F-rationality of the ring of modular invariants

Mitsuyasu Hashimoto

Okayama University

March 22, 2016 Partially Joint with P. Symonds

F-rationality of the ring of modular invariants

Mitsuyasu Hashimoto

Okayama University

March 22, 2016 Partially Joint with P. Symonds

Let $k = \overline{k}$ be an algebraically closed field of characteristic p > 0. Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. We say that $g \in GL(V)$ is a pseudo-reflection if $rank(1_V - g) = 1$. Let $B = Sym V = k[v_1, \dots, v_d]$, where v_1, \dots, v_d is a basis of V, and $A = B^G$.

Question 1

Assume that G does not have a pseudo-reflection.

- 1 When is $A = B^G$ strongly *F*-regular?
- When is A = B^G F-rational?

イロト イポト イヨト イヨト

Let $k = \overline{k}$ be an algebraically closed field of characteristic p > 0. Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. We say that $g \in GL(V)$ is a pseudo-reflection if rank $(1_V - g) = 1$. Let $B = \text{Sym } V = k[v_1, \dots, v_d]$, where v_1, \dots, v_d is a basis of V, and $A = B^G$.

Question 1

Assume that G does not have a pseudo-reflection.

- When is $A = B^G$ strongly *F*-regular?
- When is A = B^G F-rational?

イロト イポト イヨト イヨト

Let $k = \overline{k}$ be an algebraically closed field of characteristic p > 0. Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. We say that $g \in GL(V)$ is a pseudo-reflection if $rank(1_V - g) = 1$. Let $B = Sym V = k[v_1, \dots, v_d]$, where v_1, \dots, v_d is a basis of V, and $A = B^G$.

Question 1

Assume that G does not have a pseudo-reflection.

- 1 When is $A = B^G$ strongly *F*-regular?
- When is A = B^G F-rational?

イロト 不得下 イヨト イヨト 二日

Let $k = \overline{k}$ be an algebraically closed field of characteristic p > 0. Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. We say that $g \in GL(V)$ is a pseudo-reflection if $rank(1_V - g) = 1$. Let $B = Sym V = k[v_1, \dots, v_d]$, where v_1, \dots, v_d is a basis of V, and $A = B^G$.

Question 1

Assume that G does not have a pseudo-reflection.

- 1 When is $A = B^G$ strongly *F*-regular?
- When is A = B^G F-rational?

イロト 不得下 イヨト イヨト 二日

Let $k = \overline{k}$ be an algebraically closed field of characteristic p > 0. Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. We say that $g \in GL(V)$ is a pseudo-reflection if $rank(1_V - g) = 1$. Let $B = Sym V = k[v_1, \dots, v_d]$, where v_1, \dots, v_d is a basis of V, and $A = B^G$.

Question 1

Assume that G does not have a pseudo-reflection.

- **1** When is $A = B^G$ strongly *F*-regular?
- 2 When is $A = B^G F$ -rational?

イロト 不得 トイヨト イヨト 二日

Let $k = \overline{k}$ be an algebraically closed field of characteristic p > 0. Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. We say that $g \in GL(V)$ is a pseudo-reflection if $rank(1_V - g) = 1$. Let $B = Sym V = k[v_1, \dots, v_d]$, where v_1, \dots, v_d is a basis of V, and $A = B^G$.

Question 1 Assume that *G* does not have a pseudo-reflection. When is A = B^G strongly *F*-regular? When is A = B^G *F*-rational?

イロト 不得 トイヨト イヨト 二日

Let $k = \overline{k}$ be an algebraically closed field of characteristic p > 0. Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. We say that $g \in GL(V)$ is a pseudo-reflection if $rank(1_V - g) = 1$. Let $B = Sym V = k[v_1, \dots, v_d]$, where v_1, \dots, v_d is a basis of V, and $A = B^G$.

Question 1 Assume that *G* does not have a pseudo-reflection. When is A = B^G strongly *F*-regular? When is A = B^G *F*-rational?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- 2 A is a direct summand subring of B.
- **3** p does not divide the order #G of G.

 $2\Rightarrow1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow2$ is because a weakly *F*-regular ring is a splinter (Hochster–Huneke). $3\Rightarrow2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow3$.

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- $A = B^G$ is strongly *F*-regular.
- 2 A is a direct summand subring of B.
- **3** p does not divide the order #G of G.

 $2\Rightarrow1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow2$ is because a weakly *F*-regular ring is a splinter (Hochster–Huneke). $3\Rightarrow2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow3$.

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- $A = B^G$ is strongly *F*-regular.
- **2** A is a direct summand subring of B.
- **3** p does not divide the order #G of G.

2⇒**1** is simply because strong *F*-regularity is inherited by a direct summand. **1**⇒**2** is because a weakly *F*-regular ring is a splinter (Hochster–Huneke). **3**⇒**2** is by the existence of the Reynolds operator. Broer and Yasuda proved **2**⇒**3**.

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- $A = B^G \text{ is strongly } F \text{-regular.}$
- **2** A is a direct summand subring of B.
- **3** p does not divide the order #G of G.

 $2\Rightarrow1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow2$ is because a weakly *F*-regular ring is a splinter (Hochster–Huneke). $3\Rightarrow2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow3$.

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- $A = B^G \text{ is strongly } F \text{-regular.}$
- **2** A is a direct summand subring of B.
- **3** p does not divide the order #G of G.

 $2\Rightarrow1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow2$ is because a weakly *F*-regular ring is a splinter (Hochster-Huneke). $3\Rightarrow2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow3$.

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- **2** A is a direct summand subring of B.
- **3** p does not divide the order #G of G.

 $2\Rightarrow1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow2$ is because a weakly *F*-regular ring is a splinter (Hochster-Huneke). $3\Rightarrow2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow3$.

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- **2** A is a direct summand subring of B.
- **3** p does not divide the order #G of G.

 $2\Rightarrow1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow2$ is because a weakly *F*-regular ring is a splinter (Hochster-Huneke). $3\Rightarrow2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow3$.

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- **2** A is a direct summand subring of B.
- **3** p does not divide the order #G of G.

 $2\Rightarrow1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow2$ is because a weakly *F*-regular ring is a splinter (Hochster-Huneke). $3\Rightarrow2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow3$.

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- **2** A is a direct summand subring of B.
- 3 p does not divide the order #G of G.

 $2\Rightarrow1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow2$ is because a weakly *F*-regular ring is a splinter (Hochster-Huneke). $3\Rightarrow2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow3$.

Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. Let B = Sym V and $A = B^G$.

A *G*-module *B*-module *M* is called a (G, B)-module if g(bm) = (gb)(gm) holds. This is the same as a module over the twisted group algebra B * G. Let \mathcal{M} be the category of $\mathbb{Z}[1/p]$ -graded (G, B)-modules. Let \mathcal{F} be its full subcategory consisting of *B*-finite *B*-free objects. The Frobenius twist e(?) is an endofunctor of \mathcal{M} , and $e\mathcal{F} \subset \mathcal{F}$. If $M \in \mathcal{M}$ and $m \in M$ is of degree *d*, then $em \in eM$ is of degree d/p^e .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. Let B = Sym V and $A = B^G$.

A *G*-module *B*-module *M* is called a (G, B)-module if g(bm) = (gb)(gm) holds. This is the same as a module over the twisted group algebra B * G.

Let \mathcal{M} be the category of $\mathbb{Z}[1/p]$ -graded (G, B)-modules. Let \mathcal{F} be its full subcategory consisting of B-finite B-free objects. The Frobenius twist e(?) is an endofunctor of \mathcal{M} , and $e\mathcal{F} \subset \mathcal{F}$. If $M \in \mathcal{M}$ and $m \in M$ is of degree d, then $em \in eM$ is of degree d/p^e .

- 4 同 6 4 日 6 4 日 6

Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. Let B = Sym V and $A = B^G$.

A *G*-module *B*-module *M* is called a (G, B)-module if g(bm) = (gb)(gm) holds. This is the same as a module over the twisted group algebra B * G. Let \mathcal{M} be the category of $\mathbb{Z}[1/p]$ -graded (G, B)-modules. Let \mathcal{F} be its full subcategory consisting of *B*-finite *B*-free objects. The Frobenius twist ${}^{\circ}(?)$ is an endofunctor of \mathcal{M} , and ${}^{\circ}\mathcal{F} \subset \mathcal{F}$. If $M \in \mathcal{M}$ and $m \in M$ is of degree *d*, then ${}^{\circ}m \in {}^{\circ}M$ is of degree d/p° .

<ロト <回ト < 回ト < 回ト < 回ト = 三日

Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. Let B = Sym V and $A = B^G$.

A *G*-module *B*-module *M* is called a (G, B)-module if g(bm) = (gb)(gm) holds. This is the same as a module over the twisted group algebra B * G. Let \mathcal{M} be the category of $\mathbb{Z}[1/p]$ -graded (G, B)-modules. Let \mathcal{F} be its full subcategory consisting of *B*-finite *B*-free objects. The Frobenius twist e(?) is an endofunctor of \mathcal{M} , and $e\mathcal{F} \subset \mathcal{F}$. If $\mathcal{M} \in \mathcal{M}$ and $m \in \mathcal{M}$ is of degree *d*, then $em \in eM$ is of degree d/p^e .

イロト 不得下 イヨト イヨト 二日

Let $V = k^d$, and G be a finite subgroup of $GL(V) = GL_d$. Let B = Sym V and $A = B^G$.

A G-module B-module M is called a (G, B)-module if g(bm) = (gb)(gm) holds. This is the same as a module over the twisted group algebra B * G. Let \mathcal{M} be the category of $\mathbb{Z}[1/p]$ -graded (G, B)-modules. Let \mathcal{F} be its full subcategory consisting of *B*-finite *B*-free objects. The Frobenius twist e(?) is an endofunctor of \mathcal{M} , and $e\mathcal{F} \subset \mathcal{F}$. If $M \in \mathcal{M}$ and $m \in M$ is of degree d, then ${}^{e}m \in {}^{e}M$ is of degree d/p^e .

くほと くほと くほと

Frobenius twists of objects of ${\mathcal F}$

Lemma 3 (Symonds–H)

There exists some $e_0 \ge 1$ such that for any $E \in \mathcal{F}$ of rank f, there exists a direct summand E_0 of $e_0 E$ in \mathcal{F} such that $E_0 \cong (B \otimes_k kG)^f$ as (G, B)-modules.

Lemma 4 (Symonds–H) $^{e}(B \otimes_{k} kG) \cong (B \otimes_{k} kG)^{p^{de}}$ as (G, B)-modules.

A D A D A D A

Frobenius twists of objects of \mathcal{F}

Lemma 3 (Symonds–H)

There exists some $e_0 > 1$ such that for any $E \in \mathcal{F}$ of rank f, there exists a direct summand E_0 of ${}^{e_0}E$ in \mathcal{F} such that $E_0 \cong (B \otimes_k kG)^f$ as (G, B)-modules.

