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. . . . . .

The purpose of the talk

.

......

Let G be an algebraic group acting on X = Spec B . A principal
G -bundle is a very good quotient, but the map
X = Spec B → Spec BG = Y is rarely a principal fiber bundle.
However, if we remove closed subsets of codimension two or more
from both X and Y , the remaining part is often a principal G -bundle.
Thus we can compare the reflexive sheaves, class gropus, and the
canonical modules of X and Y in this case.
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. . . . . .

Modules over Krull rings

.

......

Let R be a Krull domain. An R module M is said to be torsionless if
there exist some n ≥ 0 and some injection M ↪→ Rn. M is torsionless
if and only if dimQ(R) M ⊗R Q(R) < ∞ and M is a lattice in
M ⊗R Q(R), where Q(R) is the field of fractions of Q(R). If M is
torsionless and the canonical map M → M∗∗ is an isomorphism, then
we say that M is reflexive (or divisorial).
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. . . . . .

Locally Krull schemes

.

......

A scheme is said to be locally Krull if it has an open covering
consisting of the prime spectra of Krull domains. Note that a locally
Krull scheme is a (possibly infinite) disjoint union of integral locally
Krull closed open subschemes.

.

......

Let Z be a locally Krull scheme, and M a quasi-coherent sheaf over
Z . We say that M is torsionless (resp. reflexive) if for any z ∈ Z ,
there exists some affine open neighborhood U = Spec R of z such
that R is a Krull domain and Γ(U ,M) is torsionless (resp. reflexive).
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. . . . . .

Fundamental settings

.

......

Throughout the talk, let S be a scheme, and G a flat, quasi-compact
quasi-separated S-group scheme.
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. . . . . .

Equivariant class group (1)

.

......

Let Z be a locally Krull G -scheme. Then we define Cl(G , Z ) (resp.
Pic(G , Z )) to be the set of isomorphism classes of (G ,OZ )-modules
which are rank-one reflexive (invertible sheaves) as OZ -modules.
Cl(G , Z ) and Pic(G , Z ) are called the equivariant class group (resp.
Picard group) of Z .
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. . . . . .

Equivariant class group (2)

.

......

Pic(G , Z ) is an additive group by the sum

[L] + [L′] = [L ⊗ L′].

Cl(G , Z ) is an additive group by the sum

[M] + [N ] = [(M⊗N )∗∗].
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. . . . . .

Forgetful map

.

......

There is an obvious map

α : Cl(G , Z ) → Cl(Z ),

forgetting the action of G .
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. . . . . .

The kernel of α (1)

.

......

Let
X (G ) := {χ ∈ Γ(G ,OG )× | χ(gg ′) = χ(g)χ(g ′)}

be the character group of G .

.
Lemma 1
..

......

If Γ(G × Z ,OG×Z )× = pr∗1 Γ(G ,OG )×, then Ker α ∼= X (G ). In
particular, if S = Spec R , G = Spec H , and Z = Spec B are all affine,
and if B = R[x1, . . . , xn] is a polynomial ring, then Ker α ∼= X (G ).
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. . . . . .

The kernel of α (2)

.
Lemma 1
..

......

Let S = Spec k with k a field. Let G be a smooth connected
algebraic k-group scheme. Let Z be a quasi-compact quasi-separated
locally Krull G -scheme such that k is algebraically closed in
Γ(Z ,OZ ). Then the kernel of α : Cl(G , Z ) → Cl(Z ) is isomorphic to
X (G )/X (G , Z ), where

X (G , Z ) = {χ ∈ X (G ) | ∃φ ∈ Γ(Z ,OZ )× χ(g) = φ(gz)/φ(z)}.
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. . . . . .

Finite generation

.
Lemma 2
..

......

Let S = Spec k , and G an affine k-group scheme of finite type.
Assume one of the following:

...1 Γ(G × Z ,OG×Z )× = pr∗1 Γ(G ,OG )×;

...2 G is connected smooth, Z is quasi-compact quasi-separated, and
k is integrally closed in Γ(Z ,OZ ).

