
F -rationality of the ring of modular invariants

Mitsuyasu Hashimoto

Okayama University

March 22, 2016
Partially Joint with P. Symonds

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 1 / 36



F -rationality of the ring of modular invariants

Mitsuyasu Hashimoto

Okayama University

March 22, 2016
Partially Joint with P. Symonds

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 1 / 36



F -regularity and F -rationality of rings of invariants

Let k = k̄ be an algebraically closed field of characteristic p > 0. Let
V = kd , and G be a finite subgroup of GL(V ) = GLd . We say that
g ∈ GL(V ) is a pseudo-reflection if rank(1V − g) = 1. Let
B = SymV = k[v1, . . . , vd ], where v1, . . . , vd is a basis of V , and
A = BG .

Question 1
Assume that G does not have a pseudo-reflection.

1 When is A = BG strongly F -regular?

2 When is A = BG F -rational?
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Broer–Yasuda theorem

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are
equivalent.

1 A = BG is strongly F -regular.

2 A is a direct summand subring of B .

3 p does not divide the order #G of G .

2⇒1 is simply because strong F -regularity is inherited by a direct
summand. 1⇒2 is because a weakly F -regular ring is a splinter
(Hochster–Huneke). 3⇒2 is by the existence of the Reynolds
operator. Broer and Yasuda proved 2⇒3.

Today we consider the problem for F -rationality.
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Graded (G ,B)-modules

Let V = kd , and G be a finite subgroup of GL(V ) = GLd . Let
B = SymV and A = BG .

A G -module B-module M is called a (G ,B)-module if
g(bm) = (gb)(gm) holds. This is the same as a module over the
twisted group algebra B ∗ G .
Let M be the category of Z[1/p]-graded (G ,B)-modules. Let F be
its full subcategory consisting of B-finite B-free objects.
The Frobenius twist e(?) is an endofunctor of M, and eF ⊂ F .
If M ∈ M and m ∈ M is of degree d , then em ∈ eM is of degree
d/pe .
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Frobenius twists of objects of F

Lemma 3 (Symonds–H)

There exists some e0 ≥ 1 such that for any E ∈ F of rank f , there
exists a direct summand E0 of e0E in F such that E0

∼= (B ⊗k kG )f

as (G ,B)-modules.

Lemma 4 (Symonds–H)
e(B ⊗k kG ) ∼= (B ⊗k kG )p

de
as (G ,B)-modules.
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Asymptotic behavior of Frobenius twists

Theorem 5 (Symonds–H)

There exist some c > 0 and 0 < α < 1 such that for any E ∈ F of
rank f and any e ≥ 1, there exists some decomposition

eE ∼= E0,e ⊕ E1,e

in F such that E0,e is a direct sum of copies of B ⊗k kG as a
(G ,B)-module, and E1,e is an object of F whose rank is less than or
equal to fcpdeαe .
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Some observations on E0,e and E1,e

lime→∞
1
pde

rankE1,e = 0. Hence lime→∞
1
pde

rankE0,e = f .

Since (B ⊗k kG )G ∼= B as A-modules, we have

lim
e→∞

1

pde
µÂ(Ê

G
0,e) = f µÂ(B̂)/|G | = feHK(Â) (by

Watanabe–Yoshida theorem, as [Q(B̂) : Q(Â)] = |G |), where Â
and B̂ are the completions of A and B , respectively.

As lim
e→∞

1

pde
µÂ(

e ÊG ) = eHK(
e ÊG ) = feHK(Â), we have

Corollary 6 (Symonds–H)

lim
e→∞

1

pde
µÂ(Ê

G
1,e) = 0.
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µÂ(

e ÊG ) = eHK(
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G
1,e) = 0.

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 7 / 36



Interpretation to A-modules
Let k = V0,V1, . . . ,Vn be the list of simple G -modules. Let Pi be
the projective cover of Vi . Set Mi := (B ⊗k Pi)

G .

Theorem 7 (Symonds–H)

There exists some sequence of non-negative integers {ae} such that

1 lime→∞ ae/p
de = 1/|G |; and

2 For each B-finite B-free Z-graded (G ,B)-module E of rank f
and e ≥ 1, there is a decomposition

eEG ∼=
n⊕

i=0

M⊕fae dimVi
i ⊕ME ,e

as an A-module such that lime→∞ µÂ(M̂E ,e)/p
de = 0.
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de = 0.