Lemma 4 (Symonds–H) ${}^{e}(B \otimes_{k} kG) \cong (B \otimes_{k} kG)^{p^{de}}$ as (G, B)-modules.

通 ト イヨ ト イヨト

Asymptotic behavior of Frobenius twists

Theorem 5 (Symonds–H)

There exist some c > 0 and $0 < \alpha < 1$ such that for any $E \in \mathcal{F}$ of rank f and any $e \ge 1$, there exists some decomposition

${}^{e}E \cong E_{0,e} \oplus E_{1,e}$

in \mathcal{F} such that $E_{0,e}$ is a direct sum of copies of $B \otimes_k kG$ as a (G, B)-module, and $E_{1,e}$ is an object of \mathcal{F} whose rank is less than or equal to $fcp^{de}\alpha^e$.

• $\lim_{e\to\infty} \frac{1}{p^{de}} \operatorname{rank} E_{1,e} = 0$. Hence $\lim_{e\to\infty} \frac{1}{p^{de}} \operatorname{rank} E_{0,e} = f$.

Since (B ⊗_k kG)^G ≅ B as A-modules, we have lim_{e→∞} 1/p^{de} µ_Â(Ê_{0,e}) = fµ_Â(B)/|G| = fe_{HK}(Â) (by Watanabe–Yoshida theorem, as [Q(B) : Q(Â)] = |G|), where Â and B̂ are the completions of A and B, respectively.
As lim 1/d₂µ_Â(^eÊ^G) = e_{HK}(^eÊ^G) = fe_{HK}(Â), we have

Corollary 6 (Symonds–H)

$$\lim_{e\to\infty}\frac{1}{p^{de}}\mu_{\hat{A}}(\hat{E}_{1,e}^G)=0.$$

- $\lim_{e\to\infty} \frac{1}{p^{de}} \operatorname{rank} E_{1,e} = 0$. Hence $\lim_{e\to\infty} \frac{1}{p^{de}} \operatorname{rank} E_{0,e} = f$.
- Since $(B \otimes_k kG)^G \cong B$ as *A*-modules, we have $\lim_{e \to \infty} \frac{1}{p^{de}} \mu_{\hat{A}}(\hat{E}_{0,e}^G) = f \mu_{\hat{A}}(\hat{B})/|G| = f e_{\mathrm{HK}}(\hat{A}) \text{ (by}$ Watanabe–Yoshida theorem, as $[Q(\hat{B}) : Q(\hat{A})] = |G|)$, where \hat{A} and \hat{B} are the completions of *A* and *B*, respectively.
- As $\lim_{e\to\infty} \frac{1}{p^{de}} \mu_{\hat{A}}({}^e\hat{E}{}^G) = e_{\mathrm{HK}}({}^e\hat{E}{}^G) = fe_{\mathrm{HK}}(\hat{A})$, we have

Corollary 6 (Symonds–H)

$$\lim_{e\to\infty}\frac{1}{p^{de}}\mu_{\hat{A}}(\hat{E}_{1,e}^{G})=0.$$

- $\lim_{e\to\infty} \frac{1}{p^{de}} \operatorname{rank} E_{1,e} = 0$. Hence $\lim_{e\to\infty} \frac{1}{p^{de}} \operatorname{rank} E_{0,e} = f$.
- Since (B ⊗_k kG)^G ≅ B as A-modules, we have lim_{e→∞} 1/p^{de} µ_Â(Ê^G_{0,e}) = fµ_Â(B̂)/|G| = fe_{HK}(Â) (by Watanabe-Yoshida theorem, as [Q(B̂) : Q(Â)] = |G|), where Â and B̂ are the completions of A and B, respectively.
 As lim_{e→∞} 1/p^{de} µ_Â(^e Ê^G) = e_{HK}(^e Ê^G) = fe_{HK}(Â), we have

Corollary 6 (Symonds–H)

$$\lim_{e\to\infty}\frac{1}{p^{de}}\mu_{\hat{A}}(\hat{E}_{1,e}^{\mathsf{G}})=0.$$

- $\lim_{e\to\infty} \frac{1}{p^{de}} \operatorname{rank} E_{1,e} = 0$. Hence $\lim_{e\to\infty} \frac{1}{p^{de}} \operatorname{rank} E_{0,e} = f$.
- Since (B ⊗_k kG)^G ≅ B as A-modules, we have lim_{e→∞} 1/p^{de} μ_Â(Ê_{0,e}) = f μ_Â(B)/|G| = fe_{HK}(Â) (by Watanabe–Yoshida theorem, as [Q(B̂) : Q(Â)] = |G|), where Â and B̂ are the completions of A and B, respectively.
 As lim_{e→∞} 1/p^{de} μ_Â(^eÊ^G) = e_{HK}(^eÊ^G) = fe_{HK}(Â), we have

Corollary 6 (Symonds–H) $\lim_{e\to\infty}\frac{1}{p^{de}}\mu_{\hat{A}}(\hat{E}_{1,e}^{G})=0.$

Let $k = V_0, V_1, \ldots, V_n$ be the list of simple *G*-modules. Let P_i be the projective cover of V_i . Set $M_i := (B \otimes_k P_i)^G$.

Theorem 7 (Symonds–H)

There exists some sequence of non-negative integers $\{a_e\}$ such that

- 1 $\lim_{e\to\infty} a_e/p^{de} = 1/|G|$; and
- Por each B-finite B-free Z-graded (G, B)-module E of rank f and e ≥ 1, there is a decomposition

$${}^{e}E^{G}\cong \bigoplus_{i=0}^{n}M_{i}^{\oplus fa_{e}\dim V_{i}}\oplus M_{E,e}$$

as an A-module such that $\lim_{e \to \infty} \mu_{\hat{A}}(\hat{M}_{E,e})/p^{de} = 0$

Let $k = V_0, V_1, \ldots, V_n$ be the list of simple *G*-modules. Let P_i be the projective cover of V_i . Set $M_i := (B \otimes_k P_i)^G$.

Theorem 7 (Symonds–H)

There exists some sequence of non-negative integers $\{a_e\}$ such that

- 1 $\lim_{e\to\infty} a_e/p^{de} = 1/|G|$; and
- ② For each B-finite B-free Z-graded (G, B)-module E of rank f and e ≥ 1, there is a decomposition

$${}^eE^G\cong igoplus_{i=0}^n M_i^{\oplus {\sf fa}_e\dim V_i}\oplus M_{E,e}$$

as an A-module such that $\lim_{e\to\infty} \mu_{\hat{A}}(\hat{M}_{E,e})/p^{de} = 0$

Let $k = V_0, V_1, \ldots, V_n$ be the list of simple *G*-modules. Let P_i be the projective cover of V_i . Set $M_i := (B \otimes_k P_i)^G$.

Theorem 7 (Symonds–H)

There exists some sequence of non-negative integers $\{a_e\}$ such that

- $Iim_{e\to\infty} a_e/p^{de} = 1/|G|; and$
- Por each B-finite B-free Z-graded (G, B)-module E of rank f and e ≥ 1, there is a decomposition

$${}^eE^G\cong igoplus_{i=0}^n M_i^{\oplus {\sf fa}_e\dim V_i}\oplus M_{E,e}$$

as an A-module such that $\lim_{e\to\infty} \mu_{\hat{A}}(\hat{M}_{E,e})/p^{de} = 0$

Let $k = V_0, V_1, \ldots, V_n$ be the list of simple *G*-modules. Let P_i be the projective cover of V_i . Set $M_i := (B \otimes_k P_i)^G$.

Theorem 7 (Symonds–H)

There exists some sequence of non-negative integers $\{a_e\}$ such that

$$Iim_{e\to\infty} a_e/p^{de} = 1/|G|; and$$

② For each *B*-finite *B*-free Z-graded (*G*, *B*)-module *E* of rank *f* and *e* ≥ 1, there is a decomposition

$${}^{e}E^{G}\cong \bigoplus_{i=0}^{n}M_{i}^{\oplus fa_{e}\dim V_{i}}\oplus M_{E,e}$$

as an A-module such that $\lim_{e\to\infty} \mu_{\hat{A}}(\hat{M}_{E,e})/p^{de} = 0.$

Sannai's dual F-signature

Let (R, \mathfrak{m}, k) be a *d*-dimensional reduced *F*-finite local ring of prime characteristic *p* with *k* perfect. For finite *R*-modules *M* and *N*, define

 $\operatorname{surj}_R(M, N) := \max\{r \in \mathbb{Z}_{\geq 0} \mid \exists \text{ a surjection } M \to N^{\oplus r}\}.$

We define

$$s(M) := \limsup_{e \to \infty} \frac{\operatorname{surj}_R({}^eM, M)}{p^{de}},$$

and call it the dual *F*-signature of *M* (Sannai). *s*(*R*) is nothing but the *F*-signature of the ring *R* (defined by Huneke–Leuschke).

- 4 同 6 4 日 6 4 日 6

Sannai's dual F-signature

Let (R, \mathfrak{m}, k) be a *d*-dimensional reduced *F*-finite local ring of prime characteristic *p* with *k* perfect. For finite *R*-modules *M* and *N*, define

 $\operatorname{surj}_{R}(M,N) := \max\{r \in \mathbb{Z}_{\geq 0} \mid \exists \text{ a surjection } M \to N^{\oplus r}\}.$

We define

$$s(M):=\limsup_{e o\infty}rac{\operatorname{surj}_R({}^eM,M)}{p^{de}},$$

and call it the dual *F*-signature of *M* (Sannai). s(R) is nothing but the *F*-signature of the ring *R* (defined by Huneke–Leuschke).

- 4 週 ト - 4 三 ト - 4 三 ト

Sannai's dual *F*-signature

Let (R, \mathfrak{m}, k) be a *d*-dimensional reduced *F*-finite local ring of prime characteristic p with k perfect. For finite R-modules M and N, define

 $\operatorname{surj}_R(M, N) := \max\{r \in \mathbb{Z}_{>0} \mid \exists \text{ a surjection } M \to N^{\oplus r}\}.$

We define

$$s(M) := \limsup_{e o \infty} rac{\operatorname{surj}_R({}^eM,M)}{p^{de}},$$

and call it the dual *F*-signature of *M* (Sannai). s(R) is nothing but the *F*-signature of the ring *R* (defined by Huneke–Leuschke).

- 4 週 ト - 4 三 ト - 4 三 ト

Theorem 8

Let (R, \mathfrak{m}, k) be a reduced *F*-finite local ring with *k* perfect.

