y by f |f−1(Uλ) : f−1(Uλ)→ Uλ.

Since there is an open basis of Y consisting of quasi-compact open sub-
sets, it suffices to show that Γ(U, f∗M) → Γ(U, f∗N ) is surjective for any
quasi-compact open subset U of Y . Since f−1(U) is quasi-compact, this is
Lemma 5.3.

5.7 Corollary. Let f : X → Y be as in the lemma. Then if L is a quasi-
flabby sheaf of abelian groups on X, then Rif∗L = 0 for i > 0.

Proof. The question is local on Y , and we may assume that for any two
quasi-compact open subsets V , V ′ of X, V ∩V ′ is again quasi-compact. Take
a short exact sequence of the form

0→ L → I p−→ L′ → 0

with I injective. Since an injective sheaf is quasi-flabby, L′ is quasi-flabby
by Corollary 5.4.

We use the induction on i. Note that

f∗I f∗p−−→ f∗L′ → R1f∗L → R1f∗I

is exact. Since I is injective, R1f∗I = 0. On the other hand, f∗p is surjective
by the lemma. So R1f∗L = 0.

Consider the case that i ≥ 2. Then RiL ∼= Ri−1L′ = 0 by induction.

5.8 Lemma. Let X be a topological space. Assume that X has an open
basis consisting of quasi-compact open subsets. Let U be a quasi-compact
open subset of X, and (Mλ) a pseudo-filtered inductive system of sheaves of
abelian groups on X. Then the canonical map

lim−→Γ(U,Mλ)→ Γ(U, lim−→Mλ)

is an isomorphism.

5.9 Corollary. Let X be as in the lemma. Then a filtered inductive limit of
quasi-flabby sheaves is quasi-flabby.
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5.10 Corollary. Let f : X → Y be a quasi-compact morphism in P(I, Sch).
If (Mλ) is a pseudo-filtered inductive system of sheaves of abelian groups on
X, then the canonical map

lim−→ f∗Mλ → f∗ lim−→Mλ

is an isomorphism.

Proof. By restriction, we may assume that the problem is on single schemes.
Since Y has an open basis consisting of quasi-compact open subsets, it suffices
to show that for a quasi-compact open subset U of Y ,

(8) Γ(U, lim−→ f∗Mλ)→ Γ(U, f∗ lim−→Mλ)

is an isomorphism. Since U and f−1(U) are quasi-compact, the canonical
maps

lim−→Γ(U, f∗Mλ)→ Γ(U, lim−→ f∗Mλ)

and
lim−→Γ(f−1(U),Mλ)→ Γ(f−1(U), lim−→Mλ)

are isomorphisms by Lemma 5.8. Hence the map (8) is also an isomorphism,
as required.

5.11 Lemma. Let X ∈ P(I, Sch), U an open subdiagram of X, and V
an open subdiagram of U . Assume that the inclusions f : U ↪→ X and
g : V → U are quasi-compact. Then for a pseudo-filtered inductive system
(Mλ) of OX-modules, the canonical map

lim−→ΓU,V Mλ → ΓU,V lim−→Mλ

is an isomorphism.

Proof. Consider the commutative diagram with exact rows

0 // lim−→ΓU,V Mλ
ι //

��

lim−→ f∗f ∗Mλ
u //

��

lim−→ f∗g∗g∗f ∗Mλ

��
0 // ΓU,V lim−→Mλ

ι // f∗f ∗ lim−→Mλ
u // f∗g∗g∗f ∗ lim−→Mλ.

The middle and the right vertical arrows are isomorphisms by Corollary 5.10.
By the five lemma, we are done.
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5.12 Lemma. Let f : X → Y be a concentrated morphism in P(I, Sch). Let
I be an OX-module such that Ii is quasi-flabby for each i ∈ I. Then I is
f∗-acyclic.

Proof. We may assume that the problem is on a single scheme. This case is
Corollary 5.7.

5.13 Lemma. Let X ∈ P(I, Sch), and U an open subdiagram of schemes
of X, and V an open subdiagram of schemes of U . Let f : U ↪→ X and
g : V ↪→ U be inclusions. Assume that f and g are concentrated. If M is a
quasi-flabby sheaf of abelian groups on X, then

0→ ΓU,V M ι−→ f∗f ∗M u−→ f∗g∗g∗f ∗M→ 0

is exact.

Proof. It suffices to show that for a quasi-compact open subset W of X, the
restriction Γ(U ∩W,M)→ Γ(V ∩W,M) is surjective. This is trivial.

5.14 Corollary. Let the notation be as in the lemma. Then M is ΓU,V -
acyclic.

Proof. Note that f ∗M is quasi-flabby, and hence is f∗-acyclic. Similarly,
g∗f ∗M is (fg)∗-acyclic. The lemma follows from the long exact sequence

0→ ΓU,V M ι−→ f∗f ∗M u−→ f∗g∗g∗f ∗M→
H1
U,V M→ R1f∗f ∗M→ R1(fg)∗(fg)∗M→ · · · ,

in which u : f∗f ∗M→ f∗g∗g∗f ∗M is surjective.

(5.15) Let A be an abelian category, and C a complex in A. For n ∈ Z,
we define τ≤nC to be the truncated complex

· · · → Cn−2 → Cn−1 → Ker dn → 0.

τ≥nC is defined to be the complex

0→ Coker dn−1 → Cn+1 → Cn+2 → · · · ,

which is quasi-isomorphic to C/τ≤n−1C.
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5.16 Lemma (cf. [17, (3.9.3.1)]). Let X, f : U → X, and g : V → U be as
in Lemma 5.13. Let (Cα) be a pseudo-filtered inductive system of complexes
of OX-modules such that for each j ∈ I, there exists some nj ∈ Z such that
for any α, τ≤nj−1(Cα)j is exact. Set C = lim−→Cα. Then the canonical map

(9) lim−→H i
U,V Cα → H i

U,V C

is an isomorphism for i ∈ Z.

Proof. We may assume that the problem is on single schemes. Let n be an
integer such that for any α, τ≤n−1Cα is exact.

As in the proof of [17, (3.9.3.1)], let τ≥nCα → Fα be the Godement
resolution so that we have a composite quasi-isomorphism Cα → τ≥nCα →
Fα. Note that each term of Fα is flabby. In particular, this is a ΓU,V -acyclic
resolution. Then taking the inductive limit, we have a quasi-isomorphism
C → F := lim−→Fα. Note that each term of F is quasi-flabby by Corollary 5.9.
So this is also a ΓU,V -acyclic resolution.