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 8 / 36



Sannai’s dual F -signature

Let (R ,m, k) be a d-dimensional reduced F -finite local ring of prime
characteristic p with k perfect. For finite R-modules M and N , define

surjR(M ,N) := max{r ∈ Z≥0 | ∃ a surjection M → N⊕r}.

We define

s(M) := lim sup
e→∞

surjR(
eM ,M)

pde
,

and call it the dual F -signature of M (Sannai). s(R) is nothing but
the F -signature of the ring R (defined by Huneke–Leuschke).
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Characterizations of F -regularity and F -rationality

Theorem 8
Let (R ,m, k) be a reduced F -finite local ring with k perfect.

1 (Tucker) s(R) := lim sup
e→∞

surj(eR ,R)

pde
= lim

e→∞

surj(eR ,R)

pde
.

2 (Aberbach–Leuschke) R is strongly F -regular if and only if
s(R) > 0.

3 (Gabber) R is a homomorphic image of a regular local ring.

4 (Sannai) R is F -rational if and only if R is Cohen–Macaulay and
s(ωR) > 0, where ωR is the canonical module of R .
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The group [C]

Let C be an additive category. We define

[C] := (
⊕
M∈C

Z ·M)/(M −M1 −M2 | M ∼= M1 ⊕M2).

The class of M in the group [C] is denoted by [M].
The vector space R⊗Z [C] is denoted by [C]R. If C is Krull–Schmidt
and C0 is a complete set of representatives of Ind C, then
{[M] | M ∈ C0} is an R-basis of [C]R.
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The metric of [mod(R)]

Let R be a Henselian local ring, and C := mod(R). For α ∈ [C]R, we
can write

α =
∑
M∈C0

cM [M].

We define ∥α∥ :=
∑

M |cM |µR(M). Then ([C]R, ∥ · ∥) is a normed
space. So it is a metric space by the metric

d(α, β) := ∥α− β∥.
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The F -limit of a module

Let α =
∑

M∈C0 cM [M] ∈ [C]R = [mod(R)]R.

Define µR : [C]R → R by µR(α) :=
∑

M cMµR(M).

For N ∈ C0, define sumN : [C]R → R by sumN(α) = cN .

Assume further that R is of characteristic p > 0 and F -finite
with a perfect residue field.

Define eα =
∑

M∈C0 cM [eM].

Define FL(α) = lim
e→∞

1

pde
eα (if exists, the F -limit of α).

Define eHK(α) =
∑

M cMeHK(M).

For N ∈ C0, define FSN(α) =
∑

M cM FSN(M), where

FSN(M) = lim
e→∞

1

pde
sumN(

eM) (the generalized F -signature).

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 13 / 36



The F -limit of a module

Let α =
∑

M∈C0 cM [M] ∈ [C]R = [mod(R)]R.

Define µR : [C]R → R by µR(α) :=
∑

M cMµR(M).

For N ∈ C0, define sumN : [C]R → R by sumN(α) = cN .

Assume further that R is of characteristic p > 0 and F -finite
with a perfect residue field.

Define eα =
∑

M∈C0 cM [eM].

Define FL(α) = lim
e→∞

1

pde
eα (if exists, the F -limit of α).

Define eHK(α) =
∑

M cMeHK(M).

For N ∈ C0, define FSN(α) =
∑

M cM FSN(M), where

FSN(M) = lim
e→∞

1

pde
sumN(

eM) (the generalized F -signature).

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 13 / 36



The F -limit of a module

Let α =
∑

M∈C0 cM [M] ∈ [C]R = [mod(R)]R.

Define µR : [C]R → R by µR(α) :=
∑

M cMµR(M).

For N ∈ C0, define sumN : [C]R → R by sumN(α) = cN .

Assume further that R is of characteristic p > 0 and F -finite
with a perfect residue field.

Define eα =
∑

M∈C0 cM [eM].

Define FL(α) = lim
e→∞

1

pde
eα (if exists, the F -limit of α).

Define eHK(α) =
∑

M cMeHK(M).

