F-rationality of rings of invariants

Mitsuyasu Hashimoto

Okayama University

November 21, 2014 Partially Joint with P. Symonds

Dedicated to Professor K.-i. Watanabe on the occasion of his seventieth birthday

F-regularity and F-rationality of rings of invariants

Let $k=\bar{k}$ be an algebraically closed field of characteristic p>0. Let $V=k^d$, and G be a finite subgroup of $GL(V)=GL_d$. We say that $g\in GL(V)$ is a pseudo-reflection if ${\rm rank}(1_V-g)=1$. Let $B={\rm Sym}\ V=k[v_1,\ldots,v_d]$, where v_1,\ldots,v_d is a basis of V, and $A=B^G$.

Question 1

Assume that *G* does not have a pseudo-reflection.

- When is $A = B^G$ strongly F-regular?
- **2** When is $A = B^G$ *F*-rational?

Broer-Yasuda theorem

Theorem 2 (Broer, Yasuda)

Assume that G does not have a pseudo-reflection. The following are equivalent.

- **1** $A = B^G$ is strongly F-regular.
- \bigcirc A is a direct summand subring of B.
- 3 p does not divide the order #G of G.

 $2\Rightarrow 1$ is simply because strong *F*-regularity is inherited by a direct summand. $1\Rightarrow 2$ is because a weakly *F*-regular ring is a splinter (Hochster–Huneke). $3\Rightarrow 2$ is by the existence of the Reynolds operator. Broer and Yasuda proved $2\Rightarrow 3$.

Today we consider the problem for *F*-rationality.

Frobenius twist

For a k-scheme $h: Z \to \operatorname{Spec} k$ and $e \in \mathbb{Z}$, the scheme Z with the new k-structure

$$Z \xrightarrow{h} \operatorname{Spec} k \xrightarrow{F^e} \operatorname{Spec} k$$

is denoted by eZ . Note that the Frobenius map $F_Z^e: {}^eZ \to Z$ is a k-morphism for $e \ge 0$.

For a k-morphism $f: Z' \to Z$, the morphism $f: {}^eZ' \to {}^eZ$ is again a k-morphism. We denote this morphism ef .

Frobenius twist of a group scheme

If H is a k-group scheme, then by the product

$${}^{e}H \times {}^{e}H \cong {}^{e}(H \times H) \xrightarrow{{}^{e}\mu} {}^{e}H,$$

^eH is a k-group scheme, where $\mu: H \times H \to H$ is the product.

The Frobenius map $F_H^e: {}^eH \to H$ is a homomorphism of k-group schemes. If H is étale over k, F^e is an isomorphism. In particular, $F_G^e: {}^eG \to G$ is an isomorphism.

Frobenius twist of a vector space

For a k-vector space W and $e \in \mathbb{Z}$, the additive group W with the new k-structure given by

$$\alpha \cdot \mathbf{w} := \alpha^{\mathbf{p}^{\mathbf{e}}} \mathbf{w}$$

is denoted by eW , where the right-hand side is by the original k-action of W, and the left hand side is by the new k-action of eW . The vector w, viewed as an element of eW is denoted by ew . Thus we have

$${}^{e}w + {}^{e}w' = {}^{e}(w + w'), \qquad \alpha({}^{e}w) = {}^{e}(\alpha^{p^{e}}w).$$

Frobenius twist of k-algebras

For a k-algebra A, the k-space eA with the ring structure of A is a k-algebra. That is,

$$^{e}a^{e}b=^{e}(ab).$$

If A is commutative, then Spec eA is identified with $^e(\operatorname{Spec} A)$, and the Frobenius map $F_A^e: A \to ^eA$ is a k-algebra map.

Frobenius twist of a representation

Let H be a k-group scheme, and W an H-module. Then eW is an eH -module in a natural way by the action

$${}^{e}H \times {}^{e}W \cong {}^{e}(H \times W) \rightarrow {}^{e}W.$$

When H is étale, as $F^e: {}^eH \to H$ is an isomorphism, eW is an H-module again.