So the map (9) is nothing but the composite

lim−→H i(ΓU,V Fα)
∼=−→ H i(lim−→ΓU,V Fα)

∼=−→ H i(ΓU,V lim−→Fα) = H i(ΓU,V F ),

where the second ∼= is an isomorphism by Lemma 5.11. This is what we
wanted to prove.

6. Flat base change of local cohomology of diagrams

(6.1) Let the commutative diagram (2) be as in (3.5). Assume that h is
flat. Then there is a canonical composite map

h∗RΓU,V
ζ−1−−→ R(h∗ ΓU,V )

Rδ̄−→ R(ΓU ′,V ′ h
∗)

ζ−→ RΓU ′,V ′ h
∗,

which we denote by δ̄.

6.2 Lemma. Let the notation be as above. If h is an open immersion, then
ζ : R(ΓU ′,V ′ h

∗)→ RΓU ′,V ′ h
∗ is an isomorphism.

Proof. Let I be a K-injective complex of OX-modules. Then, by Lemma 4.6,
h∗I is K-flabby, and hence is ΓU ′,V ′-acyclic. The assertion follows.
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6.3 Corollary. Let the commutative diagram (2) be as in (3.5). If h is locally
an open immersion and (a) and (b) are cartesian in (2), then δ̄ : h∗RΓU,V →
RΓU ′,V ′ h

∗ is an isomorphism.

Proof. For i ∈ I, the diagram

h∗iRΓUi,Vi(?)i
γ̂ //

δ̄
��

h∗i (?)iRΓU,V
θ // (?)ih

∗RΓU,V

(?)iδ̄
��

RΓU ′i ,V ′i h
∗
i (?)i

θ // RΓU ′i ,V ′i (?)ih
∗ γ̂ // (?)iRΓU ′,V ′ h

∗

is commutative by Lemma 3.8. It suffices to show that the right vertical
arrow (?)iδ̄ is an isomorphism. So it suffices to show that the left vertical
arrow δ̄ : h∗iRΓUi,Vi(?)i → RΓU ′i ,V ′i h

∗
i (?)i is an isomorphism. Hence we may

assume that the problem is on single schemes.
First assume that h is an open immersion. Then the assertion follows

immediately from the lemma, and Lemma 3.15.
Now consider the general case. Take an open covering

⋃
λWλ of X ′ such

that h|Wλ
is an open immersion for each λ. It suffices to show that j∗δ̄ :

j∗h∗RΓU,V → j∗RΓU ′,V ′ h
∗ is an isomorphism for each λ, where j : W =

Wλ → X ′ is the inclusion. However, the diagram

j∗h∗RΓU,V
d−1

//

j∗δ̄
��

(hj)∗RΓU,V

δ̄
��

j∗RΓU ′,V ′ h
∗ δ̄ // RΓW∩U ′,W∩V ′ j

∗h∗ d−1
// RΓW∩U ′,W∩V ′(hj)

∗

is commutative by Lemma 3.17, and the all arrows except for j∗δ̄ are isomor-
phisms by what we have already proved. Hence j∗δ̄ is also an isomorphism,
as desired.

6.4 Lemma (cf. [17, (3.9.3.2)]). Let X, f : U → X, and g : V → U be as
in Lemma 5.13. Let (Cα) be a pseudo-filtered inductive system of complexes
in Mod(X). Assume one of the following.

a) U is locally noetherian, and for each i ∈ I, Ui admits an open covering
(Uα) such that each Uα is of finite Krull dimension.

b) Cα has locally quasi-coherent cohomology groups for each α.
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c) For each j ∈ I, there exists some nj ∈ Z such that for any α, τ≤nj−1(Cα)j
is exact.

Then the canonical map

lim−→H i
U,V Cα → H i

U,V C

is an isomorphism for i ∈ Z, where C = lim−→Cα.

Proof. The case that c) is satisfied is Lemma 5.16. We consider the case that
a) or b) is satisfied.

By restriction, we may assume that the problem is on a single scheme.
Also, by Corollary 6.3, we may assume that X is an affine scheme.

As we assume a) (resp. b)), there exists some d0 ∈ Z such that for any
i ∈ Z, any d ≥ d0, and any complex D in Mod(X) (resp. any complex D
in Mod(X) with quasi-coherent cohomology groups), Rif∗f ∗(τ≤i−dD) = 0
and Ri(gf)∗(gf)∗(τ≤i−dD) = 0, see [17, Remarks in (3.9.3.2)]. This implies
that H i

U,V (τ≤i−dD) = 0 for any i ∈ Z, d ≥ d0 + 1, and any complex D in
Mod(X) (resp. any complex D in Mod(X) with quasi-coherent cohomology).
So H i

U,V (D)→ H i
U,V (τ≥i−dD) is an isomorphism for d ≥ d0. As the square

lim−→H i
U,V (Cα)

∼= //

��

lim−→H i
U,V (τ≥i−d0Cα)

��
H i
U,V (C)

∼= // H i
U,V (τ≥i−d0C)

is commutative, replacing Cα by τ≥i−d0Cα, we may assume that there exists
some n ∈ Z such that τ≤n−1Cα is exact for each α. This is the case where c)
is assumed, and we are done.

6.5 Corollary (cf. [17, (3.9.3.3)]). Let X, f : U → X, and g : V → U
be as in the lemma. Let (Cα) be a small family of complexes in Mod(X). If
one of a), b), and c) in the lemma is satisfied, then the canonical map

⊕
α

RΓU,V Cα → RΓU,V (
⊕
α

Cα)

is an isomorphism.

6.6 Corollary. Let X, f : U → X, and g : V → U be as in the lemma. If
X is concentrated, then RΓU,V : DLqc(X)→ DLqc(X) has a right adjoint.
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Proof. Note that DLqc(X) is compactly generated by [9, Lemma 17.1]. The
corollary follows from Corollary 6.5 and Neeman’s theorem [19, Theorem 4.1].

6.7 Corollary (cf. [17, (3.9.3.4)]). Under the assumptions of Lemma 6.4,
if each Cα is ΓU,V -acyclic, then C is ΓU,V -acyclic.

Proof. By assumption, H i(ΓU,V Cα) → H i
U,V Cα is an isomorphism for each

i ∈ Z and α. Taking the inductive limit, the composite

H i(ΓU,V C) ∼= lim−→H i(ΓU,V Cα) ∼= lim−→H i
U,V Cα

∼= H i
U,V C

is an isomorphism, where the first ∼= is an isomorphism is by Lemma 5.11,
and the last ∼= is an isomorphism by Lemma 6.4. So C is ΓU,V -acyclic.