For N ∈ C0, define FSN(α) =
∑

M cM FSN(M), where

FSN(M) = lim
e→∞

1

pde
sumN(

eM) (the generalized F -signature).

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 13 / 36



The F -limit of a module

Let α =
∑

M∈C0 cM [M] ∈ [C]R = [mod(R)]R.

Define µR : [C]R → R by µR(α) :=
∑

M cMµR(M).

For N ∈ C0, define sumN : [C]R → R by sumN(α) = cN .

Assume further that R is of characteristic p > 0 and F -finite
with a perfect residue field.

Define eα =
∑

M∈C0 cM [eM].

Define FL(α) = lim
e→∞

1

pde
eα (if exists, the F -limit of α).

Define eHK(α) =
∑

M cMeHK(M).

For N ∈ C0, define FSN(α) =
∑

M cM FSN(M), where

FSN(M) = lim
e→∞

1

pde
sumN(

eM) (the generalized F -signature).

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 13 / 36



The F -limit of a module

Let α =
∑

M∈C0 cM [M] ∈ [C]R = [mod(R)]R.

Define µR : [C]R → R by µR(α) :=
∑

M cMµR(M).

For N ∈ C0, define sumN : [C]R → R by sumN(α) = cN .

Assume further that R is of characteristic p > 0 and F -finite
with a perfect residue field.

Define eα =
∑

M∈C0 cM [eM].

Define FL(α) = lim
e→∞

1

pde
eα (if exists, the F -limit of α).

Define eHK(α) =
∑

M cMeHK(M).

For N ∈ C0, define FSN(α) =
∑

M cM FSN(M), where

FSN(M) = lim
e→∞

1

pde
sumN(

eM) (the generalized F -signature).

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 13 / 36



The F -limit of a module

Let α =
∑

M∈C0 cM [M] ∈ [C]R = [mod(R)]R.

Define µR : [C]R → R by µR(α) :=
∑

M cMµR(M).

For N ∈ C0, define sumN : [C]R → R by sumN(α) = cN .

Assume further that R is of characteristic p > 0 and F -finite
with a perfect residue field.

Define eα =
∑

M∈C0 cM [eM].

Define FL(α) = lim
e→∞

1

pde
eα (if exists, the F -limit of α).

Define eHK(α) =
∑

M cMeHK(M).

For N ∈ C0, define FSN(α) =
∑

M cM FSN(M), where

FSN(M) = lim
e→∞

1

pde
sumN(

eM) (the generalized F -signature).

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 13 / 36



The F -limit of a module

Let α =
∑

M∈C0 cM [M] ∈ [C]R = [mod(R)]R.

Define µR : [C]R → R by µR(α) :=
∑

M cMµR(M).

For N ∈ C0, define sumN : [C]R → R by sumN(α) = cN .

Assume further that R is of characteristic p > 0 and F -finite
with a perfect residue field.

Define eα =
∑

M∈C0 cM [eM].

Define FL(α) = lim
e→∞

1

pde
eα (if exists, the F -limit of α).

Define eHK(α) =
∑

M cMeHK(M).

For N ∈ C0, define FSN(α) =
∑

M cM FSN(M), where

FSN(M) = lim
e→∞

1

pde
sumN(

eM) (the generalized F -signature).

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 13 / 36



The F -limit of a module

Let α =
∑

M∈C0 cM [M] ∈ [C]R = [mod(R)]R.

Define µR : [C]R → R by µR(α) :=
∑

M cMµR(M).

For N ∈ C0, define sumN : [C]R → R by sumN(α) = cN .

Assume further that R is of characteristic p > 0 and F -finite
with a perfect residue field.

Define eα =
∑

M∈C0 cM [eM].

Define FL(α) = lim
e→∞

1

pde
eα (if exists, the F -limit of α).

Define eHK(α) =
∑

M cMeHK(M).

For N ∈ C0, define FSN(α) =
∑

M cM FSN(M), where

FSN(M) = lim
e→∞

1

pde
sumN(

eM) (the generalized F -signature).