- (Tucker) $s(R) := \limsup_{e \to \infty} \frac{\operatorname{surj}({}^eR, R)}{p^{de}} = \lim_{e \to \infty} \frac{\operatorname{surj}({}^eR, R)}{p^{de}}$
- (Aberbach–Leuschke) R is strongly F-regular if and only if s(R) > 0.
- 3 (Gabber) *R* is a homomorphic image of a regular local ring.
- (Sannai) R is F-rational if and only if R is Cohen–Macaulay and s(ω_R) > 0, where ω_R is the canonical module of R.

- 4 回 ト - 4 回 ト

Theorem 8 Let (R, \mathfrak{m}, k) be a reduced F-finite local ring with k perfect. (Tucker) $s(R) := \limsup_{e \to \infty} \frac{\operatorname{surj}({}^eR, R)}{p^{de}} = \lim_{e \to \infty} \frac{\operatorname{surj}({}^eR, R)}{p^{de}}$ $e \rightarrow \infty$ 2 (Aberbach–Leuschke) *R* is strongly *F*-regular if and only if 3 4

- 4 週 ト - 4 三 ト - 4 三 ト

Theorem 8 Let (R, \mathfrak{m}, k) be a reduced F-finite local ring with k perfect. $(\text{Tucker}) s(R) := \limsup_{e \to \infty} \frac{\sup({}^eR, R)}{p^{de}} = \lim_{e \to \infty} \frac{\sup({}^eR, R)}{p^{de}}.$ (Aberbach–Leuschke) R is strongly F-regular if and only if ③ (Gabber) R is a homomorphic image of a regular local ring. 4

イロト 不得下 イヨト イヨト 二日

Theorem 8 Let (R, \mathfrak{m}, k) be a reduced *F*-finite local ring with *k* perfect. (Tucker) $s(R) := \limsup_{e \to \infty} \frac{\operatorname{surj}({}^eR, R)}{p^{de}} = \lim_{e \to \infty} \frac{\operatorname{surj}({}^eR, R)}{p^{de}}$. (Aberbach-Leuschke) *R* is strongly *F*-regular if and only if s(R) > 0. (Gabber) *R* is a homomorphic image of a regular local ring.

(Sannai) R is F-rational if and only if R is Cohen–Macaulay and s(ω_R) > 0, where ω_R is the canonical module of R.

Theorem 8
Let (R, m, k) be a reduced F-finite local ring with k perfect.
① (Tucker) s(R) := lim sup surj(eR, R) / p^{de} = lim surj(eR, R) / p^{de}.
② (Aberbach-Leuschke) R is strongly F-regular if and only if s(R) > 0.
③ (Gabber) R is a homomorphic image of a regular local ring.

(Sannai) R is F-rational if and only if R is Cohen–Macaulay and s(ω_R) > 0, where ω_R is the canonical module of R.

(本間) (本語) (本語) (語)

Theorem 8
Let (R, m, k) be a reduced F-finite local ring with k perfect.
(Tucker) s(R) := lim sup surj(^eR, R)/p^{de} = lim surj(^eR, R)/p^{de}.
(Aberbach-Leuschke) R is strongly F-regular if and only if s(R) > 0.
(Gabber) R is a homomorphic image of a regular local ring.
(Sennei) R is a homomorphic image of a regular local ring.

(Sannai) *R* is *F*-rational if and only if *R* is Cohen–Macaulay and $s(\omega_R) > 0$, where ω_R is the canonical module of *R*.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The group $[\mathcal{C}]$

Let $\ensuremath{\mathcal{C}}$ be an additive category. We define

$[\mathcal{C}] := (\bigoplus_{M \in \mathcal{C}} \mathbb{Z} \cdot M) / (M - M_1 - M_2 \mid M \cong M_1 \oplus M_2).$

The class of M in the group [C] is denoted by [M].

The vector space $\mathbb{R} \otimes_{\mathbb{Z}} [\mathcal{C}]$ is denoted by $[\mathcal{C}]_{\mathbb{R}}$. If \mathcal{C} is Krull–Schmidt and \mathcal{C}_0 is a complete set of representatives of Ind \mathcal{C} , then $\{[M] \mid M \in \mathcal{C}_0\}$ is an \mathbb{R} -basis of $[\mathcal{C}]_{\mathbb{R}}$.

一日、

The group $[\mathcal{C}]$

Let $\ensuremath{\mathcal{C}}$ be an additive category. We define

 $[\mathcal{C}] := (\bigoplus_{M \in \mathcal{C}} \mathbb{Z} \cdot M) / (M - M_1 - M_2 \mid M \cong M_1 \oplus M_2).$

The class of M in the group [C] is denoted by [M]. The vector space $\mathbb{R} \otimes_{\mathbb{Z}} [C]$ is denoted by $[C]_{\mathbb{R}}$. If C is Krull–Schmidt and C_0 is a complete set of representatives of Ind C, then $\{[M] \mid M \in C_0\}$ is an \mathbb{R} -basis of $[C]_{\mathbb{R}}$.

周 と く ヨ と く ヨ と 二 ヨ

The metric of [mod(R)]

Let *R* be a Henselian local ring, and C := mod(R). For $\alpha \in [C]_{\mathbb{R}}$, we can write

$$\alpha = \sum_{\boldsymbol{M}\in\mathcal{C}_0} \boldsymbol{c}_{\boldsymbol{M}}[\boldsymbol{M}].$$

We define $\|\alpha\| := \sum_{M} |c_{M}| \mu_{R}(M)$. Then $([\mathcal{C}]_{\mathbb{R}}, \|\cdot\|)$ is a normed space. So it is a metric space by the metric

 $d(\alpha,\beta) := \|\alpha - \beta\|.$

The metric of [mod(R)]

Let R be a Henselian local ring, and $\mathcal{C} := \operatorname{mod}(R)$. For $\alpha \in [\mathcal{C}]_{\mathbb{R}}$, we can write

$$\alpha = \sum_{\boldsymbol{M}\in\mathcal{C}_0} \boldsymbol{c}_{\boldsymbol{M}}[\boldsymbol{M}].$$

We define $\|\alpha\| := \sum_{M} |c_{M}| \mu_{R}(M)$. Then $([\mathcal{C}]_{\mathbb{R}}, \|\cdot\|)$ is a normed space. So it is a metric space by the metric

 $d(\alpha,\beta) := \|\alpha - \beta\|.$

通 ト イヨ ト イヨト

Let
$$\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\mathsf{mod}(R)]_{\mathbb{R}}$$
.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in C_0$, define sum_N : $[C]_{\mathbb{R}} \to \mathbb{R}$ by sum_N $(\alpha) = c_N$.
- Assume further that R is of characteristic p > 0 and F-finite with a perfect residue field.

• Define
$${}^{e}\alpha = \sum_{M \in \mathcal{C}_0} c_M[{}^{e}M].$$

- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} \alpha$ (if exists, the *F*-limit of α).
- Define $e_{\rm HK}(\alpha) = \sum_M c_M e_{\rm HK}(M)$.
- For $N \in C_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where

Let $\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\operatorname{mod}(R)]_{\mathbb{R}}$.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in C_0$, define sum_N : $[C]_{\mathbb{R}} \to \mathbb{R}$ by sum_N $(\alpha) = c_N$.
- Assume further that R is of characteristic p > 0 and F-finite with a perfect residue field.
- Define ${}^{e}\alpha = \sum_{M \in C_0} c_M[{}^{e}M].$
- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} \alpha$ (if exists, the *F*-limit of α).
- Define $e_{\rm HK}(\alpha) = \sum_M c_M e_{\rm HK}(M)$.
- For $N \in C_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where

Let $\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\operatorname{mod}(R)]_{\mathbb{R}}$.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in \mathcal{C}_0$, define $\operatorname{sum}_N : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\operatorname{sum}_N(\alpha) = c_N$.
- Assume further that R is of characteristic p > 0 and F-finite with a perfect residue field.
- Define ${}^{e}\alpha = \sum_{M \in C_0} c_M[{}^{e}M].$
- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} \alpha$ (if exists, the *F*-limit of α).
- Define $e_{\rm HK}(\alpha) = \sum_M c_M e_{\rm HK}(M)$.
- For $N \in C_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where

Let $\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\operatorname{mod}(R)]_{\mathbb{R}}$.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in \mathcal{C}_0$, define $\operatorname{sum}_N : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\operatorname{sum}_N(\alpha) = c_N$.
- Assume further that *R* is of characteristic *p* > 0 and *F*-finite with a perfect residue field.
- Define ${}^{e}\alpha = \sum_{M \in C_0} c_M[{}^{e}M].$
- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} \alpha$ (if exists, the *F*-limit of α).
- Define $e_{\rm HK}(\alpha) = \sum_M c_M e_{\rm HK}(M)$.
- For $N \in C_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where

Let $\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\operatorname{mod}(R)]_{\mathbb{R}}$.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in \mathcal{C}_0$, define $\operatorname{sum}_N : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\operatorname{sum}_N(\alpha) = c_N$.
- Assume further that *R* is of characteristic *p* > 0 and *F*-finite with a perfect residue field.
- Define ${}^{e}\alpha = \sum_{M \in \mathcal{C}_0} c_M[{}^{e}M].$
- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} \alpha$ (if exists, the *F*-limit of α).
- Define $e_{\rm HK}(\alpha) = \sum_{M} c_{M} e_{\rm HK}(M)$.
- For $N \in C_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where

Let $\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\operatorname{mod}(R)]_{\mathbb{R}}$.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in \mathcal{C}_0$, define $\operatorname{sum}_N : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\operatorname{sum}_N(\alpha) = c_N$.
- Assume further that *R* is of characteristic *p* > 0 and *F*-finite with a perfect residue field.
- Define ${}^{e}\alpha = \sum_{M \in \mathcal{C}_0} c_M[{}^{e}M].$
- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} \alpha$ (if exists, the *F*-limit of α).
- Define $e_{\rm HK}(\alpha) = \sum_M c_M e_{\rm HK}(M)$.
- For $N \in C_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where

Let $\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\operatorname{mod}(R)]_{\mathbb{R}}$.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in \mathcal{C}_0$, define $\operatorname{sum}_N : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\operatorname{sum}_N(\alpha) = c_N$.
- Assume further that *R* is of characteristic *p* > 0 and *F*-finite with a perfect residue field.
- Define ${}^{e}\alpha = \sum_{M \in \mathcal{C}_0} c_M[{}^{e}M].$
- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} e^{\alpha}$ (if exists, the *F*-limit of α).
- Define $e_{\rm HK}(\alpha) = \sum_{M} c_{M} e_{\rm HK}(M)$.