6.8 Corollary (cf. [17, (3.9.3.5)]). Let X, f : U → X, and g : V → U be
as in Lemma 5.13. Let C be a complex in Mod(X), and assume one of the
following.

a) U is locally noetherian, and for each i ∈ I, Ui admits an open covering
(Uα) such that each Uα is of finite Krull dimension, and for each i ∈ I,
each term of Ci is quasi-flabby.

b) X is locally noetherian, and for each i ∈ I, each term of Ci is an injective
object of Qch(Xi).

Then C is ΓU,V -acyclic.

Proof. Let C → I be a K-injective resolution. Then Ii is ΓUi,Vi-acyclic for
each i ∈ I, since Ii is K-flabby. So it suffices to show that each Ci is ΓUi,Vi-
acyclic, and we may assume that the problem is on single schemes.

In each case, each term Cn of C is ΓU,V -acyclic. Indeed, in case a), this is
Corollary 5.14. In case b), this is obvious, since an injective object of Qch(X)
is an injective object of Mod(X) [7, (II.7)]. Thus the truncated subcomplex

σ≥nC : · · · → 0→ 0→ Cn → Cn+1 → · · ·
of C is ΓU,V -acyclic for any n ∈ Z. Since C ∼= lim−→σ≥nC, the assertion follows
from Corollary 6.7.

6.9 Lemma. Let h : X ′ → X be a flat morphism between locally noetherian
schemes. Let Y be a closed subscheme of X. Let I be an injective object of
Qch(X). Then h∗I is ΓY ′-acyclic, where Y ′ := h−1(Y ).
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Proof. By [7, Theorem II.7.18], h∗I has an injective resolution J in Qch(X ′).
It is an injective resolution in Mod(X ′) as well, see [7, (II.7)]. Let I be the
defining ideal sheaf of Y . Then Y ′ is defined by IOY ′ . So by Lemma 3.21
and [7, Proposition II.5.8],

Ri ΓY ′(I) = H i(ΓY ′(J)) ∼= H i(lim−→HomOX′ (h
∗(OX/In), J))

∼= lim−→ExtiOX′ (h
∗(OX/In), h∗I) ∼= lim−→h∗(ExtiOX (OX/In, I)) = 0

for i > 0.

6.10 Theorem (Flat base change, cf. [2, Theorem 4.3.2]). Let h :
X ′ → X be a flat morphism in P(I, Sch). Assume that X and X ′ are locally
noetherian. Let Y be a cartesian closed subdiagram of schemes of X, and
Z a cartesian closed subdiagram of schemes of Y . Then the canonical map
δ̄ : h∗RΓY ;Z → RΓY ′;Z′ h

∗ is an isomorphism of functors from DLqc(X) to
DLqc(X

′), where Y ′ = h−1(Y ) and Z ′ = h−1(Z).

Proof. By an argument similar to the proof of Corollary 6.3, we may assume
that the problem is on single schemes. Moreover, the question is local both
on X and X ′ by Corollary 6.3, we may assume that both X = SpecA and
X ′ = SpecB are affine.

Now by Lemma 4.12, ΓY ;Z : DLqc(X)→ DLqc(X) and ΓY ′;Z′ : DLqc(X
′)→

DLqc(X
′) are way-out in both directions.

By the way-out lemma [7, Proposition I.7.1], it suffices to show that
δ̄ : h∗RΓY ;Z I → RΓY ′;Z′ h

∗I is an isomorphism for an injective object I of
Qch(X).

Note that δ̄ is the composite

h∗RΓY ;Z I ζ−1−−→ R(h∗ ΓY ;Z)I Rδ̄−→ R(ΓY ′;Z′ h
∗)I ζ−→ RΓY ′,Z′ h

∗I.
So it suffices to show that Rδ̄ and ζ are isomorphisms.

By Lemma 3.15, δ̄ : h∗ ΓY ;Z I → ΓY ′;Z′ h
∗I is an isomorphism. Since I is

injective in Mod(X) [7, (II.7)], Rδ̄ is an isomorphism.
To prove that ζ is an isomorphism, it suffices to prove that h∗I is ΓY ′;Z′-

acyclic. By (4.18), there is an exact sequence

· · · → H i
Z(h∗I)→ H i

Y (h∗I)→ H i
Y ;Z(h∗I)→ H i+1

Z (h∗I)→ · · · .

By Lemma 6.9, H i
Y (h∗I) = 0 (i > 0) and H i

Z(h∗I) = 0 (i > 0). So
H i
Y ;Z(h∗I) = 0 for i > 0, as desired.
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7. Compatibility with G-invariance

(7.1) Let S be a scheme, G a flat S-group scheme, and X an S-scheme
with a trivial G-action. As in [9, (30.1)], we denote the G-invariance functor
Mod(G,X) → Mod(X) by (?)G. By [9, Lemma 30.3], (?)G agrees with
(?)−1R∆M

, where R∆M
: Mod(G,X) = Mod(BM

G (X)) → Mod(B̃M
G (X)) is

the right induction, where B̃M
G (X) is the augmented diagram described in

[9, (30.2)]. If G is concentrated over S, then (?)G(Lqc(G,X)) ⊂ Qch(X).
Note that B̃M

G (X)∆M
= BM

G (X). As in [9, section 29], for a G-morphism f ,
BM
G (f)∗ is simply denoted by f∗, BM

G (f)∗ is denoted by f ∗, and so on.
(?)G = (?)−1R∆M

has an exact left adjoint (?)∆M
L−1. So

(?)G : Mod(G,X)→ Mod(X)

preserves injectives, and R(?)G : D(G,X)→ D(X) preserves K-injectives.
It seems that the following question is fundamental.

7.2 Question. Let I be an injective object of Qch(G,X). Then Ri(?)GI = 0
for i > 0?

This is not obvious a priori, since the derived functor is computed in
D(G,X).

(7.3) Let f : X → Y be a morphism of S-schemes with trivial G-actions.
Then B̃M

G (f) : B̃M
G (X) → B̃M

G (Y ) is induced. Note that B̃M
G (f) is cartesian.

The composite isomorphism

e = ef : f∗(?)G = f∗(?)−1R∆M

c−1−−→ (?)−1B̃
M
G (f)∗R∆M

ξ−→ (?)−1R∆M
BM
G (f)∗ = (?)Gf∗

is induced, see [9, Corollary 6.26].