Explicit description of Frobenius twist of representations

Let W be a G-module of dimension n and w_1, \ldots, w_n be a k-basis of W. For $g \in G$, the representation matrix $\rho(g) = (a_{ij}(g))$ is given by

$$gw_j = \sum_{i=1}^n a_{ij}(g)w_i.$$

Then the representation matrix of eW with respect to the basis ${}^ew_1, \ldots, {}^ew_n$ is given by

$$g(^{e}w_{j}) = \sum_{i=1}^{n} a_{ij}(g)^{p^{-e}}(^{e}w_{i}).$$

The frobenius twists of H-algebras and equivariant modules

```
Let C be an H-algebra. Then {}^eC is an {}^eH-algebra.
Let M be an (H,C)-module. Then {}^eM is an ({}^eH,{}^eC)-module.
If, moreover, H is étale, then {}^eC is an H-algebra, and {}^eM is an (H,{}^eC)-module.
```

Review of the settings

```
Let k be an algebraically closed field of characteristic p>0. Let V:=k^d, and G a finite subgroup of GL(V). Let B:=\operatorname{Sym} V=k[v_1,\ldots,v_d] and A:=B^G, where v_1,\ldots,v_d is a basis of V.
```

Remarks

Remark 3

- ① Let B * G be the twisted group algebra. A (G, B)-module and a B * G-module are one and the same thing.
- ② If $N \in \text{Ref}(A)$, then $\text{rank}_A N = \text{rank}_B (B \otimes_A N)^{**}$. For any $M \in \text{Ref}(G, B)$, $\text{rank}_B M = \text{rank}_A M^G$.
- **③** For $M \in \text{Ref}(G, B)$, ${}^eM \in \text{Ref}(G, B)$, and obviously

$$({}^{e}M)^{G} \cong {}^{e}(M^{G}).$$

③ For a (G, B)-module M and a G-module W, $M ⊗_k W$ is a B-module by b(m ⊗ w) = bm ⊗ w, and is a G-module g(m ⊗ w) = gm ⊗ gw, and it is in fact a (G, B)-module.

Graded (G, B)-modules

```
A \mathbb{Z}-graded (G,B)-module M is nothing but a (\tilde{G},B)-module, where \tilde{G}=\operatorname{Spec} k[t,t^{-1}]\times G. So for e\geq 0, {}^eM is a ({}^e\tilde{G},B)-module. As {}^e\tilde{G}\cong\operatorname{Spec} k[t^{p^{-e}},t^{-p^{-e}}]\times G, it is a p^{-e}\mathbb{Z}-graded (G,B)-module. Let \mathcal{M} be the category of \mathbb{Z}[1/p]-graded (G,B)-modules. Let \mathcal{F} be its full subcategory consisting of B-finite B-free objects. The Frobenius twist {}^e(?) is an endofunctor of \mathcal{M}, and {}^e\mathcal{F}\subset\mathcal{F}.
```

kG is selfinjective

Let Λ be a finite dimensional k-algebra.

- We say that Λ is symmetric if $_{\Lambda}\Lambda_{\Lambda} \cong _{\Lambda}D(\Lambda)_{\Lambda}$, where $D(\Lambda) = \Lambda^*$ is the k-dual of Λ .
- The following are equivalent.
 - \bigcirc $_{\Lambda}\Lambda$ is injective.
 - \bigcirc Λ_{Λ} is injective.
 - 3 Any projective (left) Λ-module is injective.
 - **4** Any injective (left) Λ -module is projective.

We say that Λ is selfinjective (or quasi-Frobenius) if these conditions are satisfied.

- If Λ is symmetric, then Λ is selfinjective.
- kG is symmetric, and hence is selfinjective.

\mathcal{F} is Frobenius

Lemma 4 (Symonds–H)

We have $\operatorname{Hom}_B(B \otimes_k kG, B) \cong B \otimes kG$ in \mathcal{F} . The category \mathcal{F} is a Frobenius category. Its full subcategory of projective injective objects agrees with

$$\mathcal{P} := \mathsf{add}\{(B \otimes_k kG)[\lambda] \mid \lambda \in \mathbb{Z}[1/p]\}.$$

Frobenius twists of objects of ${\mathcal F}$

Lemma 5 (Symonds–H)

There exists some $e_0 \ge 1$ such that for any $E \in \mathcal{F}$ of rank f, there exists a direct summand E_0 of $e_0 E$ in \mathcal{F} such that $E_0 \cong (B \otimes_k kG)^f$ as (G,B)-modules.

Lemma 6 (Symonds–H)

 $e(B \otimes_k kG) \cong (B \otimes_k kG)^{p^{de}}$ as (G, B)-modules.

Asymptotic behavior of Frobenius twists

Theorem 7 (Symonds–H)

There exists some c>0 and $0<\alpha<1$ such that for any $E\in\mathcal{F}$ of rank f and any $e\geq 1$, there exists some decomposition

$$^{e}E\cong E_{0,e}\oplus E_{1,e}$$

in \mathcal{F} such that $E_{0,e}$ is a direct sum of copies of $B \otimes_k kG$ as a (G,B)-module, and $E_{1,e}$ is an object of \mathcal{F} whose rank less than or equal to $fcp^{de}\alpha^e$.