• For $N \in C_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where $FS_N(M) = \lim_{M \to \infty} \frac{1}{2} \sup_{M \to \infty} (e^M)$ (the generalized *E* signat

Let $\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\operatorname{mod}(R)]_{\mathbb{R}}$.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in \mathcal{C}_0$, define $\operatorname{sum}_N : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\operatorname{sum}_N(\alpha) = c_N$.
- Assume further that *R* is of characteristic *p* > 0 and *F*-finite with a perfect residue field.
- Define ${}^{e}\alpha = \sum_{M \in \mathcal{C}_0} c_M[{}^{e}M].$
- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} \alpha$ (if exists, the *F*-limit of α).
- Define $e_{\rm HK}(\alpha) = \sum_{M} c_{M} e_{\rm HK}(M)$.
- For $N \in C_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where $FS_N(M) = \lim_{e \to \infty} \frac{1}{p^{de}} \sup_N({}^eM)$ (the generalized *F*-signature).

The Hilbert–Kunz multiplicity and F-signature

Lemma 9

 $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ is a short map. That is, $|\mu_R(\alpha) - \mu_R(\beta)| \le ||\alpha - \beta||$. Similarly for sum_N : $[\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ for $N \in \mathcal{C}_0$. In particular, they are uniformly continuous.

Corollary 10 Let $\alpha = \sum_{M \in C_0} c_M[M] \in [C]_{\mathbb{R}}$. If $FL(\alpha)$ exists, then $\mu_R(FL(\alpha)) = e_{\mathrm{HK}}(\alpha)$

and

```
\operatorname{sum}_N(FL(\alpha)) = FS_N(\alpha).
```

The Hilbert–Kunz multiplicity and F-signature

Lemma 9

 $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ is a short map. That is, $|\mu_R(\alpha) - \mu_R(\beta)| \le ||\alpha - \beta||$. Similarly for sum_N : $[\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ for $N \in \mathcal{C}_0$. In particular, they are uniformly continuous.

Corollary 10 Let $\alpha = \sum_{M \in C_0} c_M[M] \in [C]_{\mathbb{R}}$. If $FL(\alpha)$ exists, then $\mu_R(FL(\alpha)) = e_{\mathrm{HK}}(\alpha)$ and

$$\operatorname{sum}_{N}(FL(\alpha)) = FS_{N}(\alpha).$$

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

- Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M].$
- Define

$$\operatorname{asn}(\alpha, N) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t \alpha \rangle, N)$$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map.
- We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in C_0$.
- If $\alpha, \beta \ge 0$, then $\operatorname{asn}(\alpha + \beta, N) \ge \operatorname{asn}(\alpha, N) + \operatorname{asn}(\beta, N)$.

• If the *F*-limit of *M* exists, then $s(M) = \operatorname{asn}(FL([M]), M)$

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

• Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M].$

Define

 $\operatorname{asn}(\alpha, N) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t \alpha \rangle, N)$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map
- We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in C_0$.
- If $\alpha, \beta \ge 0$, then $\operatorname{asn}(\alpha + \beta, N) \ge \operatorname{asn}(\alpha, N) + \operatorname{asn}(\beta, N)$.

• If the F-limit of M exists, then $s(M) = \operatorname{asn}(FL([M]), M)$

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

- Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M].$
- Define

$$\operatorname{asn}(\alpha, N) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t \alpha \rangle, N)$$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map.
- We say that $\alpha \ge 0$ if $c_M \ge 0$ for any $M \in C_0$.
- If $\alpha, \beta \ge 0$, then $\operatorname{asn}(\alpha + \beta, N) \ge \operatorname{asn}(\alpha, N) + \operatorname{asn}(\beta, N)$.

If the F-limit of M exists, then s(M) = asn(FL([M]), M)

3

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

• Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M].$

Define

$$\operatorname{asn}(\alpha, N) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t \alpha \rangle, N)$$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map.
- We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in C_0$.
- If $\alpha, \beta \ge 0$, then $\operatorname{asn}(\alpha + \beta, N) \ge \operatorname{asn}(\alpha, N) + \operatorname{asn}(\beta, N)$.

If the F-limit of M exists, then s(M) = asn(FL([M]), M)

3

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

• Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M].$

Define

$$\operatorname{asn}(\alpha, N) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t \alpha \rangle, N)$$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map.
- We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in C_0$.
- If $\alpha, \beta \ge 0$, then $\operatorname{asn}(\alpha + \beta, N) \ge \operatorname{asn}(\alpha, N) + \operatorname{asn}(\beta, N)$.

• If the *F*-limit of *M* exists, then $s(M) = \operatorname{asn}(FL([M]), M)$

3

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

• Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M].$

Define

$$\operatorname{asn}(lpha, \mathsf{N}) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t lpha
angle, \mathsf{N})$$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map.
- We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in C_0$.
- If $\alpha, \beta \geq 0$, then $\operatorname{asn}(\alpha + \beta, N) \geq \operatorname{asn}(\alpha, N) + \operatorname{asn}(\beta, N)$.

• If the *F*-limit of *M* exists, then $s(M) = \operatorname{asn}(FL([M]), M)$.

- 3

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

- Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M].$
- Define

$$\operatorname{asn}(\alpha, N) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t \alpha \rangle, N)$$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map.
- We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in C_0$.
- If $\alpha, \beta \ge 0$, then $\operatorname{asn}(\alpha + \beta, N) \ge \operatorname{asn}(\alpha, N) + \operatorname{asn}(\beta, N)$.

If the F-limit of M exists, then s(M) = asn(FL([M]), M)

- 3

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

- Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M].$
- Define

$$\operatorname{asn}(\alpha, N) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t \alpha \rangle, N)$$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map.
- We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in C_0$.
- If $\alpha, \beta \ge 0$, then $\operatorname{asn}(\alpha + \beta, N) \ge \operatorname{asn}(\alpha, N) + \operatorname{asn}(\beta, N)$.
- If the *F*-limit of *M* exists, then s(M) = asn(FL([M]), M).

The restatement of Theorem 7

Theorem 11 (Symonds–H)

For each *B*-finite *B*-free \mathbb{Z} -graded (G, B)-module *E* of rank *f*,

$$FL([\hat{E}^G]) = \frac{f}{|G|}[\hat{B}] = \frac{f}{|G|} \bigoplus_{i=0}^n (\dim V_i)[\hat{M}_i]$$

in $[\operatorname{mod} \hat{A}]_{\mathbb{R}}$, where $M_i = (B \otimes_k P_i)^{\mathsf{G}}$.

Remark 12

The theorem for the case that *p* does not divide |*G*| is due to Nakajima–H.

- 4 回 ト - 4 回 ト

The restatement of Theorem 7

Theorem 11 (Symonds–H)

For each *B*-finite *B*-free \mathbb{Z} -graded (G, B)-module *E* of rank *f*,

$$FL([\hat{E}^G]) = \frac{f}{|G|}[\hat{B}] = \frac{f}{|G|} \bigoplus_{i=0}^n (\dim V_i)[\hat{M}_i]$$

in $[\operatorname{mod} \hat{A}]_{\mathbb{R}}$, where $M_i = (B \otimes_k P_i)^{\mathsf{G}}$.

Remark 12

The theorem for the case that p does not divide |G| is due to Nakajima-H.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From now, unless otherwise stated explicitly (in an example), assume that G has no pseudo-reflection.

Theorem 13 (Watanabe–Peskin–Broer–Braun)

Let det = det_V denote the one-dimensional representation $\bigwedge^d V$ of G. Then

- $\bullet \omega_A \cong (B \otimes_k \det)^G.$
- **2** Hence $B \otimes_k \det \cong (B \otimes_A \omega_A)^{**}$.
- In particular, A is quasi-Gorenstein if and only if det ≅ k as a G-module (or equivalently, G ⊂ SL(V)).

< 回 > < 三 > < 三 >

From now, unless otherwise stated explicitly (in an example), assume that G has no pseudo-reflection.

Theorem 13 (Watanabe–Peskin–Broer–Braun)

Let $det = det_V$ denote the one-dimensional representation $\bigwedge^d V$ of G. Then

- 2 Hence $B \otimes_k \det \cong (B \otimes_A \omega_A)^{**}$.
- 3 In particular, A is quasi-Gorenstein if and only if det ≅ k as a G-module (or equivalently, G ⊂ SL(V)).

- 4 同 6 4 日 6 4 日 6

From now, unless otherwise stated explicitly (in an example), assume that G has no pseudo-reflection.

Theorem 13 (Watanabe–Peskin–Broer–Braun)

Let $det = det_V$ denote the one-dimensional representation $\bigwedge^d V$ of G. Then

- **2** Hence $B \otimes_k \det \cong (B \otimes_A \omega_A)^{**}$.
- In particular, A is quasi-Gorenstein if and only if det $\cong k$ as a G-module (or equivalently, $G \subset SL(V)$).

- 4 週 ト - 4 三 ト - 4 三 ト

From now, unless otherwise stated explicitly (in an example), assume that G has no pseudo-reflection.

Theorem 13 (Watanabe–Peskin–Broer–Braun)

Let $det = det_V$ denote the one-dimensional representation $\bigwedge^d V$ of *G*. Then

- **2** Hence $B \otimes_k \det \cong (B \otimes_A \omega_A)^{**}$.
- In particular, A is quasi-Gorenstein if and only if det ≅ k as a G-module (or equivalently, G ⊂ SL(V)).

- 4 週 ト - 4 三 ト - 4 三 ト

From now, unless otherwise stated explicitly (in an example), assume that G has no pseudo-reflection.

Theorem 13 (Watanabe–Peskin–Broer–Braun)

Let $det = det_V$ denote the one-dimensional representation $\bigwedge^d V$ of G. Then

- **2** Hence $B \otimes_k \det \cong (B \otimes_A \omega_A)^{**}$.
- In particular, A is quasi-Gorenstein if and only if det ≃ k as a G-module (or equivalently, G ⊂ SL(V)).

< 回 > < 三 > < 三 >

Reproving Watanabe–Yoshida theorem and Broer–Yasuda theorem

Note that each $\hat{M}_i = (\hat{B} \otimes_k P_i)^G$ is an indecomposable \hat{A} -module, and $\hat{M}_i \ncong \hat{M}_j$ for $i \neq j$. Moreover, $\hat{M}_i \cong \hat{A}$ if and only if $P_i \cong k$. This is equivalent to say that i = 0 and p does not divide |G|.

Corollary 14 (Watanabe–Yoshida, Broer, Yasuda) The *F*-signature $s(\hat{A})$ of \hat{A} is zero if *p* divides |G|, and is 1/|G| otherwise.

Proof.

 $s(\hat{A}) = \textit{FS}_{\hat{A}}(\hat{A}) = |G|^{-1} \sum_{i=0}^n (\dim V_i) \operatorname{sum}_{\hat{A}}([\hat{M}_i]).$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Reproving Watanabe–Yoshida theorem and Broer–Yasuda theorem

Note that each $\hat{M}_i = (\hat{B} \otimes_k P_i)^G$ is an indecomposable \hat{A} -module, and $\hat{M}_i \ncong \hat{M}_j$ for $i \neq j$. Moreover, $\hat{M}_i \cong \hat{A}$ if and only if $P_i \cong k$. This is equivalent to say that i = 0 and p does not divide |G|.

