n-canonical modules over non-commutative algebras

Mitsuyasu Hashimoto

Okayama University

November 18, 2016

The purpose of this talk (1)

In this talk, a non-commutative algebra means a module-finite algebra over a Noetherian commutative ring. The purpose of this talk is:

- Defining the dualizing complex and the canonical module over a non-commutative algebra;
- Proving non-commutative versions of theorems on canonical modules;
- Defining *n*-canonical modules;
- Improving and generalizing Araya–lima theorem on (n, C)-syzygies using n-canonical modules;
- More...

- 4 週 ト - 4 三 ト - 4 三 ト

The purpose of this talk (2)

- Proving 'codimension-two argument' is valid over a Noetherian scheme with a full 2-canonical module;
- Defining higher-dimensional versions of symmetric, Frobenius, and quasi-Frobenius algebras and proving basic properties of them.

Notation

Throughout the talk, let R be a Noetherian commutative ring, and Λ a module-finite R-algebra. Let $d = \dim \Lambda$. By a Λ -bimodule, we mean a left $\Lambda \otimes_R \Lambda^{\mathrm{op}}$ -module.

Dualizing complex — complete case

Let (R, J) be semilocal. A dualizing complex \mathbb{I} of R is said to be normalized if $\operatorname{Ext}_{R}^{0}(R/\mathfrak{m}, \mathbb{I}) \neq 0$ for each $\mathfrak{m} \in \operatorname{Max}(R)$. If R is complete, then R has a normalized dualizing complex \mathbb{I}_{R} , which is unique up to isomorphisms in D(R).

Let *R* be complete semilocal, and Λ a module-finite *R*-algebra. We define $\mathbb{I}_{\Lambda} := \mathbb{R}\operatorname{Hom}_{R}(\Lambda, \mathbb{I}_{R})$, and call it the normalized dualizing complex of Λ . \mathbb{I}_{Λ} depends only on Λ , and is independent of the choice of *R*.

(本間) (本語) (本語) (語)

The canonical module

If (R, J) is complete semilocal and $\Lambda \neq 0$, then the canonical module of Λ , denoted by K_{Λ} , is defined to be the lowest nonzero cohomology group of \mathbb{I}_{Λ} . If $\Lambda = 0$, then K_{Λ} is defined to be 0. Let (R, J) be not necessarily complete. A finite Λ -bimodule (resp. right Λ -module) M is called the canonical module (resp. right canonical module) of Λ if $\hat{M} \cong K_{\hat{\Lambda}}$ as a $\hat{\Lambda}$ -bimodule (resp. right $\hat{\Lambda}$ -module), where $\hat{?}$ denotes the completion.

If (R, J) has a normalized dualizing complex \mathbb{I} , then the lowest non-vanishing cohomology $\operatorname{Ext}_{R}^{-d}(\Lambda, \mathbb{I})$ is the canonical module of Λ , where $d = \dim \Lambda$.

イロト 不得 トイヨト イヨト 二日

Some basic properties

Let *M* and *N* be finite *R*-modules. We say that *M* satisfies the $(S_n^N)^R$ -condition (or (S_n^N) -condition) if depth $M_P \ge \min(n, \dim N_P)$ for each $P \in \text{Spec } R$. $(S_n^R)^R$ is simply denoted by $(S_n)^R$ or (S_n) .

Lemma 1

Let (R, J) be semilocal, and assume that Λ has a right canonical module K. Then

(1) $\operatorname{Ass}_{R} K = \operatorname{Assh}_{R} \Lambda := \{P \in \operatorname{Min}_{R} \Lambda \mid \dim R/P = \dim \Lambda\}.$

(2) K satisfies the $(S_2^{\Lambda})^R$ condition.

(3) $R/\operatorname{ann}_R K_{\Lambda}$ is quasi-unmixed, and hence is universally catenary.

Globally Cohen–Macaulay modules

Let (R, J) be semilocal, and M a finite R-module. We denote depth(J, M) by depth M. We say that M is globally Cohen-Macaulay (GCM) if dim $M = \operatorname{depth} M$. This is equivalent to say that M is a Cohen–Macaulay *R*-module, and dim $M_{\rm m}$ is constant on Max(*R*). Let M be a finite right Λ -module. We say that M is globally maximal Cohen–Macaulay (GMCM) if dim Λ = depth M. This is equivalent to say that $M_{\rm m}$ is a maximal Cohen–Macaulay $(R/{\rm ann}_R \Lambda)_{\rm m}$ -module for each $\mathfrak{m} \in Max(R)$, and dim $\Lambda_{\mathfrak{m}}$ is independent of \mathfrak{m} . Note that depth M, GCM and GMCM property are determined only by M and Λ , and is independent of the choice of R.