Some observations on $E_{0,e}$ and $E_{1,e}$

- ullet $\lim_{e o\infty}rac{1}{p^{de}}$ rank $E_{1,e}=0$. Hence $\lim_{e o\infty}rac{1}{p^{de}}$ rank $E_{0,e}=f$.
- Since $(B \otimes_k kG)^G \cong B$ as A-modules, we have $\lim_{e \to \infty} \frac{1}{p^{de}} \mu_{\hat{A}}(\hat{E}_{0,e}^G) = f \mu_{\hat{A}}(\hat{B})/|G| = f e_{\mathrm{HK}}(\hat{A}) \text{ (by }$

Watanabe–Yoshida theorem, as $[Q(\hat{B}):Q(\hat{A})]=|G|)$, where \hat{A} and \hat{B} are the completions of A and B, respectively.

• As $\lim_{e\to\infty}\frac{1}{p^{de}}\mu_{\hat{A}}(^{e}\hat{E}^{G})=e_{\mathrm{HK}}(^{e}\hat{E}^{G})=fe_{\mathrm{HK}}(\hat{A})$, we have

Corollary 8 (Symonds-H)

$$\lim_{e\to\infty}\frac{1}{p^{de}}\mu_{\hat{A}}(\hat{E}_{1,e}^G)=0.$$

Interpretation to A-modules

Let $k = V_0, V_1, \dots, V_n$ be the list of simple G-modules. Let P_i be the projective cover of V_i . Set $M_i := (B \otimes_k P_i)^G$.

Theorem 9 (Symonds-H)

There exists some sequence of non-negative integers $\{a_e\}$ such that

- ② For each *B*-finite *B*-free \mathbb{Z} -graded (G, B)-module *E* of rank f and $e \geq 1$, there is a decomposition

$${}^eE^G\cong igoplus_{i=0}^n M_i^{\oplus fa_e\dim V_i}\oplus M_{E,e}$$

as an A-module such that $\lim_{e\to\infty} \mu_{\hat{\mathbf{A}}}(\hat{M}_{\mathsf{E},e})/p^{de} = 0$.

Sannai's dual *F*-signature

Let (R, \mathfrak{m}, k) be a *d*-dimensional reduced *F*-finite local ring of prime characteristic *p* with *k* perfect. For finite *R*-modules *M* and *N*, define

$$\operatorname{surj}_R(M,N) := \max\{r \in \mathbb{Z}_{\geq 0} \mid \exists \text{ a surjection } M \to N^{\oplus r}\}.$$

We define

$$s(M) := \limsup_{e \to \infty} \frac{\operatorname{surj}_R(^e M, M)}{p^{de}},$$

and call it the dual F-signature of M (Sannai). s(R) is nothing but the F-signature of the ring R (defined by Huneke–Leuschke).

Characterizations of F-regularity and F-rationality

Theorem 10

Let (R, \mathfrak{m}, k) be a reduced F-finite local ring with k perfect.

- ② (Aberbach–Leuschke) R is strongly F-regular if and only if s(R) > 0.
- (Gabber) R is a homomorphic image of a regular local ring.
- (Sannai) R is F-rational if and only if R is Cohen–Macaulay and $s(\omega_R) > 0$, where ω_R is the canonical module of R.

The group [C]

Let \mathcal{C} be an additive category. We define

$$[\mathcal{C}] := (\bigoplus_{M \in \mathcal{C}} \mathbb{Z} \cdot M)/(M - M_1 - M_2 \mid M \cong M_1 \oplus M_2).$$

The class of M in the group $[\mathcal{C}]$ is denoted by [M]. The vector space $\mathbb{R} \otimes_{\mathbb{Z}} [\mathcal{C}]$ is denoted by $[\mathcal{C}]_{\mathbb{R}}$. If \mathcal{C} is Krull–Schmidt and \mathcal{C}_0 is a complete set of representatives of $\operatorname{Ind} \mathcal{C}$, then $\{[M] \mid M \in \mathcal{C}_0\}$ is an \mathbb{R} -basis of $[\mathcal{C}]_{\mathbb{R}}$.

