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Main theorem

.
Theorem 1
..

......

Let k be a field, G a smooth k-group scheme of finite type, and X a
normal variety over k on which G acts. Let ϕ : X → Y be a
G -invariant morphism such that OY

∼= (ϕ∗OX )G . Then

(1) If Pic(X ) is a finitely generated abelian group, then so is Pic(Y ).

(2) If Cl(X ) is a finitely generated abelian group, then so is Cl(Y ).

If X = Spec B , Y = Spec BG , and ϕ : X → Y is the canonical map,
then the condition OY

∼= (ϕ∗OX )G is satisfied. Results similar to (2)
for connected G are proved by Magid and Waterhouse.
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. . . . . .

The Zariski site Zar(X•) (1)
Let I be a small category, and X• a contravariant functor from I to
the category Sch /S of S-schemes. Then we define the site Zar(X•)
by:

...1 Ob(Zar(X•)) = {(i , U) | i ∈ Ob(I ), U ∈ Ob(Zar(Xi))};

...2

HomZar(X•)((j , V ), (i , U)) = {(φ, h) | φ ∈ HomI (i , j),

h ∈ HomSch /S(V , U), V
h //

� _

��

U� _

��
Xj

Xφ // Xi

commutes};

...3 {(φλ, hλ) : (iλ, Uλ) → (i , U)} is a covering if iλ = i , φλ = idi for
any λ, and U =

∪
λ hλ(Uλ).
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. . . . . .

The Zariski site Zar(X•) (2)

Moreover, the sheaf of commutative rings OX• is defined by
...4 Γ((i , U),OX•) = Γ(U ,OXi

),

and (Zar(X•),OX•) is a ringed site.
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. . . . . .

Basic operations

As Zar(X•) is a ringed site, the tensor product ⊗OX•
and the internal

hom HomOX•
are readily defined.

If f• : X• → Y• is a morphism in the category Func(I op, Sch /S) (that
is, a natural transformation), then a continuous functor
f −1
• : Zar(Y•) → Zar(X•) is given by f −1

• ((i , U)) = (i , f −1
i (U)). From

this, the direct and the inverse images (f•)∗ and f ∗
• are induced.

Under some Noetherian settings, the twisted inverse pseudo-functor
f !
• and the theory of dualizing complexes and canonical sheaves are
obtained, as in the case of single schemes.
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. . . . . .

The category ∆ and ∆+

Let Ord be the category of ordered sets and order-preserving maps.
Let ∆ be the full subcategory of Ord with Ob(∆) = {[0], [1], [2], . . .},
where [n] = {0 < 1 < · · · < n}. Let ∆+ be the subcategory of ∆
such that Ob(∆+) = Ob(∆) and
Mor(∆+) = {φ ∈ Mor(∆) | φ is an injective map}.
Thus ∆+ looks like

[0]

δ0
0 //

δ0
1 // [1]

δ1
0 //

δ1
1 //

δ1
2 //

[2]

//
//
//
//

· · · ,

where δn
i : [n] → [n + 1] is the unique injective monotone map such

that i /∈ Im δn
i .
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. . . . . .

B+
G (X ) (1)

Let G be an S-group scheme acting on X . Then we associate
B+

G (X ) ∈ Func((∆+)op, Sch /S) as

B+
G (X ) := X G × Xd0

0oo

d0
1oo

G × G × X
d1

0oo

d1
1oo

d1
2oo

· · ·
oo
oo
oo
oo

,

where

dn
i = B+

G (X )δn
i

: B+
G (X )[n+1] = G n+1 × X → G n × X = B+

G (X )[n]

is defined by:
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. . . . . .

B+
G (X ) (2)

dn
i (gn . . . , g0, x) =


(gn, . . . , g1, g0x) (i = 0)
(gn, . . . , gigi−1, . . . , g0, x) (0 < i < n + 1)
(gn−1, . . . , g0, x) (i = n + 1)

.

The categories of modules Mod(Zar(B+
G (X ))) and quasi-coherent

modules Qch(Zar(B+
G (X ))) are denoted by Mod(G , X ) and

Qch(G , X ), respectively. An object of Mod(G , X ) is called a
(G ,OX )-module.