- 3

(日) (周) (三) (三)

GCM case

Let (R, J) be semilocal with a normalized dualizing complex \mathbb{I}_R . Set $\mathbb{I}_{\Lambda} = \mathbb{R}\operatorname{Hom}_R(\Lambda, \mathbb{I}_R)$. Let M be a finite right Λ -module. Note that Λ is GCM if and only if $\mathcal{K}_{\Lambda}[d] \cong \mathbb{I}_{\Lambda}$ in $D(\Lambda \otimes_R \Lambda^{\operatorname{op}})$.

Lemma 2

Assume that Λ is GCM. The following are equivalent.

(1) M is GMCM.

(2) $\operatorname{Ext}_{\Lambda^{\operatorname{op}}}^{i}(M, K_{\Lambda}) = 0$ for i > 0.

If so, then $\operatorname{Hom}_{\Lambda^{\operatorname{op}}}(M, K_{\Lambda})$ is again a GMCM left Λ -module, and the map

 $M \to \operatorname{Hom}_{\Lambda}(\operatorname{Hom}_{\Lambda^{\operatorname{op}}}(M, K_{\Lambda}), K_{\Lambda})$

is an isomorphism. In particular, K_{Λ} is GMCM and $\Lambda \to \operatorname{End}_{\Lambda} K_{\Lambda}$ is an isomorphism.

Non-commutative Aoyama's theorem (1)

Returning to the general (non-GCM) case, we reprove some classical theorems on canonical modules in non-commutative versions.

Proposition 3

Let $(R, \mathfrak{m}, k) \rightarrow (R', \mathfrak{m}', k')$ be a flat local homomorphism between Noetherian local rings. Let M be a right Λ -module. Assume that $R'/\mathfrak{m}R'$ is zero-dimensional, and $M' := R' \otimes_R M$ is the right canonical module of $\Lambda' := R' \otimes_R \Lambda$. If $\Lambda \neq 0$, then $R'/\mathfrak{m}R'$ is Gorenstein.

Non-commutative Aoyama's theorem (2)

Theorem 4 (Non-commutative Aoyama's theorem)
Let (R, m) → (R', m') be a flat local homomorphism between
Noetherian local rings, and Λ a module-finite R-algebra.
(1) If M is a Λ-bimodule and M' = R' ⊗_R M is the canonical module of Λ' = R' ⊗_R Λ, then M is the canonical module of Λ.
(2) If M is a right Λ-module such that M' is the right canonical module of Λ', then M is the right canonical module of Λ.

A 19 N A 19 N

A corollary

Corollary 5 Let (R, \mathfrak{m}) be a Noetherian local ring, and suppose that K is the canonical (resp. right canonical) module of Λ . If $P \in \operatorname{supp}_R K$, then K_P is the canonical (resp. right canonical) module of Λ_P .

くほと くほと くほと

Semicanonical module

Let *R* be a Noetherian ring. Let ω be a finite Λ -bimodule (resp. right Λ -module). We say that ω is semicanonical (resp. right semicanonical) if for any $P \in \operatorname{supp}_R \omega$, ω_P is the canonical (resp. right canonical) module of Λ_P .

Example 6

- (1) The zero module 0 is a semicanonical module.
- (2) If *R* has a dualizing complex I and Λ ≠ 0, then the lowest non-vanishing cohomology of RHom_R(Λ, I) is a semicanonical module.
- (3) By non-commutative Aoyama's theorem, if R is semilocal and K_{Λ} is the (right) canonical module of Λ , then K_{Λ} is semicanonical.

(日) (同) (日) (日)

n-canonical modules

Definition 7

Let *R* be a Noetherian ring and $n \ge 1$. A finite Λ -bimodule (resp. right Λ -module) *C* is called an *n*-canonical Λ -bimodule (resp. right Λ -module) over *R* if *C* satisfies $(S_n)^R$, and for each $P \in \text{supp}_R C$ with ht P < n, C_P is the canonical module of Λ_P .