If Cl(Z ) is a finitely generated abelian group, then Cl(G , Z ) is so.
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. . . . . .

Affine quotient

.
Lemma 3
..

......

Let S = Spec R be affine, and G = Spec Γ a flat affine R-group
scheme. Let ϕ : X → Y be a G -invariant morphism such that X is
locally Krull and ϕ is affine. Assume that OY → (ϕ∗OX )G is an
isomorphism. Then Cl(Y ) is a subquotient of Cl(G , X ).
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. . . . . .

Waterhouse type theorem
.
Theorem 4
..

......

Let S = Spec R , G = Spec Γ, and ϕ : X → Y be as in the lemma
above. Assume one of the following.

...1 Γ(G × X ,OG×X )× = pr∗1 Γ(G ,OG )× (e.g., X = An
R);

...2 G is connected and smooth, X is quasi-compact
quasi-separated, and k is integrally closed in Γ(X ,OX ).

Then Cl(Y ) is a finitely generated abelian group.

.
Remark 5
..

......

Case 2 above is proved by Waterhouse under the condition that
X = Spec B is affine, and k̄ ⊗k B does not have any nontrivial
idempotent or nonzero nilpotent element, where k̄ is the algebraic
closure of k .
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. . . . . .

Principal fiber bundle
.
......Let N be an S-flat closed normal subgroup scheme of G .

.
Definition 6
..

......

We say that π : X → Y is a G -equivariant principal N-bundle if
...1 π is a G -morphism. That is, G acts on X and Y , and

π(gx) = gπ(x).
...2 N acts trivially on Y .
...3 π is fpqc (i.e., π is faithfully flat, and for any quasi-compact

open subset V of Y , there exists some quasi-compact open
subset U of X such that π(U) = V ).

...4 Φ : N × X → X ×Y X (Φ(g , x) = (gx , x)) is an isomorphism.
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. . . . . .

A remark

.
Remark 7
..

......
A principal N-bundle is locally trivial in the fpqc topology, and the
converse is also true.
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. . . . . .

We set H = G/N

.

......

Let q : G → H be a homomorphism of S-group scheme, and assume
that q is a G -equivariant principal N-bundle.

.
Remark 8
..

......

We have N = Ker q.

Roughly speaking, H = G/N .
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. . . . . .

Important properties of principal bundles

.
Lemma 9
..

......

Let π : X → Y be a G -equivariant principal N-bundle. Then
...1 π is quasi-separated.
...2 If G is of finite presentation (resp. separated, affine, finite), then

so is π.
...3 (Grothendieck) π∗ : Qch(H , Y ) → Qch(G , X ) is an equivalence,

and (π∗?)
N is its quasi-inverse.
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. . . . . .

Affine quotients are rarely prinicipal fiber bundles

.

......

So principal fiber bundles are very good quotients. However, If
X = Spec B is a spectrum of a G -algebra and Y = Spec BN , the
canonical map π : X → Y is rarely a principal N-bundle.
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. . . . . .

Rational almost principal fiber bundles
.
Definition 10
..

......

We say that a diagram of S-schemes

X V?
_ioo ρ // U

� � j // Y

is a G -equivariant rational almost principal N-bundle if
...1 G acts on X and Y , and N acts trvially on Y .
...2 V is a G -stable open subset of X , and codimX (X \ V ) ≥ 2.
...3 U is an H-stable open subset of Y , and codimY (Y \ U) ≥ 2.
...4 ρ : V → U is a G -equivariant principal N-bundle.
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. . . . . .

Almost principal fiber bundles
.
Definition 11
..

......

We say that π : X → Y is a G -equivariant almost principal N-bundle
if

...1 π : X → Y is a G -morphism.

...2 There exist some open subsets V of X and U of Y such that

X V?
_ioo ρ // U

� � j // Y

is a G -equivariant rational almost principal N-bundle, where
ρ = π|V .
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. . . . . .

Notation

.

......From now on, we assume that G is of finite presentation.

.

......