The metric of [mod(R)]

Let R be a Henselian local ring, and C := mod(R). For $\alpha \in [C]_{\mathbb{R}}$, we can write

$$\alpha = \sum_{M \in \mathcal{C}_0} c_M[M].$$

We define $\|\alpha\| := \sum_{M} |c_{M}| \mu_{R}(M)$. Then $([\mathcal{C}]_{\mathbb{R}}, \|\cdot\|)$ is a normed space. So it is a metric space by the metric

$$d(\alpha, \beta) := \|\alpha - \beta\|.$$

The *F*-limit of a module

Let
$$\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}} = [\text{mod}(R)]_{\mathbb{R}}$$
.

- Define $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $\mu_R(\alpha) := \sum_M c_M \mu_R(M)$.
- For $N \in \mathcal{C}_0$, define $sum_N : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ by $sum_N(\alpha) = c_N$.
- Assume further that R is of characteristic p > 0 and F-finite with a perfect residue field.
- Define ${}^e\alpha = \sum_{M \in \mathcal{C}_0} c_M[{}^eM]$.
- Define $FL(\alpha) = \lim_{e \to \infty} \frac{1}{p^{de}} {}^{e}\alpha$ (if exists, the *F*-limit of α).
- Define $e_{HK}(\alpha) = \sum_{M} c_{M} e_{HK}(M)$.
- For $N \in \mathcal{C}_0$, define $FS_N(\alpha) = \sum_M c_M FS_N(M)$, where $FS_N(M) = \lim_{e \to \infty} \frac{1}{p^{de}} \operatorname{sum}_N(^e M)$ (the generalized F-signature).

The Hilbert–Kunz multiplicity and F-signature

Lemma 11

 $\mu_R : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ is a short map. That is, $|\mu_R(\alpha) - \mu_R(\beta)| \leq ||\alpha - \beta||$. Similarly for $\sup_N : [\mathcal{C}]_{\mathbb{R}} \to \mathbb{R}$ for $N \in \mathcal{C}_0$. In particular, they are uniformly continuous.

Corollary 12

Let $\alpha = \sum_{M \in \mathcal{C}_0} c_M[M] \in [\mathcal{C}]_{\mathbb{R}}$. If $FL(\alpha)$ exists, then

$$\mu_R(FL(\alpha)) = e_{HK}(\alpha)$$

and

$$sum_N(FL(\alpha)) = FS_N(\alpha).$$

The dual *F*-signature

For $\alpha = \sum_{M} c_{M}[M] \in [\mathcal{C}]_{\mathbb{R}}$ and $M, N \in \text{mod } R$,

- Define $\langle \alpha \rangle := \sum_{M} \max\{0, \lfloor c_{M} \rfloor\}[M]$.
- Define

$$\operatorname{asn}(\alpha, N) := \lim_{t \to \infty} \frac{1}{t} \operatorname{surj}(\langle t \alpha \rangle, N)$$

(the limit exists, the asymptotic surjective number).

- In general, $surj(M, N) \leq asn([M], N)$.
- asn(?, N) is a short map.
- We say that $\alpha \geq 0$ if $c_M \geq 0$ for any $M \in C_0$.
- If $\alpha, \beta \geq 0$, then $asn(\alpha + \beta, N) \geq asn(\alpha, N) + asn(\beta, N)$.
- If the *F*-limit of *M* exists, then s(M) = asn(FL([M]), M).

The restatement of Theorem 9

Theorem 13 (Symonds–H)

For each B-finite B-free \mathbb{Z} -graded (G, B)-module E of rank f,

$$FL([\hat{E}^G]) = \frac{f}{|G|}[\hat{B}] = \frac{f}{|G|} \bigoplus_{i=0}^n (\dim V_i)[\hat{M}_i]$$

in $[\operatorname{mod} \hat{A}]_{\mathbb{R}}$, where $M_i = (B \otimes_k P_i)^G$.

Remark 14

The theorem for the case that p does not divide |G| is due to Nakajima–H.

The free locus *U* of the action

Set

$$\varphi: X := \operatorname{\mathsf{Spec}} B \to \operatorname{\mathsf{Spec}} A =: Y$$

be the canonical map, where $A = B^G$. Set

$$U := X \setminus (\bigcup_{g \in G \setminus \{e\}} X_g) \subset X$$
, where

$$X_g = \{x \in X \mid gx = x\}.$$

We call U the free locus of the action.

From now, unless otherwise stated explicitly (in an example), assume that G has no pseudo-reflection.

Let $\varphi: X = \operatorname{Spec} B \to \operatorname{Spec} A = Y$ be as above, and U the free locus, and $U' := \varphi(U)$. We get the diagram

$$X \stackrel{i}{\longleftrightarrow} U \stackrel{\rho}{\longrightarrow} U' \stackrel{j}{\longleftrightarrow} Y$$
,

where ρ is the restriction of φ .