(7.4) Moreover, the natural map

ε = εf : f ∗(?)G = f ∗(?)−1R∆M

θ−→ (?)−1B̃
M
G (f)∗R∆M

µ−→ (?)−1R∆M
BM
G (f)∗ = (?)Gf ∗

is induced, see [9, (6.27)]. Note that θ is an isomorphism [9, (6.25)]. Exactly
the same proof as in [9, (10.7)] shows that µ is an isomorphism of functors
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from Lqc(G, Y ) to Qch(X), provided f is flat and G is concentrated over S.
Similarly, µ is an isomorphism of functors from Mod(G, Y ) to Mod(X) if f
is locally an open immersion. Thus we have

7.5 Lemma. Let f : X → Y be an S-morphism between S-schemes with
trivial G-actions. If f is flat and G is concentrated over S, then

ε : f ∗(?)G → (?)Gf ∗

is an isomorphism between functors from Lqc(G, Y ) to Qch(X). If f is lo-
cally an open immersion, then ε is an isomorphism between functors from
Mod(G, Y ) to Mod(X).

7.6 Lemma. Let f : X → Y be as in (7.3). Then the diagram

(?)G
u //

id
��

f∗f ∗(?)G

eε

��
(?)G

u // (?)Gf∗f ∗

is commutative.

Proof. We need to prove that the composite

(?)−1R∆M

u−→ f∗f ∗(?)−1R∆M

θ−→ f∗(?)−1B̃
M
G (f)∗R∆M

µ−→ f∗(?)−1R∆M
f ∗

c−1−−→ (?)−1B̃
M
G (f)∗R∆M

f ∗
ξ−→ (?)−1R∆M

f∗f ∗

agrees with u. Since c−1µ in the composition above agrees with µc−1 by the
naturality of c−1, it suffices to show that the composite

(10) (?)−1
u−→ f∗f ∗(?)−1

θ−→ f∗(?)−1B̃
M
G (f)∗

c−1−−→ (?)−1B̃
M
G (f)∗B̃M

G (f)∗

agrees with u, and that the composite

(11) R∆M

u−→ B̃M
G (f)∗B̃M

G (f)∗R∆M

µ−→ B̃M
G (f)∗R∆M

f ∗
ξ−→ R∆M

f∗f ∗

agrees with u.
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(10) agrees with u by [9, Lemma 1.24]. (11) agrees with u by the com-
mutativity of the diagram

R∆M

u

wwnnnnnnnnnnnn
u // R∆M

f∗f ∗

u

vvnnnnnnnnnnnn

ξ−1

��

g∗g∗R∆M

u //

@A

µ

//

g∗g∗R∆M
f∗f ∗

ξ−1

��
g∗g∗g∗R∆M

f ∗

ε

��

g∗R∆M
f ∗uoo

ξ

��

id

vvnnnnnnnnnnnn

g∗R∆M
f ∗

ξ // R∆M
f∗f ∗,

where g = B̃M
G (f).

(7.7) Let X be a G-scheme, U a G-stable open subscheme of X, and V
a G-stable open subscheme of U . The local section functor ΓBMG (U),BMG (V ) :

Mod(G,X) → Mod(G,X) is simply denoted by ΓU,V , and called the equiv-
ariant local section functor. The right derived functor Ri ΓU,V is denoted

by H i
U,V , and called the equivariant local cohomology. For a G-stable closed

subscheme Y of X and a G-stable closed subscheme Z of Y , the local section
functor ΓBMG (Y );BMG (Z) is simply denoted by ΓY ;Z . As usual, ΓY ;∅ is denoted

by ΓY . The derived functor Ri ΓY ;Z is denoted by H i
Y ;Z . Ri ΓY is denoted

by H i
Y .

(7.8) Let X be an S-scheme with a trivial G-action. Let U be an open
subscheme of X, and V an open subscheme of U . Let f : U ↪→ X be the
inclusion, and g : V ↪→ U the inclusion.

By Lemma 7.6, we have a commutative diagram with exact rows

(12) 0 // ΓU,V (?)G ι // f∗f ∗(?)G
u //

eε

��

f∗g∗g∗f ∗(?)G

eeεε

��
0 // (?)G ΓU,V

ι // (?)Gf∗f ∗
u // (?)Gf∗g∗g∗f ∗.

So there is a unique natural map

E : ΓU,V (?)G → (?)G ΓU,V
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such that ιE = eει.
By Lemma 7.5, the vertical maps in (12) are isomorphisms. So E is an

isomorphism.

8. G-local G-schemes

Let S be a scheme, G a flat S-group scheme concentrated over S, and X a
G-scheme (i.e., an S-scheme with a left G-action).

(8.1) Let ι : Y ↪→ X be a subscheme. We denote the composite

G× Y 1G×ι−−−→ G×X a−→ X

by aY , where a is the action. If aY factors through Y , then we say that Y
is G-stable. In this case, Y has a unique G-scheme structure such that ι is a
G-morphism.

The scheme-theoretic image of aY is denoted by Y ∗. If ι is quasi-compact,
then Y ∗ is the smallest closed G-stable subscheme of X containing Y , see [8,
Lemma 2.1.5].

(8.2) A closed subscheme Y of X is G-stable if and only if Y = Y ∗. Let
(Yλ)λ∈Λ be a family of closed subschemes of X. If Yλ is defined by a quasi-
coherent ideal sheaf Iλ, then the sum

∑
λ Iλ is a quasi-coherent ideal sheaf

again, and it defines the intersection
⋂
λ Yλ (that is, the direct product of Yλ in

the category of X-schemes. It is also the usual intersection, set theoretically).
If each Yλ is G-stable, then

⋂
Yλ is also G-stable. The complement of a G-

stable closed subscheme is a G-stable open subset.

(8.3) The intersection of finitely many G-stable open subsets is G-stable.
Moreover, the union of G-stable open subsets is G-stable. Letting a G-stable
open subset open, we can define a topology on X. We call this topology the
G-Zariski topology.

If X is quasi-compact with respect to the G-Zariski topology, we say
that X is G-quasi-compact. Since the G-Zariski-topology is coarser than the
Zariski topology, a quasi-compact G-scheme is G-quasi-compact.

Let U be a G-stable open subset of X, and let Y be X\U with the reduced
structure. It is easy to verify that Y ∗ does not intersect U (so Y ∗ = Y , set
theoretically). Note that Y ∗ is G-stable. So U has aG-stable complement Y ∗.
Thus a closed subset in the G-Zariski topology is nothing but an underlying
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subset of some G-stable closed subscheme. If Y is a G-stable subscheme of
X, then the G-Zariski topology of Y agrees with the induced topology of Y ,
induced from the G-Zariski topology of X. If f : X → X ′ is a G-morphism
of G-schemes, then f is continuous with respect to the G-Zariski topologies.