If G is S-flat, then Qch(G , X ) is closed under kernels, cokernels and
extensions in Mod(G , X ), and it is an abelian category and the
inclusion Qch(G , X ) ↪→ Mod(G , X ) is exact.
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. . . . . .

Algebraic G -cohomology

Let C be a site. Let Ps(C) and Sh(C) denote the category of
presheaves and sheaves over C, respectively. For M ∈ Ps(C) and
N ∈ Sh(C), we write H i

p(C,M) := ExtiPs(C)(Z,M) and

H i(C,N ) := ExtiSh(C)(a Z,N ), where Z is the constant presheaf and
a Z its sheafification.
For M ∈ Ps(Zar(B+

G (X ))), we denote H i
p(Zar(B+

G (X )),M) by
H i

alg(G ,M), and call it the ith algebraic G -cohomology group of M.
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. . . . . .

Explicit description of algebraic G -cohomology

.
Lemma 2
..

......

H i
alg(G ,M) is the cohomology group of the complex

0 → Γ(([0], X ),M)
d0−d1−−−→ Γ(([1], G × X ),M)

d0−d1+d2−−−−−→
Γ(([2], G × G × X ),M) → · · · .
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. . . . . .

The Picard group of a ringed site

Let (C,O) be a ringed site. An O-module L is called an invertible
sheaf if for any c ∈ Ob(C), there exists some covering (cλ → c) of c
such that for each λ, L|cλ

∼= O|cλ
, where (?)|cλ

is the restriction to
C/cλ. An invertible sheaf is quasi-coherent.

The set of isomorphism classes of invertible sheaves on C is denoted
by Pic(C), and called the Picard group of C. It is an additive group
by the addition

[L] + [L′] := [L ⊗O L′].

There is an isomorphism Pic(C) ∼= H1(C,O×).
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. . . . . .

The G -equivariant Picard group
.
Definition 3
..

......

Pic(B+
G (X )) is denoted by Pic(G , X ), and is called the G -equivariant

Picard group of X .

There is an obvious map

ρ : Pic(G , X ) → Pic(X )

forgetting the G -action. The image of ρ is contained in

Pic(X )G := Ker(Pic(X )
d0−d1−−−→ Pic(G × X )) =

{[L] ∈ Pic(X ) | a∗L ∼= p∗
2L},

where a = d0 : G × X → X is the action, and p2 = d1 : G × X → X
is the second projection.
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. . . . . .

A five-term exact sequence
From the five-term exact sequence

0 → E 1,0
2 → E 1 → E 0,1

2 → E 2,0
2 → E 2

of the Grothendieck spectral sequence

E p,q
2 = Hp

alg(G , Hq(O×)) ⇒ Hp+q(Zar(B+
G (X )),O×),

we get
.
Lemma 4
..

......

There is an exact sequence

0 → H1
alg(G ,O×) → Pic(G , X )

ρ−→ Pic(X )G →
H2

alg(G ,O×) → H2(Zar(B+
G (X )),O×).
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. . . . . .

Main theorem

.
Theorem 5
..

......

Let k be a field, G a smooth k-group scheme of finite type, and X a
reduced G -scheme which is quasi-compact and quasi-separated.
Assume that there is a k-scheme Z of finite type and a dominating
k-morphism Z → X . Then
H1

alg(G ,O×) = Ker(ρ : Pic(G , X ) → Pic(X )) is a finitely generated
abelian group.

Note that a reduced k-scheme X of finite type is reduced,
quasi-compact and quasi-separated, admitting a dominating map
from a k-scheme of finite type, that is, id : Z = X → X !
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. . . . . .

Finite generation of the Picard group of an

invariant subring

.
Lemma 6
..

......

Let ϕ : X → Y be a G -invariant morphism such that
OY → (ϕ∗OX )G is an isomorphism. Then there is an injective
homomorphism Pic(Y ) ↪→ Pic(G , X ).

.
Corollary 7
..

......