Almost principal bundle

Lemma 15

- **1** Set $\tilde{G} := G \times \mathbb{G}_m$. Then $\varphi : X \to Y$ is a \tilde{G} -morphism.
- ② (Since G does not have a pseudo-reflection) U is large in X. That is, $\operatorname{codim}_X(X \setminus U) \geq 2$.
- **3** U is a G-stable open subset of X, and agrees with the étale locus of φ .
- $U' := \varphi(U)$ is a large \mathbb{G}_m -stable open subset of Y, and the restriction $\rho: U \to U'$ of φ is a principal G-bundle.
- **5** $\varphi: X \to Y$ is a \tilde{G} -enriched almost principal G-bundle with respect to U and U'.

The equivalences

Theorem 16

The functor $\gamma: i_*\rho^*j^*: \operatorname{Ref}(Y) \to \operatorname{Ref}(G,X)$ is an equivalence whose quasi-inverse is $\delta: (?)^G j_*\rho_*i^*: \operatorname{Ref}(G,X) \to \operatorname{Ref}(Y)$.

Corollary 17

The functor $(B \otimes_A ?)^{**} : Ref(A) \to Ref(G, B)$ is an equivalence whose quasi-inverse is $(?)^G : Ref(G, B) \to Ref(A)$.

Remark 18

Similarly, $(\hat{B} \otimes_{\hat{A}}?)^{**}$: Ref $(\hat{A}) \to \text{Ref}(G, \hat{B})$ is an equivalence whose quasi-inverse is $(?)^G$.

The description of ω_A

Theorem 19 (Watanabe-Peskin-Broer-Braun)

Let $\det = \det_V$ denote the one-dimensional representation $\bigwedge^d V$ of G. Then

- $\bullet \omega_A \cong (B \otimes_k \det)^G.$
- **1** In particular, A is quasi-Gorenstein if and only if $\det \cong k$ as a G-module (or equivalently, $G \subset SL(V)$).

Reproving Watanabe-Yoshida theorem and Broer-Yasuda theorem

Note that each $\hat{M}_i = (\hat{B} \otimes_k P_i)^G$ is an indecomposable \hat{A} -module, and $\hat{M}_i \ncong \hat{M}_j$ for $i \neq j$. Moreover, $\hat{M}_i \cong \hat{A}$ if and only if $P_i \cong k$. This is equivalent to say that i = 0 and p does not divide |G|.

Corollary 20 (Watanabe-Yoshida, Broer, Yasuda)

The F-signature $s(\hat{A})$ of \hat{A} is zero if p divides |G|, and is 1/|G|otherwise.

Proof.

$$s(\hat{A}) = FS_{\hat{A}}(\hat{A}) = |G|^{-1} \sum_{i=0}^{n} (\dim V_i) \operatorname{sum}_{\hat{A}}([\hat{M}_i]).$$

A lemma

Lemma 21

Let Λ be a selfinjective finite dimensional k-algebra, S a simple Λ -module, and $h:P\to S$ its projective cover. Let M be an indecomposable Λ -module (in this talk, an indecomposable Λ -module means a finitely generated one). Then the following are equivalent.

- $h_*: \operatorname{Hom}_{\Lambda}(M, P) \to \operatorname{Hom}_{\Lambda}(M, S)$ is surjective.
- 3 M is either projective, or $M/\operatorname{rad} M$ does not contain S.

Representation theoretic characterization of

$$s(\omega_{\hat{A}}) > 0$$

Let ν be the number such that $V_{\nu} \cong \det$.

Theorem 22 (Main Theorem)

Assume that A is not strongly F-regular (or equivalently, p divides |G|). Then the following are equivalent.

- **1** $s(\omega_{\hat{A}}) > 0$;
- ② The canonical map $M_{\nu} \rightarrow \omega_A$ is surjective.
- $H^1(G, B \otimes_k \operatorname{rad} P_{\nu}) = 0.$
- The For any non-projective indecomposable G-summand M of B, soc M does not contain \det^{-1} (the k-dual of \det).

If these conditions hold, then $s(\omega_{\lambda}) \geq 1/|G|$.

The proof of $2 \Leftrightarrow 3$

Let $B = \bigoplus_j M_j$ with M_j indecomposable. The map $M_{\nu} \to \omega_A$ in **2** is

$$(B\otimes P_{\nu})^{G} \to (B\otimes \det)^{G}$$
.