8.4 Lemma. If X is G-quasi-compact and Y is a G-stable closed subscheme
of X, then there is a minimal non-empty closed G-subscheme of Y .

Proof. Y is G-quasi-compact, since it is a closed subset of quasi-compact
X, with respect to the G-Zariski topology. Let Ω be the set of non-empty
G-stable closed subschemes of Y . For Z,Z ′ ∈ Ω, we say that Z ≤ Z ′ if
Z ⊃ Z ′. Then by Zorn’s lemma, Ω has a maximal element, and the proof is
complete.

8.5 Lemma. Assume that G→ S is universally open. Then any x ∈ X has
a quasi-compact G-stable open neighborhood.

Proof. Let U be an affine open neighborhood of x. Since the action a :
G×X → X is an open map, U? := a(G× U) is open, and it is G-stable, as
can be seen easily. Since U is quasi-compact and G is quasi-compact over S,
G × U is quasi-compact. So U? is quasi-compact. Since U? ⊃ U is obvious,
U? is a desired open neighborhood of x.

Since we assume that G is flat, if G is locally of finite presentation over
S, then G→ S is universally open ([5, (I.10.4)]).

8.6 Corollary. Let G → S be universally open. If X is G-quasi-compact,
then X is quasi-compact.

Proof. X has an open covering Uλ consisting of quasi-compact G-stable open
subschemes by the lemma. By assumption, there exists λ1, . . . , λn such that
X =

⋃n
i=1 Uλi . Since each Uλi is quasi-compact, X is quasi-compact.

(8.7) A topological space Γ is said to be local if it has a unique minimal
non-empty closed subset, say Θ. In this case, we say that (Γ,Θ) is local.

8.8 Lemma. Let Γ be a topological space. Then the following are equivalent.

1 Γ is local.

2 Γ is non-empty, and if (Fλ) is a non-empty family of non-empty closed
subsets of Γ, then

⋂
Fλ is non-empty.
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3 Γ is non-empty, and for any open covering (Uλ) of Γ, there exists some λ
such that X = Uλ.

In particular, a local topological space is non-empty and quasi-compact.

Proof. 1⇒2 Let (Γ,Θ) be local. Then Γ ⊃ Θ 6= ∅. Moreover,
⋂
λ Fλ ⊃ Θ 6=

∅.
2⇒1 Let Ω be the set of non-empty closed subsets of Γ. Then

⋂
F∈Ω F is

the desired unique minimal non-empty closed subset of Γ.
2⇔3 is trivial.

8.9 Corollary. If f : Γ → Γ′ is a surjective continuous map of topological
spaces and Γ is local, then Γ′ is local. If (Γ,Θ) is local, then (Γ′,Θ′) is local,
where Θ′ is the closure of f(Θ).

Proof. As f is a map and Γ is non-empty, Γ′ is non-empty. Let Ω′ be a non-
empty set of non-empty closed subsets of Γ′. Then f−1(F ′) 6= ∅ for F ′ ∈ Ω′

by the surjectivity of f . So f−1(
⋂
F ′∈Ω′ F

′) =
⋂
f−1F ′ 6= ∅ by the localness

of Γ. So Γ′ is local.
We prove the last assertion. As f is surjective, f−1(Θ′) is a non-empty

closed subset of Γ, and hence f−1(Θ′) ⊃ Θ. So the closure of f(Θ) is a
non-empty closed subset of Θ′. By minimality, they agree.

8.10 Lemma. A T0-space Γ is local if and only if Γ is quasi-compact and
has exactly one closed point γ. In this case, (Γ, γ) is local.

Proof. We prove the ‘only if’ part. Γ is non-empty and quasi-compact by
Lemma 8.8. A non-empty quasi-compact T0-space has a closed point. So
Γ has at least one closed point γ. However, a closed point is minimal non-
empty closed. Such a point must be unique, and the last assertion is also
obvious.

We prove the ‘if’ part. Let F be a non-empty closed subset of Γ. Then
F is non-empty quasi-compact T0, and has a closed point. This closed point
must be γ. So γ is the unique minimal non-empty closed subset of Γ.

For x, y ∈ Γ, we define x ≡ y if x̄ = ȳ, where the bar denotes the closure.
The quotient space Γ/ ≡ is called the T0-ification of Γ.

8.11 Lemma. Let π : Γ → Γ0 be the T0-ification. Then Γ is local if and
only if Γ0 is local. If (Γ,Θ) and (Γ0,Θ0) are local, then π(Θ) = Θ0, and
Θ = π−1(Θ0).
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Proof. Since π is surjective and continuous, if Γ is local, then Γ0 is local by
Corollary 8.9.

We prove the converse. As Γ0 is non-empty and π is surjective, Γ is non-
empty. Let Ω be a non-empty set of non-empty closed subsets of Γ. Then
for each F ∈ Ω, F = π−1(π(F )). Since π is submersive (i.e., for any subset
F ′ of Γ0, F ′ is closed if and only if π−1(F ′) is closed), π(F ) is closed, and is
non-empty. So

π(
⋂
F∈Ω

F ) = π(π−1(
⋂

π(F ))) =
⋂

π(F ) 6= ∅.

Hence
⋂
F is non-empty, and Γ is local.

π(Θ) = Θ0 follows from Corollary 8.9, since Θ0 is a point by Lemma 8.10.
Since Θ is closed, Θ = π−1(π(Θ)) = π−1(Θ0).

8.12 Lemma. For a scheme Z, the following are equivalent.

1 The underlying topological space of Z is local.

2 Z is local, that is, Z ∼= SpecA for some local ring (A,m).

3 Z is quasi-compact, and has a unique closed point z.

In this case, (Z, z) ∼= (SpecA,m) are local topological spaces.

Proof. 1⇒2 Let (Uλ) be an affine open covering of Z. Then Z = Uλ for
some λ by Lemma 8.8. So Z ∼= SpecA is affine. Since Z is non-empty, A
is non-zero, and has a maximal ideal. If A has two or more maximal ideals,
then Z has two or more closed points, and Z cannot be local. So A is a local
ring.

2⇒3 is obvious.
3⇒1 is a consequence of Lemma 8.10, since a scheme is T0.
The last assertion is obvious.

8.13 Definition. We say that a G-scheme X is G-local if there is a unique
minimal non-empty G-stable closed subscheme of X. If X is G-local and Y
is the unique minimal non-empty G-stable closed subscheme, then we say
that (X,Y ) is G-local.