Let Z be a locally Krull G -scheme. We denote the category of
quasi-coherent (G ,OZ )-modules which are reflexive as OZ -modules
by Ref(G , Z ).
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. . . . . .

Main theorem (1)
.
Theorem 12
..

......

Let

X V?
_ioo ρ // U

� � j // Y

be a G -equivariant rational almost principal N-bundle such that X
and Y are locally Krull. Then

...1 N 7→ i∗ρ
∗j∗N : Ref(H , Y ) → Ref(G , X ) is an equivalence, and

M 7→ (j∗ρ∗i
∗M)N is its quasi-inverse.

...2 The equivalence above induces an isomorphism
Cl(H , Y ) ∼= Cl(G , X ).
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. . . . . .

Settings for discussing canonical modules

.

......When we discuss canonical modules, we assume the following.

.
Assumption (#)
..

......

S is Noetherian, and has a fixed dualizing complex IS . X and Y are
connected normal S-schemes separated of finite type over S .
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. . . . . .

Main theorem (2)
.
Theorem 13
..

......

Assume that Assumption (#) is satisfied.
...1 Let N be smooth of relative dimension d . Set Θ =

∧d Lie N .
Then there are a (G ,OX )-isomorphism
ωX

∼= i∗ρ
∗j∗ωY ⊗OX

(f ∗Θ)∗ and an (H ,OY )-isomorphism
ωY

∼= (j∗ρ∗i
∗(ωX ⊗OX

f ∗(Θ)))N , where f : X → S is the
structure map.

...2 Let S = Spec k , and N be a finite linearly reductive group
scheme. Then there are a (G ,OX )-isomorphism ωX

∼= i∗ρ
∗j∗ωY

and an (H ,OY )-isomorphism ωY
∼= (j∗ρ∗i

∗ωX )N .
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. . . . . .

A remark

.
Remark 14
..

......

If S = Spec k with k a field of characteristic zero, then Theorem 13
is due to Knop.
The idea of the theorem is based on his result.
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. . . . . .

A corollary

.
Corollary 15
..

......

If Assumption (#) is satisfied and Θ ∼= OS , then the following are
equivalent.

...1 ωY
∼= OY in Ref(H , Y );

...2 ωX
∼= OX in Ref(G , X ).
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. . . . . .

When is Θ trivial?

.
Remark 16
..

......

If S = Spec k and G an affine algebraic group over k , then the
following hold.

...1 If G is connected reductive, then Θ ∼= k .

...2 If G is finite, then Θ ∼= k .

...3 (Knop) In general, Θ may not be trivial.
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. . . . . .

The case of almost principal fiber bundles (1)

.
Corollary 17
..

......

Let π : X → Y be a G -equivariant almost principal N-bundle such
that X and Y are locally Krull.

...1 N 7→ (π∗N )∗∗ : Ref(H , Y ) → Ref(G , X ) is an equivalence, and
M 7→ (π∗M)N is its quasi-inverse.

...2 The equivalence induces Cl(H , Y ) ∼= Cl(G , X ).
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. . . . . .

The case of almost principal fiber bundles (2)
.
Corollary 18
..

......

Let π : X → Y be a G -equivariant almost principal N-bundle.
Assume that (#) is satisfied. Then

...1 if G is smooth of relative dimension d , there are a
(G ,OX )-isomorphism ωX

∼= (π∗ωY )∗∗ ⊗OX
(f ∗Θ)∗ and an

(H ,OY )-isomorphism ωY
∼= (π∗(ωX ⊗OX

f ∗(Θ)))N .
...2 If S = Spec k and N is finite linearly reductive, then there are a

(G ,OX )-isomorphism ωX
∼= (π∗ωY )∗∗ and an

(H ,OY )-isomorphism ωY
∼= (π∗ωX )N .
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. . . . . .

Example of finite groups (1)
.

......

Let k be an algebraically closed field, B = k[x1, . . . , xn], V =
⊕

i kxi ,
and G ⊂ GL(V ) a finite subgroup. Set N = G and H = {e}. Let
A = BG , and π : X = Spec B → Spec A = Y be the canonical map.