As $\operatorname{Ext}_G^i(M_j^*,?) \cong H^i(G,M_j\otimes?)$, **2** is equivalent to say that

$$\operatorname{\mathsf{Hom}}_G(M_j^*,P_
u) o \operatorname{\mathsf{Hom}}_G(M_j^*,\operatorname{\mathsf{det}})$$

is surjective for each j.

On the other hand, 3 is equivalent to say that

$$\operatorname{Ext}^1_G(M_i^*,\operatorname{\mathsf{rad}} P_
u)\cong H^1(G,M_i\otimes\operatorname{\mathsf{rad}} P_
u)=0$$

for each *j*. The result follows from Lemma 21.

The proof of $3 \Leftrightarrow 4$

Similarly, **4** is equivalent to say that each M_j^* is injective (or equivalently, projective, as kG is selfinjective) or $M_j^*/\operatorname{rad} M_j^* \cong (\operatorname{soc} M_j)^*$ does not contain det. Again by Lemma 21, we have **3** \Leftrightarrow **4**.

Theorem 13 for $E = B \otimes \det$

Let $k = V_0, V_1, \dots, V_n$ be the list of simple *G*-modules. Let P_i be the projective cover of V_i . Set $M_i := (B \otimes_k P_i)^G$.

Theorem 13 (Symonds-H)

$$FL([\omega_{\hat{A}}]) = \frac{1}{|G|}[\hat{B}] = \frac{1}{|G|} \bigoplus_{i=0}^{n} (\dim V_i)[\hat{M}_i],$$

where $M_i = (B \otimes P_i)^G$.

The proof of $2\Rightarrow 1$

As we assume that there is a surjection $M_{\nu} \to \omega_{A}$, $\text{surj}(\hat{M}_{\nu}, \omega_{\hat{A}}) \geq 1$. By Theorem 13 (applied to $E = B \otimes \det$),

$$\begin{split} s(\omega_{\hat{\mathcal{A}}}) &= \mathsf{asn}(\mathit{FL}([\omega_{\hat{\mathcal{A}}}]), \omega_{\hat{\mathcal{A}}}) = \frac{1}{|G|} \, \mathsf{asn}([\hat{M}_{\nu}] + \sum_{i \neq \nu} (\dim V_i)[\hat{M}_i], \omega_{\hat{\mathcal{A}}}) \\ &\geq \frac{1}{|G|} \, \mathsf{asn}([\hat{M}_{\nu}], \omega_{\hat{\mathcal{A}}}) \geq \frac{1}{|G|} \, \mathsf{surj}(\hat{M}_{\nu}, \omega_{\hat{\mathcal{A}}}) \geq \frac{1}{|G|} > 0. \end{split}$$

The proof of $1\Rightarrow 2$ (1)

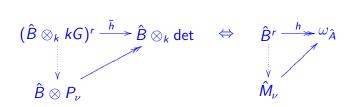
By Theorem 13, we have that $\operatorname{asn}([\hat{B}], \omega_{\hat{A}}) > 0$. Or equivalently, there is a surjection $h: \hat{B}^r \to \omega_{\hat{A}}$ for $r \gg 0$. By the equivalence $\gamma = (\hat{B} \otimes_{\hat{A}}?)^{**} : \operatorname{Ref}(\hat{A}) \to \operatorname{Ref}(G, \hat{B})$, there corresponds

$$ilde{h} = \gamma(h) : (\hat{B} \otimes_k kG)^r o \hat{B} \otimes_k \det.$$

As $\hat{B} \otimes_k kG$ is a projective object in the category of (G, B)-modules, \tilde{h} factors through the surjection

$$\hat{B} \otimes_k P_{\nu} \to \hat{B} \otimes_k \det$$
.

The proof of $1\Rightarrow 2$ (2)



Returning to the category Ref \hat{A} , the surjection $h: \hat{B}^r \to \omega_{\hat{A}}$ factors through

$$\hat{M}_{\nu} = (\hat{B} \otimes_{\hat{A}} P_{\nu})^{\mathsf{G}} \to \omega_{\hat{A}}.$$

So this map is also surjective, and 2 follows.

A corollary

Corollary 23

Let \det^{-1} denote the dual representation of \det . Assume that p divides |G|. If $s(\omega_{\hat{A}}) > 0$, then \det^{-1} is not a direct summand of B.

Proof.