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 13 / 36



The Hilbert–Kunz multiplicity and F -signature

Lemma 9
µR : [C]R → R is a short map. That is, |µR(α)− µR(β)| ≤ ∥α− β∥.
Similarly for sumN : [C]R → R for N ∈ C0. In particular, they are
uniformly continuous.

Corollary 10

Let α =
∑

M∈C0 cM [M] ∈ [C]R. If FL(α) exists, then

µR(FL(α)) = eHK(α)

and
sumN(FL(α)) = FSN(α).
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The dual F -signature

For α =
∑

M cM [M] ∈ [C]R and M ,N ∈ modR ,

Define ⟨α⟩ :=
∑

M max{0, ⌊cM⌋}[M].

Define

asn(α,N) := lim
t→∞

1

t
surj(⟨tα⟩,N)

(the limit exists, the asymptotic surjective number).

In general, surj(M ,N) ≤ asn([M],N).

asn(?,N) is a short map.

We say that α ≥ 0 if cM ≥ 0 for any M ∈ C0.
If α, β ≥ 0, then asn(α + β,N) ≥ asn(α,N) + asn(β,N).

If the F -limit of M exists, then s(M) = asn(FL([M]),M).
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The restatement of Theorem 7

Theorem 11 (Symonds–H)

For each B-finite B-free Z-graded (G ,B)-module E of rank f ,

FL([ÊG ]) =
f

|G |
[B̂] =

f

|G |

n⊕
i=0

(dimVi)[M̂i ]

in [mod Â]R, where Mi = (B ⊗k Pi)
G .

Remark 12
The theorem for the case that p does not divide |G | is due to
Nakajima–H.
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The description of ωA

From now, unless otherwise stated explicitly (in an example), assume
that G has no pseudo-reflection.

Theorem 13 (Watanabe–Peskin–Broer–Braun)

Let det = detV denote the one-dimensional representation
∧d V of

G . Then

1 ωA
∼= (B ⊗k det)

G .

2 Hence B ⊗k det ∼= (B ⊗A ωA)
∗∗.

3 In particular, A is quasi-Gorenstein if and only if det ∼= k as a
G -module (or equivalently, G ⊂ SL(V )).
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Reproving Watanabe–Yoshida theorem and

Broer–Yasuda theorem

Note that each M̂i = (B̂ ⊗k Pi)
G is an indecomposable Â-module,

and M̂i ̸∼= M̂j for i ̸= j . Moreover, M̂i
∼= Â if and only if Pi

∼= k . This
is equivalent to say that i = 0 and p does not divide |G |.

Corollary 14 (Watanabe–Yoshida, Broer, Yasuda)

The F -signature s(Â) of Â is zero if p divides |G |, and is 1/|G |
otherwise.

Proof.

s(Â) = FS Â(Â) = |G |−1
∑n

i=0(dimVi) sumÂ([M̂i ]).
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∼= Â if and only if Pi

∼= k . This
is equivalent to say that i = 0 and p does not divide |G |.

Corollary 14 (Watanabe–Yoshida, Broer, Yasuda)
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∼= Â if and only if Pi

∼= k . This
is equivalent to say that i = 0 and p does not divide |G |.

Corollary 14 (Watanabe–Yoshida, Broer, Yasuda)
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Representation theoretic characterization of

s(ωÂ) > 0
Let ν be the number such that Vν

∼= det.

Theorem 15 (Main Theorem)

Assume that A is not strongly F -regular (or equivalently, p divides
|G |). Then the following are equivalent.

1 s(ωÂ) > 0;

2 The canonical map Mν → ωA is surjective.

3 H1(G ,B ⊗k radPν) = 0.

4 For any non-projective indecomposable G -summand M of B , M
does not contain det−1 (the k-dual of det).

If these conditions hold, then s(ωÂ) ≥ 1/|G |.
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Theorem 11 for E = B ⊗ det

Let k = V0,V1, . . . ,Vn be the list of simple G -modules. Let Pi be
the projective cover of Vi . Set Mi := (B ⊗k Pi)

G .

Theorem 11 (Symonds–H)

FL([ωÂ]) =
1

|G |
[B̂] =

1

|G |

n⊕
i=0

(dimVi)[M̂i ],

where Mi = (B ⊗ Pi)
G .
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FL([ωÂ]) =
1

|G |
[B̂] =

1

|G |

n⊕
i=0

(dimVi)[M̂i ],

where Mi = (B ⊗ Pi)
G .