Some examples

Example 1

- (1) A semicanonical bimodule (resp. right module) is a 2-canonical bimodule (resp. right module) over $R/\operatorname{ann}_R \Lambda$.
- (2) The *R*-module *R* is an *n*-canonical *R*-module (here $\Lambda = R$) if and only if *R* satisfies $(G_{n-1}) + (S_n)$, where we say that *R* satisfies (G_{n-1}) if for any $P \in \text{Spec } R$ with $htP \leq n-1$, R_P is Gorenstein.
- (3) If *R* is normal, then any rank-one reflexive *R*-module is 2-canonical.

- 3

A B F A B F

Notation

Let C be a finite right Λ -module, and set $\Gamma := \operatorname{End}_{\Lambda^{\operatorname{op}}} C$. Let $(?)^{\dagger} = \operatorname{Hom}_{\Lambda^{\operatorname{op}}}(?, C) : \operatorname{mod} \Lambda \to \Gamma \operatorname{mod},$ and $(?)^{\ddagger} = \operatorname{Hom}_{\Gamma}(?, C) : \Gamma \operatorname{mod} \to \operatorname{mod} \Lambda.$ We have a natural map

$$\lambda_{M}: M
ightarrow M^{\dagger \ddagger}$$

for $M \in \text{mod } \Lambda$.

3

(日) (周) (三) (三)

(n, C)-TF property

Let $M \in \text{mod } \Lambda$. We say that M is (1, C)-TF (resp. (2, C)-TF) if

 $\lambda_M: M \to M^{\dagger \ddagger}$

is injective (resp. bijective). For $n \ge 3$, we say that M is (n, C)-TF if it is (2, C)-TF and $\operatorname{Ext}_{\Gamma}^{i}(M^{\dagger}, C) = 0$ for $1 \le i \le n - 2$.

Remark 8

The notion of (n, C)-TF property is a variant of n-C-torsionfreeness due to Takahashi.

Even if $R = \Lambda$ is commutative, Γ may not be commutative, and it is essential to consider non-commutative algebras.

(n, C)-universal pushforward

Let $M \in \text{mod } \Lambda$. If there is an exact sequence

$$0 \to M \to C^0 \to \dots \to C^{n-1}$$
 (1)

with $C^i \in \text{add } C$, then we say that M is an (n, C)-syzygy. If in addition, the sequence

$$0 \leftarrow M^{\dagger} \leftarrow (C^{0})^{\dagger} \leftarrow \cdots \leftarrow (C^{n-1})^{\dagger}$$

derived from (1) is also exact, then we say that M has a universal (n, C)-pushforward.

くほと くほと くほと

(n, C)-TF and universal (n, C)-pushforward

Theorem 9 Let $M \in \text{mod } \Lambda$ and $n \ge 1$. Then M is (n, C)-TF if and only if M has a universal (n, C)-pushforward.

(人間) とうき くうとう う

Main theorem

Theorem 10

Let $M \in \text{mod } \Lambda$ and $n \ge 1$. Let C be an *n*-canonical right Λ -module over R. Then the following are equivalent.

- (1) M is (n, C)-TF (or equivalently, has a universal (n, C)-pushforward).
- (2) M is an (n, C)-syzygy.

(3) *M* satisfies $(S_n)^R$, and $\operatorname{supp}_R M \subset \operatorname{supp}_R C$.

Remark 11

Considering the case that $R = \Lambda$, R is (S_n) , and C is semidualizing, the theorem yields Araya–lima theorem.

(日) (周) (三) (三)

A corollary

Corollary 12 Let *R* be semilocal and assume that Λ has a right canonical module *K*. (1) λ_Λ : Λ → End_{Λ^{op}} *K* is injective if and only if Ass_R Λ = Assh_R Λ. (2) λ_Λ : Λ → End_{Λ^{op}} *K* is bijective if and only if Λ satisfies the (S₂^Λ)^R-condition.

Schenzel-Aoyama-Goto theorem

Theorem 13 Let (R, J) be semilocal, and suppose that Λ has a right canonical module K_{Λ} . Assume that Λ satisfies $(S_2^{\Lambda})^R$, and assume that K_{Λ} is GCM. Then Λ is GCM.

Notation

Let X be a Noetherian scheme, U its open subscheme with $\operatorname{codim}(X \setminus U, X) \ge 2$, and Λ a coherent \mathcal{O}_X -algebra. A coherent right Λ -module C is said to be *n*-canonical if C satisfies (S_n) and C_x is the right canonical module of Λ_x or zero for each $x \in X$. The full subcategory of mod Λ consisting of $\mathcal{M} \in \operatorname{mod} \Lambda$ satisfying (S_2) is denoted by $(S_2)^{\Lambda^{\operatorname{op}}, X}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Codimension-two argument

Theorem 2

Suppose that X has a 2-canonical module C such that supp C = X. Let $i : U \hookrightarrow X$ be the inclusion. Then the restriction $i^* : (S_2)^{\Lambda^{op}, X} \to (S_2)^{(i^*\Lambda)^{op}, U}$ is an equivalence whose quasi-inverse is the direct image i_* .