Note that the one-dimensional representation \det^{-1} is not projective. Moreover, the socle of \det^{-1} is \det^{-1} , which contains \det^{-1} as a submodule. The result follows from $\mathbf{1} \Rightarrow \mathbf{4}$ of the theorem.

A lemma

Lemma 24

Let M and N be in Ref(G, B). There is a natural isomorphism

$$\gamma: \operatorname{\mathsf{Hom}}_{A}(M^G, N^G) \to \operatorname{\mathsf{Hom}}_{B}(M, N)^G$$

Proof.

This is simply because $\gamma = (B \otimes_A?)^{**} : \operatorname{Ref}(A) \to \operatorname{Ref}(G, B)$ is an equivalence, and $\operatorname{Hom}_B(M, N)^G = \operatorname{Hom}_{G,B}(M, N)$.

Another criterion (1)

Theorem 25

A is F-rational if and only if the following three conditions hold.

- A is Cohen–Macaulay.
- **2** $H^1(G,B)=0.$
- (8 $\otimes_k (I/k)$)^G is a maximal Cohen–Macaulay A-module, where I is the injective hull of k.

Another criterion (2)

Proof.

Assume that A is F-rational. Then A is Cohen–Macaulay. As $s(\omega_{\hat{A}}) > 0$, $H^1(B \otimes \operatorname{rad} P_{\nu})^G = 0$, and

$$0 \to (B \otimes \mathsf{rad}\, P_\nu)^G \to (B \otimes P_\nu)^G \to (B \otimes \mathsf{det})^G \to 0 \qquad (1)$$

is exact. As $(B \otimes P_{\nu})^G$ is a direct summand of $(B \otimes kG)^G = B$, it is an MCM module. As $(B \otimes \det)^G = \omega_A$, it is an MCM module. So the canonical dual of the exact sequence is still exact.

Another criterion (3)

Proof (continued).

As

$$\operatorname{\mathsf{Hom}}_A((B\otimes_k?)^{\mathsf{G}},\omega_A)=\operatorname{\mathsf{Hom}}_B(B\otimes_k?,B\otimes_k\det)^{\mathsf{G}}=(B\otimes_k?^*\otimes_k\det)^{\mathsf{G}},$$

we get the exact sequence of MCM A-modules

$$0 \to A \to (B \otimes P_{\nu}^* \otimes \det)^G \to (B \otimes (\operatorname{rad} P_{\nu})^* \otimes \det)^G \to 0.$$
 (2)

As $(\operatorname{rad} P_{\nu})^* \otimes \det \cong I/k$, $(B \otimes (I/k))^G$ is an MCM. As I is an injective G-module, $B \otimes I$ is also injective, and hence $H^1(G, B \otimes I) = 0$. By the long exact sequence of the cohomology, we get $H^1(G, B) = 0$.

The converse is similar. Dualizing (2), we have that (1) is exact.

A corollary

Corollary 26

If A is F-rational, then $H^1(G, k) = 0$.

Proof.

k is a direct summand of B, and $H^1(G, B) = 0$.

Example 27

If char(k) = 2 and $G = S_2$ or S_3 , then $H^1(G, k) \neq 0$. So $A = B^G$ is not F-rational (provided G does not have a pseudo-reflection).

An example (1)

- Let *p* be an odd prime number.
- Let us identify $\mathsf{Map}(\mathbb{F}_p, \mathbb{F}_p)^{\times}$ with the symmetric group S_p .
- Let $Q := \mathbb{F}_p \subset S_p$, acting on \mathbb{F}_p by addition. Q is generated by the cyclic permutation $\sigma = (1+) = (0 \ 1 \ \cdots \ p-1) \in S_p$.
- Let $\Gamma := \mathbb{F}_p^{\times} \subset S_p$, acting on \mathbb{F}_p by multiplication. It is a cyclic group of order p-1 generated by $\tau = (\alpha \cdot) = (1 \ \alpha \ \alpha^2 \ \cdots \ \alpha^{p-2})$, where α is the primitive element.
- As $\tau \sigma \tau^{-1} = \sigma^{\alpha}$, Γ normalizes Q. Set $G = Q\Gamma$. $C_G(Q) = Q$.
- $\bullet \ \ G = \{\phi \in \mathcal{S}_p \mid \exists a \in \mathbb{F}_p^{\times} \ \exists b \in \mathbb{F}_p \ \forall x \in \mathbb{F}_p \ \phi(x) = ax + b\} \subset \mathcal{S}_p.$
- #G = p(p-1).