Let k , G , X and Z → X be as in the theorem, and let ϕ : X → Y be
a G -invariant morphism such that OY → (ϕ∗OX )G is an
isomorphism. If Pic(X ) is a finitely generated abelian group, then
Pic(G , X ) and Pic(Y ) are also finitely generated.
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. . . . . .

Proof of the theorem (1) — the case of finite

group action on a finite algebra
.

......

The case that G is a finite group, and X = Spec B is also finite.

(1) The case that G ⊂ Aut(B/k). Then
H1

alg
(G ,O×) = H1(G , B×) = 0 (Hilbert’s Theorem 90).

(2) The case that the action of G on X is trivial. Then H1(G , B×)
is the group of homomorphisms from G to B×. This is finite.

(3) General case. Let N be the kernel of the map G → GL(B).
Then there is an exact sequence

0 → H1(G/N , B×) → H1(G , B×) → H1(N , B×).

As H1(G/N , B×) and H1(N , B×) are finitely generated,
H1(G , B×) is also finitely generated.
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. . . . . .

Proof of the theorem (2) — group to group scheme

.

......

Let G and X be finite (G is a finite group scheme, and is not a finite
group in general). Let k ′ be a finite Galois extension of k such that
Ω := k ′ ⊗k G is a finite group (i.e., a disjoint union of Spec k ′). Let
Γ := Gal(k ′/k). Then there is an equivalence of categories

Mod(G , B) ∼= Mod(Θ, k ′ ⊗k B),

where Θ is the semidirect product Γ n Ω. Replacing G by Θ, the
problem is reduced to the case of finite groups.
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. . . . . .

Proof of the theorem (3) — Affine case

.

......

The case that G = Spec H and X = Spec B are both affine. Let H0

and B0 be the integral closures of k in H and B , respectively. Then
G0 := Spec H0 is an affine k-group scheme acting on X0 := Spec B0.
Then the map of complexes

0 // B×
0

//

��

(H0 ⊗ B0)
× //

��

(H0 ⊗ H0 ⊗ B0)
× //

��

· · ·

0 // B× // (H ⊗ B)× // (H ⊗ H ⊗ B)× // · · ·

is an isomorphism in the quotient category A := Mod(Z)/ mod(Z) by
the next lemma, and the problem is reduced to the finite case.
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. . . . . .

Rosenlicht’s lemma

.
Lemma 8 (Rosenlicht, H—)
..

......

Let k be a field, and X be a reduced k-scheme. Assume that there is
a k-scheme Z of finite type and a dominating k-morphism Z → X .
Then there is a short exact sequence of the form

1 → K× ι−→ Γ(X ,OX )× → Zr → 0,

where K is the integral closure of k in k[X ] = H0(X ,OX ), and ι is
the inclusion.

Mitsuyasu Hashimoto (Okayama University) Picard and Class Groups December 3, 2013 19 / 35



. . . . . .

Proof of the theorem (4) — the general case

.

......

Set H = k[G ], G1 = Spec H , B = k[X ], and X1 = Spec B . Then G1

is an affine k-group scheme acting on X1. The complex computing
H i

alg
(G ,O×

X ) and the one computing H i
alg

(G1,O×
X1

) are the same, and
the problem is reduced to the affine case.
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. . . . . .

Varieties with trivial unit groups

.
Lemma 9
..

......

Let k be a field, and G a quasi-compact quasi-separated k-group
scheme such that k[G ] is geometrically reduced over k . Let X be a
G -scheme. Assume that k̄ ⊗k X is integral, or X is quasi-compact
quasi-separated and k̄ ⊗k k[X ] is integral. If the unit group of
k̄ ⊗k k[X ] is k̄×, then H i

alg(G ,O×
X ) ∼= H i

alg(G , k×). In particular,
H1

alg(G ,O×
X ) ∼= X (G ) := {χ ∈ k[G ]× | χ(gg ′) = χ(g)χ(g ′)}.

.
Example 10
..

......

If a smooth k-group scheme G acts on the affine space X = An, then
H1

alg(G ,O×
X ) ∼= X (G ) ∼= Pic(G , Spec k) ∼= Pic(G , X ).
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. . . . . .

