G-prime and G-primary G-ideals on G-schemes

Mitsuyasu Hashimoto

Joint with Mitsuhiro Miyazaki

Nagoya University

3 October, 2008

Notation

Notation 1

Throughout this talk,

- 5: scheme
- G: an S-group scheme flat of finite type
- X: a G-scheme (i.e., an S-scheme with a left G-action)

We always assume that X is noetherian.

 $\mu: G \times G \to G$ denotes the product, and $a: G \times X \to X$ denotes the action. Note that a is flat of finite type.

G-linearized \mathcal{O}_X -module

Definition 2 (Mumford)

A G-linearized \mathcal{O}_X -module (an equivariant (G,\mathcal{O}_X) -module) is a pair (\mathcal{M},Φ) such that \mathcal{M} is an \mathcal{O}_X -module, and $\Phi:a^*\mathcal{M}\to p_2^*\mathcal{M}$ is an isomorphism of $\mathcal{O}_{G\times X}$ -modules such that

$$(\mu \times 1_X)^*\Phi : (\mu \times 1_X)^*a^*\mathcal{M} \to (\mu \times 1_X)^*p_2^*\mathcal{M}$$

agrees with

$$(\mu \times 1_X)^* a^* \mathcal{M} \xrightarrow{\cong} (1_G \times a)^* a^* \mathcal{M} \xrightarrow{\Phi} (1_G \times a)^* p_2^* \mathcal{M}$$
$$\xrightarrow{\cong} p_{23}^* a^* \mathcal{M} \xrightarrow{\Phi} p_{23}^* p_2^* \mathcal{M} \xrightarrow{\cong} (\mu \times 1_X)^* p_2^* \mathcal{M},$$

where $p_{23}: G \times G \times X \rightarrow G \times X$ is the projection.

Morphisms and submodules

Definition 3

A morphism $\varphi: (\mathcal{M}, \Phi) \to (\mathcal{N}, \Psi)$ of *G*-linearized \mathcal{O}_X -modules is a morphism $\varphi: \mathcal{M} \to \mathcal{N}$ such that $\Psi \circ (a^*\varphi) = (p_2^*\varphi) \circ \Phi$.

Definition 4

Let (\mathcal{M}, Φ) be a G-linearized \mathcal{O}_X -module. We say that \mathcal{N} is an equivariant (G, \mathcal{O}_X) -submodule of \mathcal{M} if \mathcal{N} is an \mathcal{O}_X -submodule of \mathcal{M} , and $\Phi(a^*\mathcal{N}) = p_2^*\mathcal{N}$ (note that a and p_2 are flat). If, moreover, $\mathcal{M} = \mathcal{O}_X$, then we say that \mathcal{N} is a G-ideal of \mathcal{O}_X .

The category Qch(G, X)

Theorem 5 (H—)

The category $\operatorname{Qch}(G,X)$ of quasi-coherent G-linearized \mathcal{O}_X -modules is a locally noetherian abelian category, and (\mathcal{M},Φ) is a noetherian object of $\operatorname{Qch}(G,X)$ if and only if \mathcal{M} is coherent. The forgetful functor $F_X:\operatorname{Qch}(G,X)\to\operatorname{Qch}(X)$ given by $(\mathcal{M},\Phi)\mapsto\mathcal{M}$ is faithful exact, and admits a right adjoint.

If it is convenient and there is no danger, we omit the Φ of (\mathcal{M}, Φ) , and we say that \mathcal{M} is in Qch(G, X).

Operations on Qch(G, X)

Let \mathcal{M} , \mathcal{N} , \mathcal{L} be in Qch(G,X), \mathcal{I} be a G-ideal, and \mathcal{M}_1 , \mathcal{M}_2 , \mathcal{M}_3 , and \mathcal{M}_{λ} be quasi-coherent equivariant (G,\mathcal{O}_X) -submodules of \mathcal{M} . Let \mathcal{L} and \mathcal{M}_3 be coherent. Then the following modules have structures of quasi-coherent G-linearized \mathcal{O}_X -modules.