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 20 / 36



The proof of 2⇒1

As we assume that there is a surjection Mν → ωA, surj(M̂ν , ωÂ) ≥ 1.
By Theorem 11 (applied to E = B ⊗ det),

s(ωÂ) = asn(FL([ωÂ]), ωÂ) =
1

|G |
asn([M̂ν ] +

∑
i ̸=ν

(dimVi)[M̂i ], ωÂ)

≥ 1

|G |
asn([M̂ν ], ωÂ) ≥

1

|G |
surj(M̂ν , ωÂ) ≥

1

|G |
> 0.
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The proof of 1⇒2 (1)

By Theorem 11, we have that asn([B̂], ωÂ) > 0. Or equivalently,

there is a surjection h : B̂ r → ωÂ for r ≫ 0. By the equivalence

γ = (B̂⊗Â?)
∗∗ : Ref(Â) → Ref(G , B̂), there corresponds

h̃ = γ(h) : (B̂ ⊗k kG )r → B̂ ⊗k det .

As B̂ ⊗k kG is a projective object in the category of (G , B̂)-modules,
h̃ factors through the surjection

B̂ ⊗k Pν → B̂ ⊗k det .
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∗∗ : Ref(Â) → Ref(G , B̂), there corresponds

h̃ = γ(h) : (B̂ ⊗k kG )r → B̂ ⊗k det .

As B̂ ⊗k kG is a projective object in the category of (G , B̂)-modules,
h̃ factors through the surjection

B̂ ⊗k Pν → B̂ ⊗k det .

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 22 / 36



The proof of 1⇒2 (2)

(B̂ ⊗k kG )r h̃ //

��

B̂ ⊗k det

B̂ ⊗ Pν

88 88
⇔ B̂ r h // //

��

ωÂ

M̂ν

??

Returning to the category Ref Â, the surjection h : B̂ r → ωÂ factors
through

M̂ν = (B̂ ⊗Â Pν)
G → ωÂ.

So this map is also surjective, and 2 follows.
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So this map is also surjective, and 2 follows.

Mitsuyasu Hashimoto (Okayama University) F -rationality of rings of invariants March 22, 2016 23 / 36



A corollary

Corollary 16

Let det−1 denote the dual representation of det. Assume that p
divides |G |. If s(ωÂ) > 0, then det−1 is not a direct summand of B .

Proof.

Note that the one-dimensional representation det−1 is not projective.
The result follows from 1⇒4 of the theorem.
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A lemma

Lemma 17
Let M and N be in Ref(G ,B). There is a natural isomorphism

γ : HomA(M
G ,NG ) → HomB(M ,N)G

Proof.
This is simply because γ = (B⊗A?)

∗∗ : Ref(A) → Ref(G ,B) is an
equivalence, and HomB(M ,N)G = HomG ,B(M ,N).
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Another criterion

Theorem 18
A is F -rational if and only if the following three conditions hold.

1 A is Cohen–Macaulay.

2 H1(G ,B) = 0.

3 (B ⊗k (I/k))
G is a maximal Cohen–Macaulay A-module, where I

is the injective hull of k .
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A corollary

Corollary 19

If A is F -rational, then H1(G , k) = 0.

Proof.
k is a direct summand of B , and H1(G ,B) = 0.

Example 20

If char(k) = 2 and G = S2 or S3, then H1(G , k) ̸= 0. So A = BG is
not F -rational (provided G does not have a pseudo-reflection).
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An example (1)

Let p be an odd prime number.

Let us identify Map(Fp,Fp)
× with the symmetric group Sp.

Let Q := Fp ⊂ Sp, acting on Fp by addition. Q is generated by
the cyclic permutation σ = (1+) = (0 1 · · · p − 1) ∈ Sp.

Let Γ := F×
p ⊂ Sp, acting on Fp by multiplication. It is a cyclic

group of order p − 1 generated by
τ = (α·) = (1 α α2 · · · αp−2), where α is the primitive element.

As τστ−1 = σα, Γ normalizes Q. Set G = QΓ. CG (Q) = Q.