8.14 Lemma. Let X be a G-scheme. Then the following are equivalent.

1 X is G-local.
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2 X is local in the G-Zariski topology.

In particular, a G-local G-scheme is G-quasi-compact. Moreover, if (X,Y )
is G-local, then (X,Y ) is local in the G-Zariski topology.

Proof. 1⇒2 Let (X,Y ) be G-local. If F is a non-empty closed subset of X in
the G-Zariski topology, then F is the underlying set of some non-empty G-
stable closed subscheme of X. So F ⊃ Y , and (X,Y ) is local in the G-Zariski
topology.

2⇒1 Let Y =
⋂
F∈Ω F , where Ω is the set of all non-empty G-stable

closed subschemes of X. Then Y is non-empty by assumption, and (X,Y )
is G-local.

8.15 Corollary. If G → S is universally open, then a G-local G-scheme is
quasi-compact.

Proof. Follows immediately from the lemma and Corollary 8.6.

8.16 Corollary. Let f : X → X ′ be a surjective G-morphism of G-schemes.
If X is G-local, then X ′ is G-local. If, moreover, f is concentrated, (X,Y )
is G-local, and (X ′, Y ′) is G-local, then the scheme-theoretic image of f |Y is
Y ′.

Proof. The first assertion is an immediate consequence of the theorem and
Corollary 8.9. We prove the last assertion. As f is surjective, Y ⊂ f−1(Y ′).
So the scheme-theoretic image of f |Y is contained in Y ′. Since f is concen-
trated, f |Y is also concentrated, and hence the scheme-theoretic image of f |Y
is G-stable closed, since (f |Y )∗OY ∈ Qch(G,X ′). By the minimality of Y ′,
it agrees with Y ′.

Here are some examples of G-local G-schemes.

8.17 Example. Assume that G is trivial. Then the G-Zariski topology
agrees with the usual Zariski topology, and X is G-local if and only if X is
a local scheme by Lemma 8.12.

8.18 Example. If S = Spec k, where k is a field, then (G,G) is G-local,
where G acts on G left regularly.

Proof. It suffices to show that if Y is a non-empty G-stable closed subscheme
of G, then Y = G. As Y is non-empty, Y has a geometric point η : SpecK →
Y . Taking the base change and replacing k by K, we may assume that Y has
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a k-rational point y. Then G → G (g 7→ gy) is an isomorphism, and hence
Y = Y ∗ ⊃ {y}∗ = G.

8.19 Example. If S = Spec k, where k is a field, G affine and of finite type,
and X is a homogeneous space G/H for some closed subgroup scheme H of
G, then (X,X) is G-local. This example shows that even if S and G are
affine, a G-local G-scheme X need not be affine in general.

Proof. Let p : G → X = G/H be the canonical projection. Then p is
faithfully flat, and is surjective. As (G,G) is G-local by Example 8.18, (X,X)
is G-local by Corollary 8.16.

8.20 Example. Let S = SpecZ and G = Gn
m, the split torus over S. Let

X = SpecA be affine. Then A is a Zn-graded ring in a natural way [8,
(II.1.2)]. By definition, X is G-local if and only if A is H-local in the sense
of Goto–Watanabe [4].

8.21 Example. Let S = Spec k with k an algebraically closed field, G a
reductive group, B a Borel subgroup of G, and P a parabolic subgroup of G
containing B. A Schubert subvariety of G/P is a B-stable closed subvariety
by definition. The point P/P is the unique minimal Schubert subvariety (see
[15, Chapter 13]), and we have (G/P, P/P ) is B-local.

(8.22) Let S = Spec k, with k a field. We say that G is geometrically
reductive, if G is affine of finite type, and for any finite dimensional G-module
V and any v ∈ V G \ 0, there exists some r > 0 and f ∈ (Symr V

∗)G such
that f(v) 6= 0. If, moreover, r can be taken to be 1 (for any V and v),
then we say that G is linearly reductive. If r can be taken to be 1 if the
characteristic of k is zero, and a power of p if the characteristic p of k is
positive, then we say that G is strongly geometrically reductive (SGR for
short). By definition, a linearly reductive group scheme is SGR. We can
prove that G is geometrically reductive if and only if G is SGR if and only if
the radical of the linear algebraic group (k̄⊗kG)red is a torus if and only if for
any finitely generated k algebra A with a G-action, AG is finitely generated
[10]. This fact is probably well-known for linear algebraic groups. We will
not use this fact later, and mainly consider SGR property.

(8.23) Assume that S = SpecR and G are affine. We say that A is a
G-algebra if A is an R-algebra, and a G-scheme structure of SpecA is given.
This is equivalent to say that A is both an R-algebra and a G-module (whose
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underlying R-module structure agree), and the product A ⊗R A → A is G-
linear. An ideal I of A is called a G-ideal if SpecA/I is a G-stable closed
subscheme of SpecA. Or equivalently, I is a (G,A)-submodule of A.

8.24 Lemma. Let S = Spec k with k a field, and G an SGR k-group scheme.
Let A be a G-algebra. If Iλ is a family of G-ideals. Let f ∈ (

∑
λ Iλ)

G. Then
there exists some q such that f q ∈∑λ I

G
λ , where q is required to be a power

of p if the characteristic of k is p > 0, and q = 1 if k is of characteristic
zero.

Proof. See [18, Appendix to Chapter 1, C].

(8.25) Let S and G be affine, and A a G-algebra. A maximal element of

{I | I is a G-ideal and I 6= A}

is said to be G-maximal. We say that A is G-local if A has a unique G-
maximal G-ideal. A is G-local if and only if SpecA is G-local.

8.26 Lemma. Let S and G be affine. If A is a G-algebra and I 6= A a
G-ideal, then there is a G-maximal ideal of A containing I.

Proof. Since X = SpecA is quasi-compact, it is G-quasi-compact. Now
apply Lemma 8.4.

8.27 Proposition. Let S = Spec k with k a field and G SGR. Let A be a
G-algebra. If p ∈ SpecAG, then Ap := A⊗AG AGp is G-local.

Proof. Note that (Ap)
G = AGp . Replacing A by Ap, we may assume that

(AG,m) is a local ring, and we are to prove that A is G-local.
Since AG is nonzero, A is nonzero. By Lemma 8.26, A has a G-maximal

ideal. Assume that A has two different G-maximal ideals I and J . Since
1 /∈ I and 1 /∈ J , IG ⊂ m and JG ⊂ m. On the other hand, I + J = A by
maximality. By Lemma 8.24, 1 ∈ IG + JG ⊂ m. This is a contradiction. So
A is G-local.

