Almost principal fiber bundles

Mitsuyasu Hashimoto

Nagoya University

November 23, 2012

3

- ∢ ≣ →

___ ▶

The purpose of the talk

Let G be an algebraic group acting on $X = \operatorname{Spec} B$. A principal G-bundle is a very good quotient, but the map $X = \operatorname{Spec} B \to \operatorname{Spec} B^G = Y$ is rarely a principal fiber bundle. However, if we remove closed subsets of codimension two or more from both X and Y, the remaining part is often a principal G-bundle. Thus we can compare the reflexive sheaves, class gropus, and the canonical modules of X and Y in this case.

The purpose of the talk

Let *G* be an algebraic group acting on $X = \operatorname{Spec} B$. A principal *G*-bundle is a very good quotient, but the map $X = \operatorname{Spec} B \to \operatorname{Spec} B^G = Y$ is rarely a principal fiber bundle. However, if we remove closed subsets of codimension two or more from both X and Y, the remaining part is often a principal *G*-bundle. Thus we can compare the reflexive sheaves, class gropus, and the canonical modules of X and Y in this case.

Modules over Krull rings

Let *R* be a Krull domain. An *R* module *M* is said to be torsionless if there exist some $n \ge 0$ and some injection $M \hookrightarrow R^n$. *M* is torsionless if and only if $\dim_{Q(R)} M \otimes_R Q(R) < \infty$ and *M* is a lattice in $M \otimes_R Q(R)$, where Q(R) is the field of fractions of Q(R). If *M* is torsionless and the canonical map $M \to M^{**}$ is an isomorphism, then we say that *M* is reflexive (or divisorial).

Modules over Krull rings

Let *R* be a Krull domain. An *R* module *M* is said to be torsionless if there exist some $n \ge 0$ and some injection $M \hookrightarrow R^n$. *M* is torsionless if and only if $\dim_{Q(R)} M \otimes_R Q(R) < \infty$ and *M* is a lattice in $M \otimes_R Q(R)$, where Q(R) is the field of fractions of Q(R). If *M* is torsionless and the canonical map $M \to M^{**}$ is an isomorphism, then we say that *M* is reflexive (or divisorial).

通 ト イヨ ト イヨト

Locally Krull schemes

A scheme is said to be locally Krull if it has an open covering consisting of the prime spectra of Krull domains. Note that a locally Krull scheme is a (possibly infinite) disjoint union of integral locally Krull closed open subschemes.

Let Z be a locally Krull scheme, and \mathcal{M} a quasi-coherent sheaf over Z. We say that \mathcal{M} is torsionless (resp. reflexive) if for any $z \in Z$, there exists some affine open neighborhood $U = \operatorname{Spec} R$ of z such that R is a Krull domain and $\Gamma(U, \mathcal{M})$ is torsionless (resp. reflexive).

・ 同 ト ・ ヨ ト ・ ヨ ト

Locally Krull schemes

A scheme is said to be locally Krull if it has an open covering consisting of the prime spectra of Krull domains. Note that a locally Krull scheme is a (possibly infinite) disjoint union of integral locally Krull closed open subschemes.

Let Z be a locally Krull scheme, and \mathcal{M} a quasi-coherent sheaf over Z. We say that \mathcal{M} is torsionless (resp. reflexive) if for any $z \in Z$, there exists some affine open neighborhood $U = \operatorname{Spec} R$ of z such that R is a Krull domain and $\Gamma(U, \mathcal{M})$ is torsionless (resp. reflexive).

くほと くほと くほと

Fundamental settings

Throughout the talk, let S be a scheme, and G a flat, quasi-compact quasi-separated S-group scheme.

Equivariant class group (1)

Let Z be a locally Krull G-scheme. Then we define Cl(G, Z) (resp. Pic(G, Z)) to be the set of isomorphism classes of (G, \mathcal{O}_Z) -modules which are rank-one reflexive (invertible sheaves) as \mathcal{O}_Z -modules. Cl(G, Z) and Pic(G, Z) are called the equivariant class group (resp. Picard group) of Z.

Equivariant class group (2)

 $\mathsf{Pic}(G, Z)$ is an additive group by the sum $[\mathcal{L}] + [\mathcal{L}'] = [\mathcal{L} \otimes \mathcal{L}'].$ $\mathsf{Cl}(G, Z)$ is an additive group by the sum $[\mathcal{M}] + [\mathcal{N}] = [(\mathcal{M} \otimes \mathcal{N})^{**}].$

- 3

くほと くほと くほと

Forgetful map

There is an obvious map

$$\alpha: \mathsf{Cl}(G, Z) \to \mathsf{Cl}(Z),$$

forgetting the action of G.

3

- ∢ ≣ →

A 🕨

The kernel of α (1)

Let

$$\mathcal{X}(G) := \{\chi \in \Gamma(G, \mathcal{O}_G)^{\times} \mid \chi(gg') = \chi(g)\chi(g')\}$$

be the character group of G.

Lemma 1

If $\Gamma(G \times Z, \mathcal{O}_{G \times Z})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times}$, then Ker $\alpha \cong \mathcal{X}(G)$. In particular, if $S = \operatorname{Spec} R$, $G = \operatorname{Spec} H$, and $Z = \operatorname{Spec} B$ are all affine, and if $B = R[x_{1}, \ldots, x_{n}]$ is a polynomial ring, then Ker $\alpha \cong \mathcal{X}(G)$.