Higher-dimensional analogue of quasi-Frobenius algebra

Lemma 3

Let (R, J) be semilocal. Then the following are equivalent.
(1) (K_λ)_λ is projective in mod λ.
(2) _λ(K_λ) is projective in λ mod.

If the equivalent conditions are satisfied, we say that Λ is pseudo-quasi-Frobenius. If, moreover, Λ is GCM, then we say that Λ is quasi-Frobenius.

- 3

Goto–Nishida's Gorensteinness (1)

Proposition 14

Let R be semilocal, and assume that Λ is GCM. Then the following are equivalent.

- (1) Λ is quasi-Frobenius;
- (2) dim $\Lambda = \operatorname{idim}_{\Lambda}\Lambda$, where idim denotes the injective dimension.
- (3) dim $\Lambda = \operatorname{idim} \Lambda_{\Lambda}$.

Goto–Nishida's Gorensteinness (2)

Corollary 15

Let R be arbitrary. Then the following are equivalent.

- (1) For any $P \in \operatorname{Spec} R$, Λ_P is quasi-Frobenius.
- (2) For any $\mathfrak{m} \in Max R$, $\Lambda_{\mathfrak{m}}$ is quasi-Frobenius;
- (3) Λ is a Gorenstein in the sense that Λ is Cohen–Macaulay, and $\operatorname{idim}_{\Lambda_P}\Lambda_P = \dim \Lambda_P$ for $P \in \operatorname{Spec} R$.

Non-commutative version of quasi-Gorenstein property

Lemma 16

Let (R, J) be semilocal. Then the following are equivalent. (1) $_{\Lambda}\Lambda$ is the left canonical module of Λ ; (2) Λ_{Λ} is the right canonical module of Λ .

Let (R, J) be semilocal. We say that Λ is quasi-symmetric if Λ is the canonical module of Λ . If, moreover, Λ is GCM, then we say that Λ is symmetric.

We say that Λ is pseudo-Frobenius if the equivalent conditions in Lemma 16 are satisfied. If, moreover, Λ is GCM, then we say that Λ is Frobenius.

Relative notions due to Scheja-Storch

Definition 17 (Scheja–Storch)

Let *R* be general. We say that Λ is symmetric (resp. Frobenius) relative to *R* if Λ is *R*-projective, and $\Lambda^* := \operatorname{Hom}_R(\Lambda, R)$ is isomorphic to Λ as a Λ -bimodule (resp. as a right Λ -module). It is called quasi-Frobenius relative to *R* if the right Λ -module Λ^* is projective.

くほと くほと くほと

Relative versus absolute notions (1)

Proposition 18

- Let (R, \mathfrak{m}) be local.
- If dim Λ = dim R, R is quasi-Gorenstein, and Λ* ≅ Λ as Λ-bimodules (resp. Λ* ≅ Λ as right Λ-modules, Λ* is projective as a right Λ-module), then Λ is quasi-symmetric (resp. pseudo-Frobenius, pseudo-quasi-Frobenius).
- (2) If Λ is nonzero and *R*-projective, then Λ is quasi-symmetric (resp. pseudo-Frobenius, pseudo-quasi-Frobenius) if and only if *R* is quasi-Gorenstein and Λ is symmetric (resp. Frobenius, quasi-Frobenius) relative to *R*.

Image: A matrix

Relative versus absolute notions (2)

Corollary 19

Let (R, \mathfrak{m}) be local.

- If *R* is Gorenstein and Λ is symmetric (resp. Frobenius, quasi-Frobenius) relative to *R*, then Λ is symmetric (resp. Frobenius, quasi-Frobenius).
- (2) If Λ is nonzero and *R*-projective, then Λ is symmetric (resp. Frobenius, quasi-Frobenius) if and only if *R* is Gorenstein and Λ is symmetric (resp. Frobenius, quasi-Frobenius) relative to *R*.

A B M A B M

Thank you

This slide will soon be available at http://www.math.okayama-u.ac.jp/~hashimoto/

3

< 回 > < 三 > < 三 >