- $\underline{\operatorname{Tor}}_{i}^{\mathcal{O}_{X}}(\mathcal{M}, \mathcal{N})$, $\underline{\operatorname{Ext}}_{\mathcal{O}_{X}}^{i}(\mathcal{L}, \mathcal{M})$,
- $\bullet \ \underline{H}^{i}_{\mathcal{I}}(\mathcal{M}) \cong \varinjlim \underline{\mathrm{Ext}}^{i}_{\mathcal{O}_{X}}(\mathcal{O}_{X}/\mathcal{I}^{n},\mathcal{M}),$
- The Fitting ideal $\underline{\text{Fitt}}_{j}(\mathcal{L})$,
- $\mathcal{M}_1 \cap \mathcal{M}_2$, $\sum_{\lambda} \mathcal{M}_{\lambda}$, $\mathcal{I}\mathcal{M}_1$,
- $\mathcal{M}_1 : \mathcal{M}_3, \, \mathcal{M}_1 : \mathcal{I}, \dots$

The star operation

Let \mathcal{M} be in $\operatorname{Qch}(G,X)$, and \mathfrak{m} be an \mathcal{O}_X -submodule of \mathcal{M} . The sum of all quasi-coherent equivariant (G,\mathcal{O}_X) -submodules of \mathcal{M} contained in \mathfrak{m} is denoted by \mathfrak{m}^* . \mathfrak{m}^* is the largest quasi-coherent equivariant (G,\mathcal{O}_X) -submodule of \mathcal{M} contained in \mathfrak{m} .

Remark 6

This notation goes back at least to Matijevic-Roberts paper in 1974.

Let $Y = V(\mathfrak{a})$ be a closed subscheme of X. Then $Y^* := V(\mathfrak{a}^*)$ is the smallest G-stable closed subscheme of X containing Y.

Some formulas

From now on, all ideals and G-ideals are required to be coherent. All modules and G-linearized modules are required to be quasi-coherent.

Lemma 7

Let \mathcal{M} be in Qch(G, X), \mathfrak{m} , \mathfrak{n} , and \mathfrak{m}_{λ} be \mathcal{O}_{X} -submodules of \mathcal{M} , and \mathcal{N} be a coherent equivariant (G, \mathcal{O}_{X})-submodule of \mathcal{M} . Let \mathcal{I} be a G-ideal of \mathcal{O}_{X} . Then we have:

- $(\bigcap_{\lambda} \mathfrak{m}_{\lambda}^*)^* = (\bigcap_{\lambda} \mathfrak{m}_{\lambda})^*$
- $\bullet \ \mathfrak{m}^* \cap \mathfrak{n}^* = (\mathfrak{m} \cap \mathfrak{n})^*$
- $(\mathfrak{m}:\mathcal{N})^* = \mathfrak{m}^*:\mathcal{N}$
- $(\mathfrak{m}:\mathcal{I})^* = \mathfrak{m}^*:\mathcal{I}$

G-prime *G*-ideal

Lemma 8

Let \mathcal{P} be a G-ideal of \mathcal{O}_X . Then the following are equivalent.

- There exists some ideal \mathfrak{p} of \mathcal{O}_X such that \mathfrak{p} is prime (i.e., $V(\mathfrak{p})$ is integral) and $\mathfrak{p}^* = \mathcal{P}$.
- $\mathcal{P} \neq \mathcal{O}_X$, and if \mathcal{I} and \mathcal{J} are G-ideals of \mathcal{O}_X and $\mathcal{I}\mathcal{J} \subset \mathcal{P}$, then $\mathcal{I} \subset \mathcal{P}$ or $\mathcal{J} \subset \mathcal{P}$.

Definition 9

If the equivalent conditions in the lemma are satisfied, we say that \mathcal{P} is a G-prime G-ideal.

The G-radical

Definition 10

Let \mathcal{I} be a G-ideal of \mathcal{O}_X . Then $V_G(\mathcal{I})$ denotes the set of G-prime ideals containing \mathcal{I} . We set $\sqrt[G]{\mathcal{I}} := (\bigcap_{\mathcal{P} \in V_G(\mathcal{I})} \mathcal{P})^*$, and call $\sqrt[G]{\mathcal{I}}$ the G-radical of \mathcal{I} .