.
Definition 19
..

......

We say that g ∈ GL(V ) is a pseudo-reflection if
codimV {v ∈ V | gv = v} = 1.

.
Lemma 20
..

......

π : X → Y is an almost principal G -bundle if and only if G does not
have a pseudo-reflection.
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. . . . . .

Example of finite groups (2)

.
Lemma 21
..

......

Assume that G does not have a pseudo-reflection. Then
...1 Cl(Y ) ∼= Cl(G , X ) ∼= X (G ).
...2 ωB

∼= (B ⊗A ωA)∗∗ and ωA
∼= ωG

B .
...3 (?)G : Ref(G , B) → Ref(A) is an equivalence.
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. . . . . .

Example of finite groups (3)

.
Corollary 22 (Watanabe–Braun)
..

......

The following are equivalent.
...1 ωB

∼= B ;
...2 G ⊂ SL(V );
...3 ωA

∼= A;
...4 A is quasi-Gorenstein (i.e., ωA is projective).

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 32 / 48



. . . . . .

Example of finite groups (3)

.
Corollary 22 (Watanabe–Braun)
..

......

The following are equivalent.
...1 ωB

∼= B ;
...2 G ⊂ SL(V );
...3 ωA

∼= A;
...4 A is quasi-Gorenstein (i.e., ωA is projective).

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 32 / 48



. . . . . .

Example of finite groups (3)

.
Corollary 22 (Watanabe–Braun)
..

......

The following are equivalent.
...1 ωB

∼= B ;
...2 G ⊂ SL(V );
...3 ωA

∼= A;
...4 A is quasi-Gorenstein (i.e., ωA is projective).

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 32 / 48



. . . . . .

Example of finite groups (3)

.
Corollary 22 (Watanabe–Braun)
..

......

The following are equivalent.
...1 ωB

∼= B ;
...2 G ⊂ SL(V );
...3 ωA

∼= A;
...4 A is quasi-Gorenstein (i.e., ωA is projective).

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 32 / 48



. . . . . .

Example of finite groups (3)

.
Corollary 22 (Watanabe–Braun)
..

......

The following are equivalent.
...1 ωB

∼= B ;
...2 G ⊂ SL(V );
...3 ωA

∼= A;
...4 A is quasi-Gorenstein (i.e., ωA is projective).

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 32 / 48



. . . . . .

Example of finite groups (4)
.

......

If n = dim B = 2, then the equivalence (?)G : Ref(G , B) → Ref(A)
has the following interpretation.

Ref(G , B) = Proj(G , B) = {M ∈ Mod(G , B) | M is a finite

projective B-module}

and Ref(A) = MCM(A). If, moreover, #G 6= 0 in k , then
indecomposable objects of Proj(G , B) and irreducible representations
of G are in one-to-one correspondence, and hence A is of finite
representation type (well-known).
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. . . . . .

Example of multi-section ring (1)
.

......

Let Y be a separated connected Noetherian normal scheme, and
D1, . . . , Dr ∈ Div(Y ). Assume that

∑r
i=1 ZDi contains an ample

Cartier divisor. Set U = Yreg. Let

V := Spec
⊕
λ∈Zr

OU(λ1D
′
1 + · · · + λrD

′
r )

ρ−→ U

be the canonical map, where D ′
i := Di |U . Let

R :=
⊕
λ∈Zr

Γ(Y ,OY (λ1D1 + · · · + λrDr ))

and set X = Spec R . Set N = G = Gr
m.
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. . . . . .

Example of multi-section ring (2)
.
Lemma 23
..

......

Under the notation above,
...1 R is a Krull domain.
...2 The diagram

X V?
_ioo ρ // U

� � j // Y

is a rational almost principal G -bundle.
...3 The functor β : Ref(Y ) → Ref(G , R) given by
M 7→

⊕
λ∈Zr Γ(Y , (M⊗OY

OY (λ1D1 + · · · + λrDr ))
∗∗) is an

equivalence, and gives an isomorphism β′ : Cl(Y ) ∼= Cl(G , R).
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. . . . . .