Corollary 14 (Watanabe–Yoshida, Broer, Yasuda) The *F*-signature $s(\hat{A})$ of \hat{A} is zero if *p* divides |G|, and is 1/|G| otherwise.

Proof.

 $s(\hat{A}) = FS_{\hat{A}}(\hat{A}) = |G|^{-1} \sum_{i=0}^{n} (\dim V_i) \operatorname{sum}_{\hat{A}}([\hat{M}_i])$

Reproving Watanabe–Yoshida theorem and Broer–Yasuda theorem

Note that each $\hat{M}_i = (\hat{B} \otimes_k P_i)^G$ is an indecomposable \hat{A} -module, and $\hat{M}_i \ncong \hat{M}_j$ for $i \neq j$. Moreover, $\hat{M}_i \cong \hat{A}$ if and only if $P_i \cong k$. This is equivalent to say that i = 0 and p does not divide |G|.

Corollary 14 (Watanabe–Yoshida, Broer, Yasuda) The *F*-signature $s(\hat{A})$ of \hat{A} is zero if *p* divides |G|, and is 1/|G| otherwise.

Proof. $s(\hat{A}) = FS_{\hat{A}}(\hat{A}) = |G|^{-1} \sum_{i=0}^{n} (\dim V_{i}) \operatorname{sum}_{\hat{A}}([\hat{M}_{i}]).$

Theorem 15 (Main Theorem)

Assume that A is not strongly F-regular (or equivalently, p divides |G|). Then the following are equivalent.

- **1** $s(\omega_{\hat{A}}) > 0;$
- 2 The canonical map $M_{\nu} \rightarrow \omega_A$ is surjective.
- For any non-projective indecomposable G-summand M of B, M does not contain det⁻¹ (the k-dual of det).
- If these conditions hold, then $s(\omega_{\hat{A}}) \geq 1/|G|$.

Theorem 15 (Main Theorem)

Assume that A is not strongly F-regular (or equivalently, p divides |G|). Then the following are equivalent.

- **1** $s(\omega_{\hat{A}}) > 0;$
- 2 The canonical map $M_{\nu} \rightarrow \omega_A$ is surjective.
- 3 $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0.$
- For any non-projective indecomposable G-summand M of B, M does not contain det⁻¹ (the k-dual of det).

Theorem 15 (Main Theorem)

Assume that A is not strongly F-regular (or equivalently, p divides |G|). Then the following are equivalent.

- 2 The canonical map $M_{\nu} \rightarrow \omega_A$ is surjective.
- 3 $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0.$
- For any non-projective indecomposable G-summand M of B, M does not contain det⁻¹ (the k-dual of det).

Theorem 15 (Main Theorem)

Assume that A is not strongly F-regular (or equivalently, p divides |G|). Then the following are equivalent.

- **2** The canonical map $M_{\nu} \rightarrow \omega_A$ is surjective.
- 3 $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0.$
- For any non-projective indecomposable G-summand M of B, M does not contain det⁻¹ (the k-dual of det).

Theorem 15 (Main Theorem)

Assume that A is not strongly F-regular (or equivalently, p divides |G|). Then the following are equivalent.

- **2** The canonical map $M_{\nu} \rightarrow \omega_A$ is surjective.
- $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0.$
- For any non-projective indecomposable G-summand M of B, M does not contain det⁻¹ (the k-dual of det).
- If these conditions hold, then $s(\omega_{\hat{A}}) \geq 1/|{\cal G}|.$

Theorem 15 (Main Theorem)

Assume that A is not strongly F-regular (or equivalently, p divides |G|). Then the following are equivalent.

- **2** The canonical map $M_{\nu} \rightarrow \omega_A$ is surjective.
- $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0.$
- For any non-projective indecomposable G-summand M of B, M does not contain det^{-1} (the k-dual of det).

Theorem 15 (Main Theorem)

Assume that A is not strongly F-regular (or equivalently, p divides |G|). Then the following are equivalent.

• $s(\omega_{\hat{A}}) > 0;$

- **2** The canonical map $M_{\nu} \rightarrow \omega_A$ is surjective.
- $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0.$
- **④** For any non-projective indecomposable *G*-summand *M* of *B*, *M* does not contain det⁻¹ (the *k*-dual of det).
- If these conditions hold, then $s(\omega_{\hat{A}}) \geq 1/|G|$.

Theorem 11 for $E = B \otimes det$

Let $k = V_0, V_1, \ldots, V_n$ be the list of simple *G*-modules. Let P_i be the projective cover of V_i . Set $M_i := (B \otimes_k P_i)^G$.

Theorem 11 (Symonds–H)

 $FL([\omega_{\hat{A}}]) = rac{1}{|G|}[\hat{B}] = rac{1}{|G|} \bigoplus_{i=0}^{''} (\dim V_i)[\hat{M}_i]$ nere $M_i = (B \otimes P_i)^G$.

通 ト イヨ ト イヨト

Theorem 11 for $E = B \otimes det$

Let $k = V_0, V_1, \ldots, V_n$ be the list of simple *G*-modules. Let P_i be the projective cover of V_i . Set $M_i := (B \otimes_k P_i)^G$.

Theorem 11 (Symonds–H) $FL([\omega_{\hat{A}}]) = \frac{1}{|G|} [\hat{B}] = \frac{1}{|G|} \bigoplus_{i=0}^{n} (\dim V_{i}) [\hat{M}_{i}],$ where $M_{i} = (B \otimes P_{i})^{G}.$

・何・ ・ヨ・ ・ヨ・ ・ヨ

The proof of $2 \Rightarrow 1$

As we assume that there is a surjection $M_{\nu} \to \omega_A$, $\operatorname{surj}(\hat{M}_{\nu}, \omega_{\hat{A}}) \ge 1$. By Theorem 11 (applied to $E = B \otimes \det$),

$$s(\omega_{\hat{A}}) = \operatorname{asn}(FL([\omega_{\hat{A}}]), \omega_{\hat{A}}) = \frac{1}{|G|} \operatorname{asn}([\hat{M}_{\nu}] + \sum_{i \neq \nu} (\operatorname{dim} V_{i})[\hat{M}_{i}], \omega_{\hat{A}})$$
$$\geq \frac{1}{|G|} \operatorname{asn}([\hat{M}_{\nu}], \omega_{\hat{A}}) \geq \frac{1}{|G|} \operatorname{surj}(\hat{M}_{\nu}, \omega_{\hat{A}}) \geq \frac{1}{|G|} > 0.$$

March 22, 2016 21 / 36

The proof of $2 \Rightarrow 1$

As we assume that there is a surjection $M_{\nu} \to \omega_A$, $\operatorname{surj}(\hat{M}_{\nu}, \omega_{\hat{A}}) \ge 1$. By Theorem 11 (applied to $E = B \otimes \det$),

$$s(\omega_{\hat{A}}) = \operatorname{asn}(FL([\omega_{\hat{A}}]), \omega_{\hat{A}}) = \frac{1}{|G|} \operatorname{asn}([\hat{M}_{\nu}] + \sum_{i \neq \nu} (\dim V_i)[\hat{M}_i], \omega_{\hat{A}})$$
$$\geq \frac{1}{|G|} \operatorname{asn}([\hat{M}_{\nu}], \omega_{\hat{A}}) \geq \frac{1}{|G|} \operatorname{surj}(\hat{M}_{\nu}, \omega_{\hat{A}}) \geq \frac{1}{|G|} > 0.$$

The proof of $\mathbf{1} \Rightarrow \mathbf{2}$ (1)

By Theorem 11, we have that $\operatorname{asn}([\hat{B}], \omega_{\hat{A}}) > 0$. Or equivalently, there is a surjection $h : \hat{B}^r \to \omega_{\hat{A}}$ for $r \gg 0$. By the equivalence $\gamma = (\hat{B} \otimes_{\hat{A}}?)^{**} : \operatorname{Ref}(\hat{A}) \to \operatorname{Ref}(G, \hat{B})$, there corresponds

 $ilde{h} = \gamma(h): (\hat{B} \otimes_k kG)^r o \hat{B} \otimes_k ext{det}$.

As $\hat{B} \otimes_k kG$ is a projective object in the category of (G, \hat{B}) -modules, \tilde{h} factors through the surjection

 $\hat{B}\otimes_k P_
u o \hat{B}\otimes_k {\mathsf{det}}$.

The proof of $\mathbf{1} \Rightarrow \mathbf{2}$ (1)

By Theorem 11, we have that $\operatorname{asn}([\hat{B}], \omega_{\hat{A}}) > 0$. Or equivalently, there is a surjection $h : \hat{B}^r \to \omega_{\hat{A}}$ for $r \gg 0$. By the equivalence $\gamma = (\hat{B} \otimes_{\hat{A}}?)^{**} : \operatorname{Ref}(\hat{A}) \to \operatorname{Ref}(G, \hat{B})$, there corresponds

 $\tilde{h} = \gamma(h) : (\hat{B} \otimes_k kG)^r \to \hat{B} \otimes_k \det$.

As $\hat{B} \otimes_k kG$ is a projective object in the category of (G, \hat{B}) -modules, \tilde{h} factors through the surjection

 $\hat{B}\otimes_k P_
u o \hat{B}\otimes_k {\mathsf{det}}$.

The proof of $\mathbf{1} \Rightarrow \mathbf{2}$ (1)

By Theorem 11, we have that $\operatorname{asn}([\hat{B}], \omega_{\hat{A}}) > 0$. Or equivalently, there is a surjection $h : \hat{B}^r \to \omega_{\hat{A}}$ for $r \gg 0$. By the equivalence $\gamma = (\hat{B} \otimes_{\hat{A}}?)^{**} : \operatorname{Ref}(\hat{A}) \to \operatorname{Ref}(G, \hat{B})$, there corresponds

 $ilde{h} = \gamma(h) : (\hat{B} \otimes_k kG)^r o \hat{B} \otimes_k \det.$

As $\hat{B} \otimes_k kG$ is a projective object in the category of (G, \hat{B}) -modules, \tilde{h} factors through the surjection

 $\hat{B}\otimes_k P_
u o \hat{B}\otimes_k \det$.

くほと くほと くほと

The proof of $1 \Rightarrow 2$ (2)

Returning to the category Ref \hat{A} , the surjection $h: \hat{B}^r \to \omega_{\hat{A}}$ factors through

$$\hat{M}_{\nu} = (\hat{B} \otimes_{\hat{A}} P_{\nu})^{G} \to \omega_{\hat{A}}.$$

So this map is also surjective, and 2 follows.