Lemma 11

Let \mathcal{I} , \mathcal{J} , and \mathcal{P} be G-ideals of \mathcal{O}_X . Then we have:

- $\mathcal{I} \subset \sqrt[6]{\mathcal{I}} \subset \sqrt{\mathcal{I}}$. $\sqrt[6]{\mathcal{I}} = \sqrt{\mathcal{I}}^*$
- If $\mathcal{I} \supset \mathcal{J}$, then $\sqrt[6]{\mathcal{I}} \supset \sqrt[6]{\mathcal{J}}$.
- $\bullet \ \sqrt[6]{\mathcal{I}\mathcal{J}} = \sqrt[6]{\mathcal{I}\cap\mathcal{J}} = \sqrt[6]{\mathcal{I}} \cap \sqrt[6]{\mathcal{J}}.$
- $\bullet \quad \sqrt[G]{\sqrt[G]{\mathcal{I}}} = \sqrt[G]{\mathcal{I}}.$
- If \mathcal{P} is a G-prime, then $\sqrt[6]{\mathcal{P}} = \mathcal{P}$.

G-radical G-ideal

Lemma 12

Let \mathcal{I} be a G-ideal of \mathcal{O}_X . Then the following are equivalent.

- $\mathcal{I} = \sqrt[G]{\mathcal{I}}$
- \mathcal{I} is the intersection of finitely many G-prime G-ideals.
- There exists some ideal \mathfrak{a} of \mathcal{O}_X such that \mathfrak{a} is radical (i.e., $V(\mathfrak{a})$ is reduced), and $\mathfrak{a}^* = \mathcal{I}$.

Definition 13

If the equivalent conditions in the lemma are satisfied, then we say that \mathcal{I} is G-radical.

A G-prime G-ideal is G-radical.

G-primary submodules

From now on, until the end of the talk, let \mathcal{M} be a coherent G-linearized \mathcal{O}_X -module, and \mathcal{N} its coherent equivariant (G, \mathcal{O}_X) -submodule.

Definition 14

We say that \mathcal{N} is G-primary if $\mathcal{N} \neq \mathcal{M}$, and for any coherent equivariant (G, \mathcal{O}_X) -submodule \mathcal{L} of \mathcal{M} , either $\mathcal{N} : \mathcal{L} = \mathcal{O}_X$ or $\mathcal{N} : \mathcal{L} \subset \sqrt[G]{\mathcal{N}} : \mathcal{M}$ holds.

If \mathcal{N} is G-primary, then $\mathcal{P} = \sqrt[G]{\mathcal{N} : \mathcal{M}}$ is G-prime. In this case, we say that \mathcal{N} is \mathcal{P} -G-primary.

A criterion

Lemma 15

- For a prime ideal \mathfrak{p} of \mathcal{O}_X , \mathfrak{p}^* is G-prime.
- For a radical ideal \mathfrak{a} of \mathcal{O}_X , \mathfrak{a}^* is G-radical.
- If \mathfrak{n} is a \mathfrak{p} -primary \mathcal{O}_X -submodule of \mathcal{M} , then \mathfrak{n}^* is a \mathfrak{p}^* -G-primary submodule of \mathcal{M} .
- For a G-primary submodule $\mathcal N$ of $\mathcal M$, there exists some primary $\mathcal O_X$ -submodule $\mathfrak n$ of $\mathcal M$ such that $\mathfrak n^*=\mathcal N$.

G-primary decomposition

Definition 16

An expression

$$\mathcal{N} = \mathcal{M}_1 \cap \cdots \cap \mathcal{M}_r$$

is called a G-primary decomposition if this equation holds, and each \mathcal{M}_i is a G-primary submodule of \mathcal{M} . We say that the decomposition is minimal if $\mathcal{N} \neq \bigcap_{j \neq i} \mathcal{M}_j$ for any i, and $\sqrt[G]{\mathcal{M}_i : \mathcal{M}}$ is distinct.

The existence

Proposition 17

 \mathcal{N} has a minimal G-primary decomposition.

Proof.