An example (2)

- The only involution of Γ is is $\tau^{(p-1)/2} = ((-1)\cdot) = (1 (p-1))(2 (p-2)) \cdots ((p-1)/2 (p+1)/2)$, which is a transposition if and only if p=3.
- As Γ contains a Sylow 2-subgroup, a transposition of G, if any, is conjugate to an element, which must be a transposition, of Γ . So G has a transposition if and only if p=3.

An example (3)

- $G \subset S_p$ acts on $P = k^p = \langle w_0, w_1, \dots, w_{p-1} \rangle$ by $\phi w_i = w_{\phi(i)}$ for $\phi \in G$ and $i \in \mathbb{F}_p$.
- Let r > 1, and set $V = P^{\oplus r}$.
- G acts on V by permutations of the obvious basis.
- A permutation in G is a pseudo-reflection on V if and only if it is a transposition (as a permutation on the basis of V).
- G has a pseudo-reflection on V if and only if r = 1 and p = 3.

An example (4)

- Let $S = \operatorname{Sym} P$.
- Let $\lambda \in \mathbb{Z}^p$, and let $w^{\lambda} = w_0^{\lambda_0} \cdots w_{p-1}^{\lambda_{p-1}}$ be the corresponding monomial of S.
- Unless $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, Q acts freely on the orbit Gw^{λ} . So kGw^{λ} is a kQ-free module.
- For a *G*-module *M*, we have $H^i(G, M) \cong H^i(Q, M)^{\Gamma}$ (since the order of Γ is coprime to p, the Lyndon–Hochschild–Serre spectral sequence collapses).
- So kGw^{λ} is G-projective in this case.
- If $\lambda_0 = \lambda_1 = \cdots = \lambda_{p-1}$, $kGw^{\lambda} \cong k$ is trivial.
- So S is a direct sum of projectives and copies of k.

An example (5)

- Now consider $V = P^{\oplus r}$ and $B := \operatorname{Sym} V \cong S^{\otimes r}$.
- Let k^- be the sign representation of G. As $\tau \in G$ is an odd permutation, $k^- \not\cong k$.
- $\det_V = (\det P)^{\otimes r} = (k^-)^{\otimes r} \cong \det_V^{-1}$. This is k if r is even and k^- if r is odd.
- If M is a projective G-module and N a G-module, then $M \otimes N$ is projective. So $B = S^{\otimes r}$ is again a direct sum of projectives and copies of k.
- If r = 1 and p = 3, then $A := B^G = k[e_1, e_2, e_3]$, the polynomial ring generated by the elementary symmetric polynomials.
- Otherwise, G does not have a pseudo-reflection. $s(\omega_{\hat{A}}) > 0$ if and only if r is odd.

Kemper's theorem

Let k be a field of characteristic p>0, and G be a subgroup of the symmetric group of S_d acting on $B=k[v_1,\ldots,v_d]$ by permutation. Let Q be a Sylow p-subgroup of G. Assume that |Q|=p. Let $N=N_G(Q)$ be the normalizer. Let X_1,\ldots,X_c be the Q-orbits of $\{v_1,\ldots,v_d\}$. Set

$$H := \{ \sigma \in N \mid \forall i \ \sigma(X_i) \subset X_i \}.$$

Then Q is a normal subgroup of H. Set $m := [H : C_H(Q)]$.

Theorem 28 (Kemper)

$$\operatorname{depth} B^G = \min\{2m + c, d\}.$$

The depth of our example

- For our G, Q, and V, H = N = G. $C_H(Q) = Q$.
- So m = p 1, and c = r.
- So depth $A = \min\{2p 2 + r, rp\}$ and dim A = d = rp.
- So A is Cohen–Macaulay if and only if $r \leq 2$.
- It follows that A is F-rational if and only if r = 1.

Conclusion

Theorem 29

Let $p \ge 3$, r, G, V, $B = \operatorname{Sym} V$, and $A = B^G$ be as above.

- #G = p(p-1).
- ② If p = 3 and r = 1, then G is a reflection group and A is a polynomial ring. Otherwise, G does not have a pseudo-reflection, and A is not F-regular.
- **3** If $p \ge 5$ and r = 1, then A is F-rational but not F-regular.
- ① If r = 2, then A is Gorenstein, but not F-rational.
- **1** If $r \ge 3$ and odd, then $s(\omega_{\hat{A}}) > 0$ but A is not Cohen–Macaulay.
- If $r \ge 4$ and even, then A is quasi-Gorenstein, but not Cohen–Macaulay.

Thank you

This slide will soon be available at

http://www.math.okayama-u.ac.jp/~hashimoto/