Connected groups
.
Proposition 11
..

......

Let G be a connected smooth k-group scheme of finite type, and X a
quasi-compact quasi-separated G -scheme such that k[X ] is reduced
and k is integrally closed in k[X ]. Then

Hn
alg(G ,O×

X ) =


(k[X ]G )× (n = 0)
X (G )/X (G , X ) (n = 1)
0 (n ≥ 2)

,

where

X (G , X ) := {χ ∈ X (G ) | ∃α ∈ k[X ]×

∀g ∈ G x ∈ X α(gx) = χ(g)α(x)}.
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. . . . . .

Some corollaries
.
Corollary 12 (Kamke, H—)
..

......

In the proposition, assume that G and X = Spec B are affine. If f is
a nonzerodivisor of B and Bf is a G -ideal of B , then f is a
semiinvariant. That is, there exists some χ ∈ X (G ) such that
f (gx) = χ(g)f (x) for x ∈ X and g ∈ G .

.
Corollary 13 (more or less well-known)
..

......

Under the assumption of the proposition,

ρ : Pic(G , X ) → Pic(X )G

is surjective.
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. . . . . .

Krull domain
Let A be an integral domain with the field of fractions K = Q(A).
.
Definition 14
..

......

We say that A is a Krull domain if there exists a set Λ of DVR’s such
that

...1 For each R ∈ Λ, R ⊂ K and Q(R) = K .

...2 A =
∩

R∈Λ R .
...3 For each a ∈ K×, there are only finitely many R ∈ Λ such that

a /∈ R×.

If A is a Krull domain, then Λ can be taken to be

{AP | P ∈ X 1(A)},

where X 1(A) is the set of height-one prime ideals of A.
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. . . . . .

Noetherian normal domains versus Krull domains
.
Remark 15
..

......

...1 A Noetherian normal domain is a Krull domain.

...2 A Krull domain is normal, but may not be Noetherian.

...3 (Fossum and others) Over Krull domains, we can imitate the
theory of the class groups of Noetherian normal domains.

...4 Let R be a domain, and K ⊂ Q(R) a subfield. If R is Krull,
then so is K ∩ R . Even if R = k[x1, . . . , xn] for some subfield k
of K ∩ R , K ∩ R may not be Noetherian (Nagata).

...5 If R is Krull and L is a finite extension field of Q(R), the integral
closure R ′ of R in L is again Krull. But even if R is Noetherian,
R ′ may not be so (an example of bad Noetherian rings, Nagata).

...6 If X is a normal variety over a field, then H0(X ,OX ) is Krull,
but may not be Noetherian.
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. . . . . .

The class group

A locally Krull scheme is a shceme which is locally the prime
spectrum of a Krull doain by definition.

Let Y be a quasi-compact locally Krull scheme. Let X 1(Y ) be the
set of integral closed subschemes of codimension one. Let Q(Y ) be
the total quotient ring of H0(U ,OY ), where U is any dense affine
open subscheme of Y (independent of the choice of U). For
F ∈ X 1(Y ), let vF be the normalized discrete valuation associated
with the DVR OY ,F .

Let Div(Y ) be the free abelian group with the basis X 1(Y ). For
f ∈ Q(Y )×, we define div f =

∑
F∈X 1(Y ) vF (f )[F ] ∈ Div(Y ). We

define Prin(Y ) := {div f | f ∈ Q(Y )×} ∪ {0} and
Cl′(Y ) := Div(Y )/ Prin(Y ). Cl′(Y ) is called the class group of Y .
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. . . . . .

Reflexive modules and sheaves

Let A be a Krull domain. An A-module M is said to be reflexive (or
divisorial), if M is a submodule of some finitely generated module,
and the canonical map M → M∗∗ is an isomorphism, where
(?)∗ = HomA(?, A).

Let Y be a locally Krull scheme. An OY -module M is said to be
reflexive if M is quasi-coherent, and H0(U ,M) is a reflexive
A-module for each affine open subset U = Spec A such that A is a
Krull domain. If, moreover, H0(U ,M) is of rank n for each U , then
we say that M is of rank n.
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. . . . . .