Let

$$\mathcal{N} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_r$$

be a usual primary decomposition. Then

$$\mathcal{N} = \mathcal{N}^* = (\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_r)^* = \mathfrak{m}_1^* \cap \cdots \cap \mathfrak{m}_r^*$$

is a *G*-primary decomposition. We can make it minimal, as usual.

G-associated *G*-prime

Theorem 18

The set

$$\mathsf{Ass}_{G}(\mathcal{M}/\mathcal{N}) = \{\sqrt[G]{\mathcal{M}_{i} : \mathcal{M}} \mid i = 1, \dots, r\}$$

is independent of the choice of minimal G-primary decomposition

$$\mathcal{N} = \mathcal{M}_1 \cap \cdots \cap \mathcal{M}_r$$

and depends only on \mathcal{M}/\mathcal{N} .

We call an element of $\mathsf{Ass}_G(\mathcal{M}/\mathcal{N})$ a G-associated G-prime. The set of minimal elements of $\mathsf{Ass}_G(\mathcal{M}/\mathcal{N})$ is denoted by $\mathsf{Min}_G(\mathcal{M}/\mathcal{N})$, and its element is called a G-minimal G-prime. An element of $\mathsf{Ass}_G(\mathcal{M}/\mathcal{N}) \setminus \mathsf{Min}_G(\mathcal{M}/\mathcal{N})$ is called a G-embedded G-prime.

G-primary and primary decomposition

Theorem 19

Let

$$\mathcal{N} = \mathcal{M}_1 \cap \cdots \cap \mathcal{M}_r$$

be a minimal G-primary decomposition and

$$\mathcal{M}_i = \mathfrak{m}_{i,1} \cap \cdots \cap \mathfrak{m}_{i,s_i}$$

a minimal primary decomposition. Then

$$\mathcal{N} = \bigcap_{i=1}^r (\mathfrak{m}_{i,1} \cap \cdots \cap \mathfrak{m}_{i,s_i})$$

is a minimal primary decomposition.

No embedded prime of *G*-primary submodule

Proposition 20

A *G*-primary submodule $\mathcal N$ of $\mathcal M$ does not have an embedded prime. For each minimal prime $\mathfrak p$ of $\mathcal M/\mathcal N$, we have $\mathfrak p^*=\sqrt[6]{\mathcal N}:\mathcal M$.

Corollary 21

We have

$$\mathsf{Ass}(\mathcal{M}/\mathcal{N}) = \coprod_{i=1}^{\mathfrak{s}} \mathsf{Ass}(\mathcal{M}/\mathcal{M}_{i}) = \coprod_{\mathcal{P} \in \mathsf{Ass}_{G}(\mathcal{M}/\mathcal{N})} \mathsf{Ass}(\mathcal{O}_{X}/\mathcal{P})$$

and

$$\mathsf{Ass}_{\mathsf{G}}(\mathcal{M}/\mathcal{N}) = \{\mathfrak{p}^* \mid \mathfrak{p} \in \mathsf{Ass}(\mathcal{M}/\mathcal{N})\}$$

Another corollary

Corollary 22

We have $\operatorname{Ass}(\mathcal{M}/\mathcal{N}) = \operatorname{Min}(\mathcal{M}/\mathcal{N})$ if and only if $\operatorname{Ass}_G(\mathcal{M}/\mathcal{N}) = \operatorname{Min}_G(\mathcal{M}/\mathcal{N})$.

Smooth groups

Lemma 23

Assume that G is S-smooth. If $\mathfrak a$ is a radical ideal of $\mathcal O_X$, then $\mathfrak a^*$ is also radical. In particular, any G-radical G-ideal is radical.

Corollary 24

Assume that G is S-smooth. If \mathcal{I} is a G-ideal of \mathcal{O}_X , then $\sqrt{\mathcal{I}} = \sqrt[G]{\mathcal{I}}$. In particular, $\sqrt{\mathcal{I}}$ is a G-radical G-ideal.

Groups with connected fibers

Lemma 25

Assume that $G \to S$ has connected fibers. If \mathfrak{q} is a primary ideal of \mathcal{O}_X , then \mathfrak{q}^* is also primary. In particular, a G-primary G-ideal is primary.