The proof of $\mathbf{1} \Rightarrow \mathbf{2}$ (2)

Returning to the category Ref \hat{A} , the surjection $h: \hat{B}^r \to \omega_{\hat{A}}$ factors through

$$\hat{M}_{\nu} = (\hat{B} \otimes_{\hat{A}} P_{\nu})^{\mathsf{G}} \to \omega_{\hat{A}}.$$

So this map is also surjective, and $\mathbf{2}$ follows.

超す イヨト イヨト ニヨ

Corollary 16 Let det⁻¹ denote the dual representation of det. Assume that p divides |G|. If $s(\omega_{\hat{A}}) > 0$, then det⁻¹ is not a direct summand of B.

Proof.

Note that the one-dimensional representation det⁻¹ is not projective. The result follows from $1 \Rightarrow 4$ of the theorem.

Corollary 16 Let det⁻¹ denote the dual representation of det. Assume that p divides |G|. If $s(\omega_{\hat{A}}) > 0$, then det⁻¹ is not a direct summand of B.

Proof.

Note that the one-dimensional representation det^{-1} is not projective. The result follows from $1 \Rightarrow 4$ of the theorem.

A lemma

Lemma 17 Let M and N be in Ref(G, B). There is a natural isomorphism $\gamma : \operatorname{Hom}_A(M^G, N^G) \to \operatorname{Hom}_B(M, N)^G$

Proof.

This is simply because $\gamma = (B \otimes_A ?)^{**}$: Ref $(A) \rightarrow$ Ref(G, B) is an equivalence, and Hom_B $(M, N)^G$ = Hom_{G,B}(M, N).

(本間) (本語) (本語) (語)

A lemma

Lemma 17 Let M and N be in Ref(G, B). There is a natural isomorphism $\gamma : \operatorname{Hom}_A(M^G, N^G) \to \operatorname{Hom}_B(M, N)^G$

Proof.

This is simply because $\gamma = (B \otimes_A ?)^{**} : \operatorname{Ref}(A) \to \operatorname{Ref}(G, B)$ is an equivalence, and $\operatorname{Hom}_B(M, N)^G = \operatorname{Hom}_{G,B}(M, N)$.

- 4 緑 ト 4 日 ト - 4 日 ト - 日

Theorem 18

A is F-rational if and only if the following three conditions hold.

- 1 A is Cohen–Macaulay.
- 2 $H^1(G,B) = 0.$
- 3 (B ⊗_k (I/k))^G is a maximal Cohen–Macaulay A-module, where is the injective hull of k.

Theorem 18

A is F-rational if and only if the following three conditions hold.

- A is Cohen–Macaulay.
- **2** $H^1(G,B) = 0.$

③ (B ⊗_k (1/k))^G is a maximal Cohen–Macaulay A-module, where I is the injective hull of k.

Theorem 18

A is F-rational if and only if the following three conditions hold.

- A is Cohen–Macaulay.
- **2** $H^1(G, B) = 0.$

③ (B ⊗_k (I/k))^G is a maximal Cohen–Macaulay A-module, where I is the injective hull of k.

Theorem 18

A is F-rational if and only if the following three conditions hold.

- A is Cohen–Macaulay.
- 2 $H^1(G,B) = 0.$

(B ⊗_k (I/k))^G is a maximal Cohen–Macaulay A-module, where I is the injective hull of k.

Corollary 19 If A is F-rational, then $H^1(G, k) = 0$.

Proof.

k is a direct summand of B, and $H^1(G, B) = 0$.

Example 20

If char(k) = 2 and $G = S_2$ or S_3 , then $H^1(G, k) \neq 0$. So $A = B^G$ is not *F*-rational (provided *G* does not have a pseudo-reflection).

< 回 > < 三 > < 三 >

Corollary 19 If A is F-rational, then $H^1(G, k) = 0$.

Proof.

k is a direct summand of B, and $H^1(G, B) = 0$.

Example 20

If char(k) = 2 and $G = S_2$ or S_3 , then $H^1(G, k) \neq 0$. So $A = B^G$ is not *F*-rational (provided *G* does not have a pseudo-reflection).

(本語)と 本語(と) 本語(と

Corollary 19 If A is F-rational, then $H^1(G, k) = 0$.

Proof.

k is a direct summand of B, and $H^1(G, B) = 0$.

Example 20

If char(k) = 2 and $G = S_2$ or S_3 , then $H^1(G, k) \neq 0$. So $A = B^G$ is not F-rational (provided G does not have a pseudo-reflection).

くほと くほと くほと

• Let *p* be an odd prime number.

- Let us identify $Map(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p .
- Let $Q := \mathbb{F}_p \subset S_p$, acting on \mathbb{F}_p by addition. Q is generated by the cyclic permutation $\sigma = (1+) = (0 \ 1 \ \cdots \ p-1) \in S_p$.
- Let Γ := 𝔽[×]_p ⊂ S_p, acting on 𝔽_p by multiplication. It is a cyclic group of order p − 1 generated by
 - $\tau = (\alpha \cdot) = (1 \alpha \alpha^2 \cdots \alpha^{p-2})$, where α is the primitive element.
- As $\tau \sigma \tau^{-1} = \sigma^{\alpha}$, Γ normalizes Q. Set $G = Q\Gamma$. $C_G(Q) = Q$.
- $G = \{\phi \in S_p \mid \exists a \in \mathbb{F}_p^{\times} \exists b \in \mathbb{F}_p \ \forall x \in \mathbb{F}_p \ \phi(x) = ax + b\} \subset S_p.$ • #G = p(p-1).

- Let *p* be an odd prime number.
- Let us identify $Map(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p .
- Let $Q := \mathbb{F}_p \subset S_p$, acting on \mathbb{F}_p by addition. Q is generated by the cyclic permutation $\sigma = (1+) = (0 \ 1 \ \cdots \ p-1) \in S_p$.
- Let Γ := 𝔽[×]_p ⊂ S_p, acting on 𝔽_p by multiplication. It is a cyclic group of order p − 1 generated by
 - $\tau = (\alpha \cdot) = (1 \alpha \alpha^2 \cdots \alpha^{p-2})$, where α is the primitive element.
- As $\tau \sigma \tau^{-1} = \sigma^{\alpha}$, Γ normalizes Q. Set $G = Q\Gamma$. $C_G(Q) = Q$.
- $G = \{\phi \in S_p \mid \exists a \in \mathbb{F}_p^{\times} \exists b \in \mathbb{F}_p \ \forall x \in \mathbb{F}_p \ \phi(x) = ax + b\} \subset S_p.$ • #G = p(p-1).

- Let *p* be an odd prime number.
- Let us identify $Map(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p .
- Let Q := 𝔽_p ⊂ S_p, acting on 𝔽_p by addition. Q is generated by the cyclic permutation σ = (1+) = (0 1 ··· p − 1) ∈ S_p.
- Let Γ := 𝔽[×]_p ⊂ S_p, acting on 𝔽_p by multiplication. It is a cyclic group of order p − 1 generated by τ = (α·) = (1 α α² ··· α^{p-2}), where α is the primitive element.
 As τστ⁻¹ = σ^α, Γ normalizes Q. Set G = QΓ. C_G(Q) = Q.
 G = {φ ∈ S_p | ∃a ∈ 𝔽[×]_p ∃b ∈ 𝔽_p ∀x ∈ 𝔽_p φ(x) = ax + b} ⊂ S_p.

• #G = p(p-1).

(日) (周) (三) (三)

- Let *p* be an odd prime number.
- Let us identify $Map(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p .
- Let $Q := \mathbb{F}_p \subset S_p$, acting on \mathbb{F}_p by addition. Q is generated by the cyclic permutation $\sigma = (1+) = (0 \ 1 \ \cdots \ p-1) \in S_p$.
- Let Γ := F[×]_p ⊂ S_p, acting on F_p by multiplication. It is a cyclic group of order p 1 generated by τ = (α·) = (1 α α² ··· α^{p-2}), where α is the primitive element.
 As τστ⁻¹ = σ^α, Γ normalizes Q. Set G = QΓ. C_G(Q) = Q.
 G = {φ ∈ S_p | ∃a ∈ F[×]_p ∃b ∈ F_p ∀x ∈ F_p φ(x) = ax + b} ⊂ S_p.

• #G = p(p-1).

イロト 不得 トイヨト イヨト 二日

- Let *p* be an odd prime number.
- Let us identify $Map(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p .
- Let Q := 𝔽_p ⊂ S_p, acting on 𝔽_p by addition. Q is generated by the cyclic permutation σ = (1+) = (0 1 ··· p − 1) ∈ S_p.
- Let Γ := 𝔽[×]_p ⊂ S_p, acting on 𝔽_p by multiplication. It is a cyclic group of order p − 1 generated by
 τ = (α·) = (1 α α² ··· α^{p-2}), where α is the primitive element.
- As $\tau \sigma \tau^{-1} = \sigma^{\alpha}$, Γ normalizes Q. Set $G = Q\Gamma$. $C_G(Q) = Q$.
- *G* = {*φ* ∈ *S_p* | ∃*a* ∈ 𝔽[×]_{*p*} ∃*b* ∈ 𝔽_{*p*} ∀*x* ∈ 𝔽_{*p*} *φ*(*x*) = *ax* + *b*} ⊂ *S_p*.
 #*G* = *p*(*p* − 1).

- Let *p* be an odd prime number.
- Let us identify $Map(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p .
- Let $Q := \mathbb{F}_p \subset S_p$, acting on \mathbb{F}_p by addition. Q is generated by the cyclic permutation $\sigma = (1+) = (0 \ 1 \ \cdots \ p-1) \in S_p$.
- Let Γ := 𝔽[×]_p ⊂ S_p, acting on 𝔽_p by multiplication. It is a cyclic group of order p 1 generated by τ = (α·) = (1 α α² ··· α^{p-2}), where α is the primitive element.
 As τστ⁻¹ = σ^α, Γ normalizes Q. Set G = QΓ. C_G(Q) = Q.
- G = {φ ∈ S_p | ∃a ∈ ℝ_p[×] ∃b ∈ ℝ_p ∀x ∈ ℝ_p φ(x) = ax + b} ⊂ S_p.
 #G = p(p − 1).

イロト 不得 トイヨト イヨト ニヨー

- Let *p* be an odd prime number.
- Let us identify $Map(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p .
- Let $Q := \mathbb{F}_p \subset S_p$, acting on \mathbb{F}_p by addition. Q is generated by the cyclic permutation $\sigma = (1+) = (0 \ 1 \ \cdots \ p-1) \in S_p$.
- Let Γ := 𝔽[×]_p ⊂ S_p, acting on 𝔽_p by multiplication. It is a cyclic group of order p − 1 generated by
 τ = (α·) = (1 α α² ··· α^{p-2}), where α is the primitive element.
- As $\tau \sigma \tau^{-1} = \sigma^{\alpha}$, Γ normalizes Q. Set $G = Q\Gamma$. $C_G(Q) = Q$.
- $G = \{\phi \in S_p \mid \exists a \in \mathbb{F}_p^{\times} \exists b \in \mathbb{F}_p \ \forall x \in \mathbb{F}_p \ \phi(x) = ax + b\} \subset S_p.$

• #G = p(p-1).