A second definition of the class group

Let Y be a locally Krull scheme. We denote the set of isomorphism
classes of rank-one reflexive sheaves over Y by Cl(Y ) and call it the
class group of Y (again!). Note that Cl(Y ) is an additive group by
the addition

[M] + [M′] = [(M⊗OY
M′)∗∗].

Almost by definition, Pic(Y ) is a subgroup by Cl(Y ). If Y is a
non-singular variety, then Pic(Y ) = Cl(Y ).

If Y is quasi-compact, then the map [D] 7→ [OY (D)] gives an
isomorphism Cl′(Y ) → Cl(Y ).
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. . . . . .

Equivariant class group
Let G be S-flat and X be locally Krull. We say that a
(G ,OX )-module M is reflexive if M is quasi-coherent (as a
(G ,OX )-module), and is reflexive as an OX -module. The set of
isomorphism classes of rank-one reflexive (G ,OX )-modules is denoted
by Cl(G , X ), and we call it the G -equivariant class group of X .
.
Theorem 16 (H—)
..

......

Let G and X be as above, and M and N be reflexive
(G ,OX )-modules. Then

...1 The (G ,OX )-modules HomOX
(M,N ) and (M⊗OX

N )∗∗ are
reflexive, where (?)∗ = HomOX

(?,OX ).
...2 Cl(G , X ) is an additive group with the sum

[M] + [N ] = [(M⊗OX
N )∗∗].
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. . . . . .

The α map and its kernel

There is an obvious map α : Cl(G , X ) → Cl(X ), fogetting the
G -action. We have a commutative diagram with exact rows

0 // Ker ρ

∼=
��

// Pic(G , X )
ρ //

� _

��

Pic(X )� _

��
0 // Ker α // Cl(G , X ) α // Cl(X )

.
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. . . . . .

Removing closed subsets of codimension two or

more

.
Lemma 17
..

......

Let G be a flat S-group scheme, and X be a locally Krull G -scheme.
Let U be its G -stable open subset. Let ϕ : U ↪→ X be the inclusion.
Assume that codimX (X \ U) ≥ 2. Then
ϕ∗ : Refn(G , X ) → Refn(G , U) is an equivalence, and
ϕ∗ : Refn(G , U) → Refn(G , X ) is its quasi-inverse. In particular,
ϕ∗ : Cl(G , X ) → Cl(G , U) defined by ϕ∗[M] = [ϕ∗M] is an
isomorphism whose inverse is given by N 7→ [ϕ∗N ].
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. . . . . .

Expressing the class group via the Picard groups

.
Proposition 18
..

......

Let Y be a quasi-compact locally Krull scheme. Then
Cl(Y ) ∼= lim−→Pic(U), where the inductive limit is taken over all open
subsets U such that codimY (Y \ U) ≥ 2.
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. . . . . .

Invariant subring

.
Lemma 19
..

......

Let G be a flat S-group scheme. Let X be a quasi-compact
quasi-separated locally Krull G -scheme, and let ϕ : X → Y be a
G -invariant morphism such that OY → (ϕ∗OX )G is an isomorphism.
Then Y is locally Krull, and the number of connected components of
Y is finite. The class group Cl(Y ) of Y is a subquotient of Cl(G , X ).
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. . . . . .

Finite generation of the class group of an invariant

subring
.
Theorem 20 (H—)
..

......

Let k be a field, G a smooth k-group scheme of finite type, and X a
quasi-compact quasi-separated locally Krull G -scheme. Assume that
there is a k-scheme Z of finite type and a dominating k-morphism
Z → X . Let ϕ : X → Y be a G -invariant morphism such that
OY → (ϕ∗OX )G is an isomorphism. If Cl(X ) is finitely generated,
then Cl(G , X ) and Cl(Y ) are also finitely generated.

Even if X is a normal k-variety, Y may not be locally Noetherian.

Similar results for connected groups are proved by Magid and
Waterhouse.
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. . . . . .

Thank you

.

......

This slide will soon be available at
http://www.math.okayama-u.ac.jp/̃ hashimoto/
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