Example of multi-section ring (3)
.
Theorem 24
..

......

...1 (Elizondo–Kurano–Watanabe) The sequence

Zr γ−→ Cl(Y )
αβ′
−−→ Cl(R) → 0

is exact, where γ(λ) =
∑r

i=1 λiDi and
αβ′(D) = [

⊕
λ Γ(Y ,OY (D +

∑r
i=1 λiDi))].

...2 (Kurano–H) Assume (#). Then

ωR =
⊕
λ∈Zr

Γ(Y ,OY (KY +
r∑

i=1

λiDi)).
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. . . . . .

Example of multi-section ring (4)
.
Example 25 (well-known)
..

......

Consider the case that Y = P1, r = 1, and D1 = {0}. Then

vb(P1) = Ref(P1) → Ref(Gm, k[x , y ])

is an equivalence. Any finitely generated graded free k[x , y ]-module
is a direct sum of rank-one free modules k[x , y ](m) (m ∈ Z). Thus
any vector bundle of P1 is a direct sum of OP1(m) (m ∈ Z).
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. . . . . .

Example of determinantal ring (1)
.

......

Let S = Spec k , m, n, t ∈ Z, and m, n ≥ t ≥ 2. Set V = kn,
W = km, and E = k t−1. Define X = Hom(E , W ) × Hom(V , E ) and
Y = {ϕ ∈ Hom(V , W ) | rank ϕ < t}. Then π : X → Y is defined by
π(f , g) = f ◦ g .

.
Lemma 26
..

......

π : X → Y is a GL(V ) × GL(E ) × GL(W )-equivariant almost
principal GL(E )-bundle.
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. . . . . .

Example of determinantal ring (2)

.
Corollary 27
..

......

...1 (Bruns) Cl(Y ) ∼= X (GL(E )) ∼= Z.

...2 (Svanes) The following are equivalent.
...1 m = n.
...2 ωX

∼= OX as (GL(E ),OX )-modules.
...3 ωY

∼= OY as OY -modules.
...4 Y is Gorenstein.
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. . . . . .

Example of Veronese subring (1)
.

......

Set S = Spec k , G = Gm = Spec k[t, t−1],
N = µm = Spec k[t]/(tm − 1) ↪→ G (m > 1). H = Spec k[tm, t−m].
A G -algebra is a Z-graded k-alebra. For a G -algebra B , a
(G , B)-module is nothing but a graded B-module. For a
(G , B)-module M , MN is nothing but the Veronese submodule
M (mZ) =

⊕
i∈mZ Mi .

.

......

Let B be a Noetherian normal Z-graded algebra such that B0 = k
and B = k[B1]. Assume that B 6= k and B 6= k[x ]. Or equivalently,
dim B ≥ 2. BN is the Veronese subring B (mZ) =

⊕
i∈mZ Bi .
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. . . . . .

Example of Veronese subring (2)
.
Lemma 28
..

......

Under the assumptions above,
...1 π : X = Spec B → Spec BN = Y is a G -equivariant almost

principal N-bundle.
...2 ωBN

∼= ωN
B and ωB

∼= (B ⊗BN ωBN )∗∗.
...3 ωB

∼= B(rm) ⇔ ωBN
∼= BN(rm). In particular, BN is

quasi-Gorenstein if and only if B is quasi-Gorenstein and a(B) is
divisible by m. A similar result (B is Cohen–Macaulay but may
not be normal) is by Goto–Watanabe.

...4 Cl(Y ) ∼= Cl(N , X ). If B = k[x1, . . . , xn], then
Cl(Y ) ∼= X (N) ∼= Z/mZ.
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. . . . . .

Example of Veronese subring (3)

.

......

Consider the case that G = N = µm, H = {e}, and B = k[[x , y ]].
Then

MCM(BN) = Ref(BN) ∼= Ref(N , B).