Note that in the proposition above, pAp may not be the G-maximal ideal.
Indeed, if G = Gm and A = k[x] with deg x = 1 and p = 0 ⊂ AG = k, then
0 = pAp is not G-maximal, since (x) ⊂ A is a G-ideal.
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9. A generalization of a theorem of Hochster–Eagon

Let S, G, and X be as in the last section. In this section, we give an appli-
cation of equivariant local cohomology on a G-local G-scheme to invariant
theory.

9.1 Lemma. Let S = Spec k with k a field, and G SGR. Let A be a G-
algebra. Assume that the canonical map π : SpecA→ SpecAG is a geometric
quotient in the sense of [18]. Then for any prime ideal p of AG, pAp and the
G-maximal ideal P of the G-local ring Ap have the same radical.

Proof. Since pAp is a G-ideal of Ap, we have P ⊃ pAp. Assume that
√
P 6=√

pAp. Then there is an algebraically closed extension field K of κ(p) such
that, there are K-valued points ξ of V (P ) and η of V (pAp)\V (P ), and the set
of K-valued points of V (pAp) is one orbit with respect to the action of G(K).
But since V (P ) is G-stable, ξ ∈ V (P )(K), and η /∈ V (P )(K), ξ and η cannot
be on the same orbit. This is a contradiction. Hence

√
P =

√
pAp.

(9.2) Let X be a locally noetherian G-scheme, andM a coherent (G,OX)-
module. Then HomOX (M,M) is also a coherent (G,OX)-module, as can be
seen easily from [9, Lemma 6.33] and [9, Lemma 7.11]. The canonical map

OX → HomOX (M,M)

is (G,OX)-linear. Hence the kernel annM is a coherent G-ideal. Hence
SuppM = V (annM) is a G-stable closed subscheme of X.

(9.3) Let (X,Y ) be a G-local G-scheme. Assume that X is noetherian.
Let Z be any irreducible component of Y , and ζ the generic point of Z.

9.4 Lemma. The functor (?)ζ : Qch(G,X)→ Mod(OX,ζ) is faithful exact.

Proof. The restriction Qch(G,X) → Qch(X) is obviously exact. On the
other hand, the stalk functor (?)ζ : Qch(X) → Mod(OX,ζ) is exact. Hence
the composite is exact.

We prove that the functor in question is faithful. Assume the contrary,
and let M ∈ Qch(G,X), M 6= 0, and Mζ = 0. Then since Qch(G,X)
is locally noetherian and a noetherian object of Qch(G,X) is nothing but a
coherent (G,OX)-module by [9, Corollary 11.8], there exists some nonzero co-
herent (G,OX)-submoduleN ofM. Let V := SuppN . Then V is nonempty,
closed, and G-stable. Hence V ⊃ Y ⊃ Z 3 ζ. Hence 0 =Mζ ⊃ Nζ 6= 0, and
this is a contradiction.
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9.5 Theorem. Let k be a field, G a linearly reductive k-group scheme, and
X a Cohen–Macaulay noetherian G-scheme. Let π : X → Y be a geometric
quotient under the action of G in the sense of [18]. Assume that π is an
affine morphism. Then Y is noetherian and Cohen–Macaulay.

Proof. Since π is surjective, Y is quasi-compact. So it suffices to show that
Y is locally noetherian and Cohen–Macaulay. The question is local on Y ,
and we may assume that Y = SpecA is affine.

Since π is affine, X = SpecB is also affine, and A = BG by assumption.
Note that A is a direct summand subring of B, since G is linearly reductive.
In particular, A is noetherian, since B is (see [14, Proposition 6.15]).

It remains to show that A is Cohen–Macaulay. In order to prove this,
localizing A at a maximal ideal of it, we may further assume that (A,m) is
local. Note that π is still submersive after localization, since G is linearly re-
ductive and A = BG, see the proof of [18, Theorem 1.1]. By Proposition 8.27,
X is G-local. Let Z be the unique maximal non-empty closed G-subscheme
of X.

Let y be the closed point of Y . Then

H i
y(OY ) ∼= H i(RΓy((π∗OX)G)).

Let J be the injective resolution of π∗OX in Qch(G, Y ). Then JG is an
injective resolution of (π∗OX)G in Qch(Y ), since (?)G : Qch(G, Y )→ Qch(Y )
is exact, and preserves injectives (since it has an exact left adjoint (?)∆M

L−1).
Any injective object of Qch(Y ) is injective in Mod(Y ) by [7, (II.7)]. Hence
we have isomorphisms

H i
y(OY ) ∼= H i(Γy JG) ∼= H i((Γy J)G) ∼= (H i(Γy J))G

where the second isomorphism is by (7.8), and the third isomorphism is by
the exactness of (?)G on Qch(G, Y ) (note that Γy J is a complex in Qch(G, Y )
by Corollary 4.11).

So to show that Y is Cohen–Macaulay, it suffices to show that the coho-
mology of the complex Γy J is concentrated in one place.

By Lemma 9.1, π−1(y) and Z agree, set theoretically. So by Corol-
lary 4.17,

H i(Γy J) ∼= H i(RΓy(π∗OX)) ∼= H i(RΓy Rπ∗OX)

∼= H i(Rπ∗RΓπ−1(y)OX) = H i(Rπ∗RΓZ OX).
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Note that

(?)ζ H
i
Z(OX) ∼= H i((?)ζRΓZ OX) ∼= H i

ζ(OX,ζ)

by Theorem 6.10. H i
ζ(OX,ζ) = 0 for i 6= d (d := dimOX,ζ), since OX,ζ is

a Cohen–Macaulay local ring. Since (?)ζ is faithful exact by Lemma 9.4,
H i
Z(OX) = 0 for i 6= d. Let M := Hd

Z(OX). Note that M is quasi-coherent.
So

Rπ∗RΓZ OX ∼= Rπ∗M[−d] ∼= π∗M[−d].

Hence
H i(Γy J) ∼= H i(Rπ∗RΓZ OX) = Hd−i(π∗M) = 0

for i 6= d. This is what we wanted to prove.

9.6 Corollary. Let k be an algebraically closed field, G a linearly reductive
k-group scheme, and X = SpecB a Cohen–Macaulay affine G-scheme of
finite type. Let π : X → Y = SpecBG be the canonical morphism, and set

U := {x ∈ X | dimO(x) is maximal, and O(x) is closed},

where O(x) is the G-orbit of x. Then U is a G-stable open subset of X, and
π(U) is Cohen–Macaulay.

Proof. Obvious by the theorem and [20, Proposition 3.8].