• The only involution of Γ is $\tau^{(p-1)/2} = ((-1)\cdot) = (1 (p-1))(2 (p-2)) \cdots ((p-1)/2 (p+1)/2)$, which is a transposition if and only if p = 3.

 As Γ contains a Sylow 2-subgroup, a transposition of G is conjugate to a transposition of Γ. So G has a transposition if and only if p = 3.

くほと くほと くほと

- The only involution of Γ is $\tau^{(p-1)/2} = ((-1)\cdot) = (1 (p-1))(2 (p-2)) \cdots ((p-1)/2 (p+1)/2)$, which is a transposition if and only if p = 3.
- As Γ contains a Sylow 2-subgroup, a transposition of G is conjugate to a transposition of Γ. So G has a transposition if and only if p = 3.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- $G \subset S_p$ acts on $P = k^p = \langle w_0, w_1, \dots, w_{p-1} \rangle$ by $\phi w_i = w_{\phi(i)}$ for $\phi \in G$ and $i \in \mathbb{F}_p$.
- Let $r \geq 1$, and set $V = P^{\oplus r}$
- G acts on V by permutations of the obvious basis.
- A permutation in G is a pseudo-reflection on V if and only if it is a transposition (as a permutation on the basis of V).
- G has a pseudo-reflection on V if and only if r = 1 and p = 3.

- $G \subset S_p$ acts on $P = k^p = \langle w_0, w_1, \dots, w_{p-1} \rangle$ by $\phi w_i = w_{\phi(i)}$ for $\phi \in G$ and $i \in \mathbb{F}_p$.
- Let $r \ge 1$, and set $V = P^{\oplus r}$.
- G acts on V by permutations of the obvious basis.
- A permutation in *G* is a pseudo-reflection on *V* if and only if it is a transposition (as a permutation on the basis of *V*).
- G has a pseudo-reflection on V if and only if r = 1 and p = 3.

- $G \subset S_p$ acts on $P = k^p = \langle w_0, w_1, \dots, w_{p-1} \rangle$ by $\phi w_i = w_{\phi(i)}$ for $\phi \in G$ and $i \in \mathbb{F}_p$.
- Let $r \ge 1$, and set $V = P^{\oplus r}$.
- G acts on V by permutations of the obvious basis.
- A permutation in G is a pseudo-reflection on V if and only if it is a transposition (as a permutation on the basis of V).
- G has a pseudo-reflection on V if and only if r = 1 and p = 3.

4 E N

- $G \subset S_p$ acts on $P = k^p = \langle w_0, w_1, \dots, w_{p-1} \rangle$ by $\phi w_i = w_{\phi(i)}$ for $\phi \in G$ and $i \in \mathbb{F}_p$.
- Let $r \ge 1$, and set $V = P^{\oplus r}$.
- G acts on V by permutations of the obvious basis.
- A permutation in G is a pseudo-reflection on V if and only if it is a transposition (as a permutation on the basis of V).
- G has a pseudo-reflection on V if and only if r = 1 and p = 3.

通 ト イヨ ト イヨト

- $G \subset S_p$ acts on $P = k^p = \langle w_0, w_1, \dots, w_{p-1} \rangle$ by $\phi w_i = w_{\phi(i)}$ for $\phi \in G$ and $i \in \mathbb{F}_p$.
- Let $r \ge 1$, and set $V = P^{\oplus r}$.
- G acts on V by permutations of the obvious basis.
- A permutation in G is a pseudo-reflection on V if and only if it is a transposition (as a permutation on the basis of V).
- G has a pseudo-reflection on V if and only if r = 1 and p = 3.

通 ト イヨ ト イヨト

• Let S = Sym P.

- Let $\lambda \in \mathbb{Z}^p$, and let $w^{\lambda} = w_0^{\lambda_0} \cdots w_{p-1}^{\lambda_{p-1}}$ be the corresponding monomial of *S*.
- Unless $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, Q acts freely on the orbit Gw^{λ} . So kGw^{λ} is a kQ-free module.
- For a G-module M, we have Hⁱ(G, M) ≅ Hⁱ(Q, M)^Γ (since the order of Γ is coprime to p, the Lyndon–Hochschild–Serre spectral sequence collapses).
- So kGw^{λ} is G-projective in this case.
- If $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, $kGw^{\lambda} \cong k$ is trivial.
- So S is a direct sum of projectives and copies of k.

ヘロト ヘロト ヘヨト ヘヨト

- Let S = Sym P.
- Let λ ∈ Z^p, and let w^λ = w₀^{λ₀} · · · w_{p-1}<sup>λ_{p-1} be the corresponding monomial of S.
 </sup>
- Unless $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, Q acts freely on the orbit Gw^{λ} . So kGw^{λ} is a kQ-free module.
- For a G-module M, we have Hⁱ(G, M) ≅ Hⁱ(Q, M)^Γ (since the order of Γ is coprime to p, the Lyndon–Hochschild–Serre spectral sequence collapses).
- So kGw^λ is G-projective in this case.
- If $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, $kGw^{\lambda} \cong k$ is trivial.

• So S is a direct sum of projectives and copies of k.

3

イロト イポト イヨト イヨト

- Let S = Sym P.
- Let λ ∈ Z^p, and let w^λ = w₀^{λ₀} · · · w_{p-1}<sup>λ_{p-1} be the corresponding monomial of S.
 </sup>
- Unless λ₀ = λ₁ = ··· = λ_{p−1}, Q acts freely on the orbit Gw^λ. So kGw^λ is a kQ-free module.
- For a G-module M, we have Hⁱ(G, M) ≅ Hⁱ(Q, M)^Γ (since the order of Γ is coprime to p, the Lyndon–Hochschild–Serre spectral sequence collapses).
- So kGw^{λ} is *G*-projective in this case.
- If $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, $kGw^{\lambda} \cong k$ is trivial.

So S is a direct sum of projectives and copies of k.

イロト イポト イヨト イヨト

- Let S = Sym P.
- Let $\lambda \in \mathbb{Z}^p$, and let $w^{\lambda} = w_0^{\lambda_0} \cdots w_{p-1}^{\lambda_{p-1}}$ be the corresponding monomial of *S*.
- Unless λ₀ = λ₁ = ··· = λ_{p−1}, Q acts freely on the orbit Gw^λ. So kGw^λ is a kQ-free module.
- For a G-module M, we have Hⁱ(G, M) ≅ Hⁱ(Q, M)^Γ (since the order of Γ is coprime to p, the Lyndon–Hochschild–Serre spectral sequence collapses).
- So kGw^{λ} is G-projective in this case.
- If $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, $kGw^{\lambda} \cong k$ is trivial.

So S is a direct sum of projectives and copies of k

イロト 不得 トイヨト イヨト 二日

- Let S = Sym P.
- Let $\lambda \in \mathbb{Z}^p$, and let $w^{\lambda} = w_0^{\lambda_0} \cdots w_{p-1}^{\lambda_{p-1}}$ be the corresponding monomial of *S*.
- Unless λ₀ = λ₁ = ··· = λ_{p−1}, Q acts freely on the orbit Gw^λ. So kGw^λ is a kQ-free module.
- For a G-module M, we have Hⁱ(G, M) ≅ Hⁱ(Q, M)^Γ (since the order of Γ is coprime to p, the Lyndon–Hochschild–Serre spectral sequence collapses).
- So kGw^{λ} is *G*-projective in this case.
- If $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, $kGw^{\lambda} \cong k$ is trivial.

• So *S* is a direct sum of projectives and copies of *k*.

- Let S = Sym P.
- Let $\lambda \in \mathbb{Z}^p$, and let $w^{\lambda} = w_0^{\lambda_0} \cdots w_{p-1}^{\lambda_{p-1}}$ be the corresponding monomial of *S*.
- Unless λ₀ = λ₁ = ··· = λ_{p−1}, Q acts freely on the orbit Gw^λ. So kGw^λ is a kQ-free module.
- For a G-module M, we have Hⁱ(G, M) ≅ Hⁱ(Q, M)^Γ (since the order of Γ is coprime to p, the Lyndon–Hochschild–Serre spectral sequence collapses).
- So kGw^{λ} is *G*-projective in this case.
- If $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, $kGw^{\lambda} \cong k$ is trivial.

So S is a direct sum of projectives and copies of k.

- Let S = Sym P.
- Let $\lambda \in \mathbb{Z}^p$, and let $w^{\lambda} = w_0^{\lambda_0} \cdots w_{p-1}^{\lambda_{p-1}}$ be the corresponding monomial of *S*.
- Unless λ₀ = λ₁ = ··· = λ_{p−1}, Q acts freely on the orbit Gw^λ. So kGw^λ is a kQ-free module.
- For a G-module M, we have Hⁱ(G, M) ≅ Hⁱ(Q, M)^Γ (since the order of Γ is coprime to p, the Lyndon–Hochschild–Serre spectral sequence collapses).
- So kGw^{λ} is G-projective in this case.
- If $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, $kGw^{\lambda} \cong k$ is trivial.
- So S is a direct sum of projectives and copies of k.

- Now consider $V = P^{\oplus r}$ and $B := \text{Sym } V \cong S^{\otimes r}$.
- Let k⁻ be the sign representation of G. As τ ∈ G is an odd permutation, k⁻ ≇ k.
- det_V = (det P)^{⊗r} = (k⁻)^{⊗r} ≅ det_V⁻¹. This is k if r is even and k⁻ if r is odd.
- If M is a projective G-module and N a G-module, then M ⊗ N is projective. So B = S^{⊗r} is again a direct sum of projectives and copies of k.
- If r = 1 and p = 3, then A := B^G = k[e₁, e₂, e₃], the polynomial ring generated by the elementary symmetric polynomials.
- Otherwise, G does not have a pseudo-reflection. s(ω_Â) > 0 if and only if r is odd.

A (10) × (10) ×

- Now consider $V = P^{\oplus r}$ and $B := \text{Sym } V \cong S^{\otimes r}$.
- Let k⁻ be the sign representation of G. As τ ∈ G is an odd permutation, k⁻ ≇ k.
- $\det_V = (\det P)^{\otimes r} = (k^-)^{\otimes r} \cong \det_V^{-1}$. This is k if r is even and k^- if r is odd.
- If M is a projective G-module and N a G-module, then M ⊗ N is projective. So B = S^{⊗r} is again a direct sum of projectives and copies of k.
- If r = 1 and p = 3, then A := B^G = k[e₁, e₂, e₃], the polynomial ring generated by the elementary symmetric polynomials.
- Otherwise, G does not have a pseudo-reflection. s(ω_Â) > 0 if and only if r is odd.