Corollary 26

Assume that $G \to S$ has connected fibers. If \mathcal{I} is a G-ideal, then a minimal G-primary decomposition of \mathcal{I} is also a minimal primary decomposition.

Smooth groups with connected fibers

Corollary 27

Assume that $G \to S$ is smooth with connected fibers. If $\mathfrak p$ is a prime, then $\mathfrak p^*$ is also a prime. Any G-prime G-ideal is a prime. For a G-ideal $\mathcal I$ of $\mathcal O_X$, any associated prime of $\mathcal I$ is a G-prime G-ideal.

The dimension of the fiber

Theorem 28

Let 0 be *G*-primary in \mathcal{O}_X . Then the dimension of the fiber of $p_2: G \times X \to X$ is constant.

G-primary implies equi-dimensional

Theorem 29

Let 0 be G-primary in \mathcal{O}_X . If X has an affine open covering (Spec A_i) such that each A_i is Hilbert, universally catenary, and for any minimal prime of P of A_i , the heights of maximal ideals of A_i/P are the same (for example, X is of finite type over a field or \mathbb{Z}). Then the dimensions of the irreducible components of X are the same.

Remark 30

There is an example of G = X such that the dimensions of the irreducible components are different. The red assumptions are necessary.

G-primary ideal is unmixed

Theorem 31

Let \mathcal{Q} be a G-primary G-ideal of \mathcal{O}_X . Let x and y be the generic points of irreducible components of $V(\mathcal{Q})$. Then $\dim \mathcal{M}_X = \dim \mathcal{M}_y$.

Matijevic–Roberts type theorem

Theorem 32

Let $y \in X$ and $Y = \bar{y}$. Let η be the generic point of an irreducible component of Y^* . Then:

- If \mathcal{M}_{η} is maximal Cohen–Macaulay (resp. of finite injective dimension, projective dimension m, dim depth = n, torsionless, reflexive, G-dimension g), then so is \mathcal{M}_{y} .
- If $\mathcal{O}_{X,\eta}$ is a complete intersection, then so is $\mathcal{O}_{X,y}$.
- If G is smooth and $\mathcal{O}_{X,\eta}$ is regular, then $\mathcal{O}_{X,y}$ is regular.
- Assume that G is smooth and X is a locally excellent \mathbb{F}_p -scheme. If $\mathcal{O}_{X,\eta}$ is weakly F-regular (resp. F-regular, F-rational), then so is $\mathcal{O}_{X,v}$.

A Corollary on graded rings

Consider the case $S = \operatorname{Spec} \mathbb{Z}$, $G = \mathbb{G}_m^n$, and $X = \operatorname{Spec} A$ is affine. Then A is a \mathbb{Z}^n -graded ring.

Corollary 33

Let A be a locally excellent \mathbb{Z}^n -graded \mathbb{F}_p -algebra. Let P be a prime ideal of A, and let P^* be the prime ideal generated by homogeneous elements of P. If A_{P^*} is weakly F-regular (resp. F-regular, F-rational), then so is A_P .

A history of Matijevic–Roberts type theorem

```
Theorem 32 for graded rings (i.e., the case that S = \text{Spec } \mathbb{Z}, G = \mathbb{G}_m^n, and X affine) (excluding (weak) F-regularity and F-rationality):
```

- Conjectured by Nagata (for the case n = 1, for Cohen–Macaulay property).
- Proved by Hochster–Ratliff, Matijevic–Roberts, Aoyama–Goto, Matijevic, Goto–Watanabe, Cavaliere–Niesi, Avramov–Achilles.

General case (again excluding (weak) F-regularity and F-rationality):

- The case that S is noetherian affine, and G is affine, smooth with connected fibers (H—)
- G is smooth with connected fibers (Ohtani H— , unpublished)
- General case: Theorem 32

G-artinian G-schemes

Definition 34

X is said to be G-artinian if every G-prime of \mathcal{O}_X is a G-minimal prime of 0.

Corollary 35

A G-artinian G-scheme is Cohen–Macaulay.

Thank you. This slide is available at Hashimoto's home page (by the next Tuesday).