G = {ϕ ∈ Sp | ∃a ∈ F×
p ∃b ∈ Fp ∀x ∈ Fp ϕ(x) = ax + b} ⊂ Sp.

#G = p(p − 1).
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An example (2)

The only involution of Γ is τ (p−1)/2 = ((−1)·) =
(1 (p − 1))(2 (p − 2)) · · · ((p − 1)/2 (p + 1)/2), which is a
transposition if and only if p = 3.

As Γ contains a Sylow 2-subgroup, a transposition of G is
conjugate to a transposition of Γ. So G has a transposition if
and only if p = 3.
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An example (3)

G ⊂ Sp acts on P = kp = ⟨w0,w1, . . . ,wp−1⟩ by ϕwi = wϕ(i) for
ϕ ∈ G and i ∈ Fp.

Let r ≥ 1, and set V = P⊕r .

G acts on V by permutations of the obvious basis.

A permutation in G is a pseudo-reflection on V if and only if it
is a transposition (as a permutation on the basis of V ).

G has a pseudo-reflection on V if and only if r = 1 and p = 3.
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An example (4)

Let S = SymP .

Let λ ∈ Zp, and let wλ = wλ0
0 · · ·wλp−1

p−1 be the corresponding
monomial of S .

Unless λ0 = λ1 = · · · = λp−1, Q acts freely on the orbit Gwλ.
So kGwλ is a kQ-free module.

For a G -module M , we have H i(G ,M) ∼= H i(Q,M)Γ (since the
order of Γ is coprime to p, the Lyndon–Hochschild–Serre
spectral sequence collapses).

So kGwλ is G -projective in this case.

If λ0 = λ1 = · · · = λp−1, kGw
λ ∼= k is trivial.

So S is a direct sum of projectives and copies of k .
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An example (5)

Now consider V = P⊕r and B := SymV ∼= S⊗r .

Let k− be the sign representation of G . As τ ∈ G is an odd
permutation, k− ̸∼= k .

detV = (detP)⊗r = (k−)⊗r ∼= det−1
V . This is k if r is even and

k− if r is odd.

If M is a projective G -module and N a G -module, then M ⊗ N
is projective. So B = S⊗r is again a direct sum of projectives
and copies of k .

If r = 1 and p = 3, then A := BG = k[e1, e2, e3], the polynomial
ring generated by the elementary symmetric polynomials.

Otherwise, G does not have a pseudo-reflection. s(ωÂ) > 0 if
and only if r is odd.
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Kemper’s theorem

Let k be a field of characteristic p > 0, and G be a subgroup of the
symmetric group of Sd acting on B = k[v1, . . . , vd ] by permutation.
Let Q be a Sylow p-subgroup of G . Assume that |Q| = p. Let
N = NG (Q) be the normalizer. Let X1, . . . ,Xc be the Q-orbits of
{v1, . . . , vd}. Set

H := {σ ∈ N | ∀i σ(Xi) ⊂ Xi}.

Then Q is a normal subgroup of H . Set m := [H : CH(Q)].

Theorem 21 (Kemper)

depthBG = min{2m + c , d}.
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The depth of our example

For our G , Q, and V , H = N = G . CH(Q) = Q.

So m = p − 1, and c = r .

So depthA = min{2p − 2 + r , rp} and dimA = d = rp.

So A is Cohen–Macaulay if and only if r ≤ 2.

It follows that A is F -rational if and only if r = 1.
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Conclusion

Theorem 22
Let p ≥ 3, r , G , V , B = SymV , and A = BG be as above.

1 #G = p(p − 1).

2 If p = 3 and r = 1, then G is a reflection group and A is a
polynomial ring. Otherwise, G does not have a
pseudo-reflection, and A is not F -regular.

3 If p ≥ 5 and r = 1, then A is F -rational but not F -regular.

4 If r = 2, then A is Gorenstein, but not F -rational.

5 If r ≥ 3 and odd, then s(ωÂ) > 0 but A is not Cohen–Macaulay.

6 If r ≥ 4 and even, then A is quasi-Gorenstein, but not
Cohen–Macaulay.
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Thank you

This slide will soon be available at
http://www.math.okayama-u.ac.jp/̃ hashimoto/
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