- Now consider $V = P^{\oplus r}$ and $B := \text{Sym } V \cong S^{\otimes r}$.
- Let k⁻ be the sign representation of G. As τ ∈ G is an odd permutation, k⁻ ≇ k.
- $\det_V = (\det P)^{\otimes r} = (k^-)^{\otimes r} \cong \det_V^{-1}$. This is k if r is even and k^- if r is odd.
- If M is a projective G-module and N a G-module, then M ⊗ N is projective. So B = S^{⊗r} is again a direct sum of projectives and copies of k.
- If r = 1 and p = 3, then A := B^G = k[e₁, e₂, e₃], the polynomial ring generated by the elementary symmetric polynomials.

 Otherwise, G does not have a pseudo-reflection. s(ω_Â) > 0 if and only if r is odd.

A B > A B >

- Now consider $V = P^{\oplus r}$ and $B := \text{Sym } V \cong S^{\otimes r}$.
- Let k⁻ be the sign representation of G. As τ ∈ G is an odd permutation, k⁻ ≇ k.
- $\det_V = (\det P)^{\otimes r} = (k^-)^{\otimes r} \cong \det_V^{-1}$. This is k if r is even and k^- if r is odd.
- If M is a projective G-module and N a G-module, then M ⊗ N is projective. So B = S^{⊗r} is again a direct sum of projectives and copies of k.
- If r = 1 and p = 3, then A := B^G = k[e₁, e₂, e₃], the polynomial ring generated by the elementary symmetric polynomials.
- Otherwise, G does not have a pseudo-reflection. s(ω_Â) > 0 if and only if r is odd.

ヘロン 人間と 人間と 人

- Now consider $V = P^{\oplus r}$ and $B := \text{Sym } V \cong S^{\otimes r}$.
- Let k⁻ be the sign representation of G. As τ ∈ G is an odd permutation, k⁻ ≇ k.
- $\det_V = (\det P)^{\otimes r} = (k^-)^{\otimes r} \cong \det_V^{-1}$. This is k if r is even and k^- if r is odd.
- If M is a projective G-module and N a G-module, then M ⊗ N is projective. So B = S^{⊗r} is again a direct sum of projectives and copies of k.
- If r = 1 and p = 3, then A := B^G = k[e₁, e₂, e₃], the polynomial ring generated by the elementary symmetric polynomials.

 Otherwise, G does not have a pseudo-reflection. s(ω_Â) > 0 if and only if r is odd.

・ロト ・ 日 ・ ・ ヨ ・ ・

- Now consider $V = P^{\oplus r}$ and $B := \text{Sym } V \cong S^{\otimes r}$.
- Let k⁻ be the sign representation of G. As τ ∈ G is an odd permutation, k⁻ ≇ k.
- $\det_V = (\det P)^{\otimes r} = (k^-)^{\otimes r} \cong \det_V^{-1}$. This is k if r is even and k^- if r is odd.
- If *M* is a projective *G*-module and *N* a *G*-module, then $M \otimes N$ is projective. So $B = S^{\otimes r}$ is again a direct sum of projectives and copies of *k*.
- If r = 1 and p = 3, then A := B^G = k[e₁, e₂, e₃], the polynomial ring generated by the elementary symmetric polynomials.
- Otherwise, G does not have a pseudo-reflection. s(ω_Â) > 0 if and only if r is odd.

ヘロト 人間ト 人間ト 人間ト

Kemper's theorem

Let *k* be a field of characteristic p > 0, and *G* be a subgroup of the symmetric group of S_d acting on $B = k[v_1, \ldots, v_d]$ by permutation. Let *Q* be a Sylow *p*-subgroup of *G*. Assume that |Q| = p. Let $N = N_G(Q)$ be the normalizer. Let X_1, \ldots, X_c be the *Q*-orbits of $\{v_1, \ldots, v_d\}$. Set

$$H := \{ \sigma \in \mathsf{N} \mid \forall i \ \sigma(X_i) \subset X_i \}.$$

Then Q is a normal subgroup of H. Set $m := [H : C_H(Q)]$.

Theorem 21 (Kemper)

depth $B^G = \min\{2m + c, d\}$.

Kemper's theorem

Let *k* be a field of characteristic p > 0, and *G* be a subgroup of the symmetric group of S_d acting on $B = k[v_1, \ldots, v_d]$ by permutation. Let *Q* be a Sylow *p*-subgroup of *G*. Assume that |Q| = p. Let $N = N_G(Q)$ be the normalizer. Let X_1, \ldots, X_c be the *Q*-orbits of $\{v_1, \ldots, v_d\}$. Set

$$H := \{ \sigma \in \mathsf{N} \mid \forall i \ \sigma(X_i) \subset X_i \}.$$

Then Q is a normal subgroup of H. Set $m := [H : C_H(Q)]$.

Theorem 21 (Kemper)

depth
$$B^G = \min\{2m + c, d\}$$
.

- For our G, Q, and V, H = N = G. $C_H(Q) = Q$.
- So m = p − 1, and c = r.
- So depth $A = \min\{2p 2 + r, rp\}$ and dim A = d = rp.
- So A is Cohen–Macaulay if and only if r ≤ 2.
- It follows that A is F-rational if and only if r = 1.

- For our G, Q, and V, H = N = G. $C_H(Q) = Q$.
- So m = p 1, and c = r.
- So depth $A = \min\{2p 2 + r, rp\}$ and dim A = d = rp.
- So A is Cohen–Macaulay if and only if r ≤ 2.
- It follows that A is F-rational if and only if r = 1.

- For our G, Q, and V, H = N = G. $C_H(Q) = Q$.
- So m = p 1, and c = r.
- So depth $A = \min\{2p 2 + r, rp\}$ and dim A = d = rp.
- So A is Cohen–Macaulay if and only if r ≤ 2
- It follows that A is F-rational if and only if r = 1.

- For our G, Q, and V, H = N = G. $C_H(Q) = Q$.
- So m = p 1, and c = r.
- So depth $A = \min\{2p 2 + r, rp\}$ and dim A = d = rp.
- So A is Cohen–Macaulay if and only if $r \leq 2$.

It follows that A is F-rational if and only if r = 1.

- For our G, Q, and V, H = N = G. $C_H(Q) = Q$.
- So m = p 1, and c = r.
- So depth $A = \min\{2p 2 + r, rp\}$ and dim A = d = rp.
- So A is Cohen–Macaulay if and only if $r \leq 2$.
- It follows that A is F-rational if and only if r = 1.

Theorem 22

Let $p \ge 3$, r, G, V, B = Sym V, and $A = B^G$ be as above.

- **1** #G = p(p-1).
- If p = 3 and r = 1, then G is a reflection group and A is a polynomial ring. Otherwise, G does not have a pseudo-reflection, and A is not F-regular.
- 3 If $p \ge 5$ and r = 1, then A is F-rational but not F-regular.
- If r = 2, then A is Gorenstein, but not F-rational.
- If $r \ge 3$ and odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen–Macaulay.

 If r ≥ 4 and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

3

Theorem 22

- Let $p \ge 3$, r, G, V, B = Sym V, and $A = B^G$ be as above.
 - **1** #G = p(p-1).
 - If p = 3 and r = 1, then G is a reflection group and A is a polynomial ring. Otherwise, G does not have a pseudo-reflection, and A is not F-regular.
 - 3 If $p \ge 5$ and r = 1, then A is F-rational but not F-regular.
 - If r = 2, then A is Gorenstein, but not F-rational.
 - If $r \ge 3$ and odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen–Macaulay.

 If r ≥ 4 and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

3

Theorem 22

- Let $p \ge 3$, r, G, V, B = Sym V, and $A = B^G$ be as above.
 - **1** #G = p(p-1).
 - If p = 3 and r = 1, then G is a reflection group and A is a polynomial ring. Otherwise, G does not have a pseudo-reflection, and A is not F-regular.
 - ③ If $p \ge 5$ and r = 1, then A is F-rational but not F-regular.
 - If r = 2, then A is Gorenstein, but not F-rational.
 - If $r \ge 3$ and odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen–Macaulay.
 - If r ≥ 4 and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

3

Theorem 22

- Let $p \ge 3$, r, G, V, B = Sym V, and $A = B^G$ be as above.
 - **1** #G = p(p-1).
 - If p = 3 and r = 1, then G is a reflection group and A is a polynomial ring. Otherwise, G does not have a pseudo-reflection, and A is not F-regular.
 - **3** If $p \ge 5$ and r = 1, then A is F-rational but not F-regular.
 - If r = 2, then A is Gorenstein, but not F-rational.
 - If $r \geq 3$ and odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen–Macaulay.
 - If r ≥ 4 and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

3

イロト イヨト イヨト イヨト

Theorem 22

- Let $p \ge 3$, r, G, V, B = Sym V, and $A = B^G$ be as above.
 - **1** #G = p(p-1).
 - If p = 3 and r = 1, then G is a reflection group and A is a polynomial ring. Otherwise, G does not have a pseudo-reflection, and A is not F-regular.
 - **3** If $p \ge 5$ and r = 1, then A is F-rational but not F-regular.
 - **(4)** If r = 2, then A is Gorenstein, but not F-rational.
 - **5** If $r \ge 3$ and odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen–Macaulay.
 - If r ≥ 4 and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

- 3

イロト イポト イヨト イヨト

Theorem 22

- Let $p \ge 3$, r, G, V, B = Sym V, and $A = B^G$ be as above.
 - **1** #G = p(p-1).
 - If p = 3 and r = 1, then G is a reflection group and A is a polynomial ring. Otherwise, G does not have a pseudo-reflection, and A is not F-regular.
 - **3** If $p \ge 5$ and r = 1, then A is F-rational but not F-regular.
 - **(4)** If r = 2, then A is Gorenstein, but not F-rational.
 - **(a)** If $r \ge 3$ and odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen–Macaulay.
 - If r ≥ 4 and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem 22

- Let $p \ge 3$, r, G, V, B = Sym V, and $A = B^G$ be as above.
 - **1** #G = p(p-1).
 - If p = 3 and r = 1, then G is a reflection group and A is a polynomial ring. Otherwise, G does not have a pseudo-reflection, and A is not F-regular.
 - **3** If $p \ge 5$ and r = 1, then A is F-rational but not F-regular.
 - **(4)** If r = 2, then A is Gorenstein, but not F-rational.
 - **(a)** If $r \ge 3$ and odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen–Macaulay.

If r ≥ 4 and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

イロト イポト イヨト イヨト

Thank you

This slide will soon be available at http://www.math.okayama-u.ac.jp/~hashimoto/

• • = • • = •