The only indecomposables of Ref(N , B) are
B , B(−1), . . . , B(−m + 1). Hence BN is of finite representation type.
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. . . . . .

Frobenius pushforward (1)

.

......

Let k be an algebraically closed field of characteristic p > 0, G an
affine algebraic group over k , and X a normal G -variety of finite
type. Let

X V?
_ioo ρ // U

� � j // Y

be a rational almost principal G -bundle.

.

......

When Y is affine, the decomposition of F e
∗OY is important to study

the ring theoretic properties and invariants of Y , such as FFRT
property, F -signature, dual F -signature, and so on.
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. . . . . .

Frobenius pushforward (2)

.
Theorem 29 (Sannai–H)
..

......

Let e > 0. Under the equivalence Ref(Y ) ∼= Ref(G , X ), the
OY -module F e

∗OY corresponds to (F e
∗OX )Ge , where Ge is the kernel

of the Frobenius map F e : eG → G .
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. . . . . .

Frobenius pushforward (3)
.
Example 30
..

......

Let V = kn, G a finite subgroup of GL(V ) without pseudo-reflection,
and assume that (|G |, p) = 1. Set B = Sym V and A = BG . Let
V0 = k , V1, . . . , Vr be the set of irreducible representations of G , and
set Mi = (B ⊗k Vi)

G . Then Ge is trivial, and eA corresponds to the
(G , B)-module eB . Each Mi is an indecomposable maximal
Cohen–Macaulay A-module, and the following are equivalent.

...1 eA ∼= M
c0,e

0 ⊕ · · · ⊕ M
cr,e
r as A-modules.

...2 eB ∼= (B ⊗ V0)
c0,e ⊕ · · · ⊕ (B ⊗ Vr )

cr,e as (G , B)-modules.
...3 e(B/m[pe ]) ∼= V

c0,e

0 ⊕ · · · ⊕ V
cr,e
r as G -modules,

where m =
⊕

i>0 Bi is the irrelevant ideal.

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 45 / 48



. . . . . .

Frobenius pushforward (3)
.
Example 30
..

......

Let V = kn, G a finite subgroup of GL(V ) without pseudo-reflection,
and assume that (|G |, p) = 1. Set B = Sym V and A = BG . Let
V0 = k , V1, . . . , Vr be the set of irreducible representations of G , and
set Mi = (B ⊗k Vi)

G . Then Ge is trivial, and eA corresponds to the
(G , B)-module eB . Each Mi is an indecomposable maximal
Cohen–Macaulay A-module, and the following are equivalent.

...1 eA ∼= M
c0,e

0 ⊕ · · · ⊕ M
cr,e
r as A-modules.

...2 eB ∼= (B ⊗ V0)
c0,e ⊕ · · · ⊕ (B ⊗ Vr )

cr,e as (G , B)-modules.
...3 e(B/m[pe ]) ∼= V

c0,e

0 ⊕ · · · ⊕ V
cr,e
r as G -modules,

where m =
⊕

i>0 Bi is the irrelevant ideal.

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 45 / 48



. . . . . .

Frobenius pushforward (3)
.
Example 30
..

......

Let V = kn, G a finite subgroup of GL(V ) without pseudo-reflection,
and assume that (|G |, p) = 1. Set B = Sym V and A = BG . Let
V0 = k , V1, . . . , Vr be the set of irreducible representations of G , and
set Mi = (B ⊗k Vi)

G . Then Ge is trivial, and eA corresponds to the
(G , B)-module eB . Each Mi is an indecomposable maximal
Cohen–Macaulay A-module, and the following are equivalent.

...1 eA ∼= M
c0,e

0 ⊕ · · · ⊕ M
cr,e
r as A-modules.

...2 eB ∼= (B ⊗ V0)
c0,e ⊕ · · · ⊕ (B ⊗ Vr )

cr,e as (G , B)-modules.
...3 e(B/m[pe ]) ∼= V

c0,e

0 ⊕ · · · ⊕ V
cr,e
r as G -modules,

where m =
⊕

i>0 Bi is the irrelevant ideal.

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 45 / 48



. . . . . .