9.7 Corollary. Let k be a field, G a linearly reductive finite k-group scheme,
and B a noetherian and Cohen–Macaulay G-algebra. Then BG is noetherian
and Cohen–Macaulay.

The corollary is an immediate consequence of a theorem of Hochster and
Eagon [11, Proposition 12] (note that B is integral over BG, see the proof of
Lemma 9.8 below). Indeed, the case that G is a finite group is stated in their
paper [11, Proposition 13] (however, note that they do not assume that B
contains a field there, and Corollary 9.7 is not a complete generalization of
[11, Proposition 13]). Corollary 9.7 is also obvious by Theorem 9.5 and the
following lemma.

9.8 Lemma. Let k be a field, and G a finite k-group scheme. Let B be a
G-algebra. Then the canonical map π : SpecB → SpecBG is a geometric
quotient.
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Proof. AsG◦ (the identity component ofG) is normal inG, it suffices to prove
that SpecB → SpecBG◦ and SpecBG◦ → Spec(BG◦)G/G

◦
are geometric

quotients. Thus we may assume that G is either infinitesimal or étale.
Consider the case that G is infinitesimal. We may assume that the charac-

teristic p of k is positive, since any group scheme over a field of characteristic
zero is reduced [22, Theorem 11.4]. Let H be the coordinate ring of G◦.
Since G◦ is a point set-theoretically, H is an artinian local ring. Let m be
the maximal ideal of H, and take e ≥ 1 sufficiently large so that mpe = 0.
Then it is easy to see that bp

e ∈ BG for any b ∈ B. This shows that any base
change of π is a homeomorphism (note also that B is integral over BG). So
π is a geometric quotient, as can be checked easily.

Next consider the case that G is étale. We show that B is integral over
BG. To verify this, by the base change, we may assume that k is algebraically
closed. In this case, G is a finite group. Then b ∈ B is integral over BG,
since b is a root of the monic polynomial

∏
g∈G(t− gb) ∈ BG[t].

It remains to show that π is an orbit space. To verify this, we may assume
that k is algebraically closed again. Thus G is a finite group.

Then G is SGR. Indeed, let V be a finite dimensional G-module and
v ∈ V G \ 0, then there is a linear form ϕ ∈ V ∗ such that ϕ(v) 6= 0. Let H
be the trivial subgroup of G if the characteristic of k is zero, and a p-Sylow
subgroup of G if the characteristic p of k is positive. Let r be the order
of H. Let {g1, . . . , gl} be a complete set of representatives of G/H. Note
that l is nonzero in k. Then f :=

∑l
i=1 gi(

∏
h∈H hϕ) is in (Symr V

∗)G, and
f(v) = lϕ(v)r 6= 0.

Now assume that π is not a geometric quotient. Then there is an al-
gebraically closed field K and SpecK → SpecBG such that the geometric
fiber SpecC has two K-rational points x and y on different two G(K)-orbits,
where C := K ⊗BG B.

For any c ∈ CG, there exists some q such that cq ∈ K, where q = 1 when
the characteristic of k is zero, and q is a power of p when the characteristic
p of k is positive, as can be seen easily from Lemma A.1.2 of [18, Appendix
to Chapter 1, C]. Thus CG is a ring with only one prime ideal.

On the other hand, Gx and Gy are closed orbits in SpecC, since x and
y are closed points, and G is finite. By the choice of x and y, Gx ∩Gy = ∅.
By Lemma 8.24 and the proof of [18, Theorem 1.1], x and y are mapped to
different points in SpecCG. This contradicts the fact that CG has only one
prime ideal.
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(9.9) Assume that the characteristic of k is zero. In addition to the as-
sumption of Theorem 9.5, assume that X is of finite type over k and has
rational singularities. Then Y is of finite type and has rational singular-
ities by Boutot’s theorem [1], and Theorem 9.5 is unnecessary. Similarly,
if the characteristic is positive and X is F -regular, then Y is F -regular by
Corollary 9.11 below.

However, if D is a non-reduced artinian local G-algebra with the residue
field k which is finite over k, then SpecD × X is still of finite type and
Cohen–Macaulay, but does not have rational singularities, since it is not even
integral. By [18, Proposition 1.9], SpecD × X admits an affine geometric
quotient, which is Cohen–Macaulay by Theorem 9.5.

The following theorem and its corollary are due to Hochster. We include
proofs, because there is no appropriate reference.

9.10 Theorem. Let B be a ring, and A its pure subring. If A is noetherian,
then for any maximal ideal m of A, there exists some maximal ideal M of B
such that Am → BM is pure.

Proof. Note that Am → Bm is pure. By [13, (2.2)], there exists some maximal
ideal M′ = MBm of Bm (M = M′ ∩ B) such that Am → (Bm)M′ = BM is
pure. Let M be a maximal ideal of B containing M. Since M lies on m by the
purity and m is maximal, M also lies on m. So M′ = MBm ⊂ MBm 6= Bm.
Since M′ is maximal, MBm = MBm and hence M = M is maximal.

9.11 Corollary. Let B be a noetherian ring, and A its pure subring of B.
If B is normal (resp. of prime characteristic and weakly F -regular, of prime
characteristic and F -regular), then so is A.

Proof. Note that A is noetherian [14, Proposition 6.15]. The assertion for
F -regularity follows from that for weak F -regularity by localization, and we
consider normality and weak F -regularity. Note that each property in prob-
lem is local on maximal ideals, see [12, (4.15)]. So by the theorem, we may
assume that both A and B are local. Since weakly F -regular implies normal
by [12, (5.11)], B is a normal domain. Now the assertion for normality fol-
lows from [14, Proposition 6.15]. The assertion for weak F -regularity follows
from [12, (4.12)].
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tie, IHES Publ. Math. 20 (1964).

[6] A. Grothendieck, Local Cohomology, Lecture Notes in Math. 41,
Springer (1967).

[7] R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20,
Springer, (1966).

[8] M. Hashimoto, Auslander-Buchweitz Approximations of Equivariant
Modules, London Mathematical Society Lecture Note Series 282, Cam-
bridge (2000).

[9] M. Hashimoto, Equivariant Twisted Inverses, preprint (2007).

[10] M. Hashimoto, Reductivity of group schemes over a field, forthcoming.

[11] M. Hochster and J. A. Eagon, Cohen–Macaulay rings, invariant theory,
and the generic perfections of determinantal loci, Amer. J. Math. 93
(1971), 1020–1059.

[12] M. Hochster and C. Huneke, Tight closure, invariant theory, and the
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