Frobenius pushforward (3)
.
Example 30
..

......

Let V = kn, G a finite subgroup of GL(V ) without pseudo-reflection,
and assume that (|G |, p) = 1. Set B = Sym V and A = BG . Let
V0 = k , V1, . . . , Vr be the set of irreducible representations of G , and
set Mi = (B ⊗k Vi)

G . Then Ge is trivial, and eA corresponds to the
(G , B)-module eB . Each Mi is an indecomposable maximal
Cohen–Macaulay A-module, and the following are equivalent.

...1 eA ∼= M
c0,e

0 ⊕ · · · ⊕ M
cr,e
r as A-modules.

...2 eB ∼= (B ⊗ V0)
c0,e ⊕ · · · ⊕ (B ⊗ Vr )

cr,e as (G , B)-modules.
...3 e(B/m[pe ]) ∼= V

c0,e

0 ⊕ · · · ⊕ V
cr,e
r as G -modules,

where m =
⊕

i>0 Bi is the irrelevant ideal.

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 45 / 48



. . . . . .

Frobenius pushforward (3)
.
Example 30
..

......

Let V = kn, G a finite subgroup of GL(V ) without pseudo-reflection,
and assume that (|G |, p) = 1. Set B = Sym V and A = BG . Let
V0 = k , V1, . . . , Vr be the set of irreducible representations of G , and
set Mi = (B ⊗k Vi)

G . Then Ge is trivial, and eA corresponds to the
(G , B)-module eB . Each Mi is an indecomposable maximal
Cohen–Macaulay A-module, and the following are equivalent.

...1 eA ∼= M
c0,e

0 ⊕ · · · ⊕ M
cr,e
r as A-modules.

...2 eB ∼= (B ⊗ V0)
c0,e ⊕ · · · ⊕ (B ⊗ Vr )

cr,e as (G , B)-modules.
...3 e(B/m[pe ]) ∼= V

c0,e

0 ⊕ · · · ⊕ V
cr,e
r as G -modules,

where m =
⊕

i>0 Bi is the irrelevant ideal.

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 45 / 48



. . . . . .

Frobenius pushforward (3)
.
Example 30
..

......

Let V = kn, G a finite subgroup of GL(V ) without pseudo-reflection,
and assume that (|G |, p) = 1. Set B = Sym V and A = BG . Let
V0 = k , V1, . . . , Vr be the set of irreducible representations of G , and
set Mi = (B ⊗k Vi)

G . Then Ge is trivial, and eA corresponds to the
(G , B)-module eB . Each Mi is an indecomposable maximal
Cohen–Macaulay A-module, and the following are equivalent.

...1 eA ∼= M
c0,e

0 ⊕ · · · ⊕ M
cr,e
r as A-modules.

...2 eB ∼= (B ⊗ V0)
c0,e ⊕ · · · ⊕ (B ⊗ Vr )

cr,e as (G , B)-modules.
...3 e(B/m[pe ]) ∼= V

c0,e

0 ⊕ · · · ⊕ V
cr,e
r as G -modules,

where m =
⊕

i>0 Bi is the irrelevant ideal.

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles November 23, 2012 45 / 48



. . . . . .

Frobenius pushforward (4)

.

......

Let Y be a smooth projective toric variety associated with a fan ∆.
Then letting X := Spec Cox(Y ), there is a rational almost principal
G -bundle of the form

X = A#∆(1) V?
_ioo ρ // Y

1Y // Y ,

where G = Spec k Cl(Y ).
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. . . . . .

Frobenius pushforward (5)

.
Example 31 (Thomsen)
..

......

Let Y be a toric variety. Then there exists some finitely many rank
one reflexive sheaves M1, . . . ,Mr such that for any e > 0, there
exists some decomposition

F e
∗OY

∼= M⊕c1,e

1 ⊕ · · · ⊕M⊕cr,e
r .
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. . . . . .

Thank you

.

......

This slide will soon be available at
http://www.math.nagoya-u.ac.jp/̃ hasimoto/
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