イロト 不得下 イヨト イヨト 二日

The kernel of α (1)

Let

$$\mathcal{X}(G) := \{\chi \in \Gamma(G, \mathcal{O}_G)^{\times} \mid \chi(gg') = \chi(g)\chi(g')\}$$

be the character group of G.

Lemma 1 If $\Gamma(G \times Z, \mathcal{O}_{G \times Z})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times}$, then Ker $\alpha \cong \mathcal{X}(G)$. In particular, if $S = \operatorname{Spec} R$, $G = \operatorname{Spec} H$, and $Z = \operatorname{Spec} B$ are all affine, and if $B = R[x_{1}, \ldots, x_{n}]$ is a polynomial ring, then Ker $\alpha \cong \mathcal{X}(G)$.

イロト 不得下 イヨト イヨト 二日

The kernel of α (2)

Lemma 1

Let $S = \operatorname{Spec} k$ with k a field. Let G be a smooth connected algebraic k-group scheme. Let Z be a quasi-compact quasi-separated locally Krull G-scheme such that k is algebraically closed in $\Gamma(Z, \mathcal{O}_Z)$. Then the kernel of $\alpha : \operatorname{Cl}(G, Z) \to \operatorname{Cl}(Z)$ is isomorphic to $\mathcal{X}(G)/\mathcal{X}(G, Z)$, where

 $\mathcal{X}(G,Z) = \{\chi \in \mathcal{X}(G) \mid \exists \phi \in \Gamma(Z,\mathcal{O}_Z)^{\times} \ \chi(g) = \phi(gz)/\phi(z)\}.$

E + 4 E +

Lemma 2

Let $S = \operatorname{Spec} k$, and G an affine k-group scheme of finite type. Assume one of the following:

• $\Gamma(G \times Z, \mathcal{O}_{G \times Z})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times};$

G is connected smooth, Z is quasi-compact quasi-separated, and k is integrally closed in Γ(Z, O_Z).

If CI(Z) is a finitely generated abelian group, then CI(G, Z) is so.

A B M A B M

Lemma 2

Let $S = \operatorname{Spec} k$, and G an affine k-group scheme of finite type. Assume one of the following:

 $\ \, \bullet \ \, \Gamma(G \times Z, \mathcal{O}_{G \times Z})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times};$

G is connected smooth, Z is quasi-compact quasi-separated, and k is integrally closed in Γ(Z, O_Z).

If Cl(Z) is a finitely generated abelian group, then Cl(G, Z) is so.

A B M A B M

Lemma 2

Let $S = \operatorname{Spec} k$, and G an affine k-group scheme of finite type. Assume one of the following:

- $\Gamma(G \times Z, \mathcal{O}_{G \times Z})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times};$
- G is connected smooth, Z is quasi-compact quasi-separated, and k is integrally closed in Γ(Z, O_Z).

If $\mathsf{Cl}(Z)$ is a finitely generated abelian group, then $\mathsf{Cl}(G,Z)$ is so.

Lemma 2

Let $S = \operatorname{Spec} k$, and G an affine k-group scheme of finite type. Assume one of the following:

- $\Gamma(G \times Z, \mathcal{O}_{G \times Z})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times};$
- G is connected smooth, Z is quasi-compact quasi-separated, and k is integrally closed in Γ(Z, O_Z).

If Cl(Z) is a finitely generated abelian group, then Cl(G, Z) is so.

Affine quotient

Lemma 3

Let $S = \operatorname{Spec} R$ be affine, and $G = \operatorname{Spec} \Gamma$ a flat affine R-group scheme. Let $\varphi : X \to Y$ be a G-invariant morphism such that X is locally Krull and φ is affine. Assume that $\mathcal{O}_Y \to (\varphi_* \mathcal{O}_X)^G$ is an isomorphism. Then $\operatorname{Cl}(Y)$ is a subquotient of $\operatorname{Cl}(G, X)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem 4

Let $S = \operatorname{Spec} R$, $G = \operatorname{Spec} \Gamma$, and $\varphi : X \to Y$ be as in the lemma above. Assume one of the following.

• $\Gamma(G \times X, \mathcal{O}_{G \times X})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times} \text{ (e.g., } X = \mathbb{A}_{R}^{n} \text{)};$

 G is connected and smooth, X is quasi-compact quasi-separated, and k is integrally closed in Γ(X, O_X)
Then Cl(Y) is a finitely generated abelian group.

Remark 5

Theorem 4

Let $S = \operatorname{Spec} R$, $G = \operatorname{Spec} \Gamma$, and $\varphi : X \to Y$ be as in the lemma above. Assume one of the following.

• $\Gamma(G \times X, \mathcal{O}_{G \times X})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times}$ (e.g., $X = \mathbb{A}_{R}^{n}$);

 G is connected and smooth, X is quasi-compact quasi-separated, and k is integrally closed in Γ(X, O_X).
Then Cl(Y) is a finitely generated abelian group.

Remark 5

Theorem 4

Let $S = \operatorname{Spec} R$, $G = \operatorname{Spec} \Gamma$, and $\varphi : X \to Y$ be as in the lemma above. Assume one of the following.

• $\Gamma(G \times X, \mathcal{O}_{G \times X})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times}$ (e.g., $X = \mathbb{A}_{R}^{n}$);

2 *G* is connected and smooth, *X* is quasi-compact quasi-separated, and *k* is integrally closed in $\Gamma(X, \mathcal{O}_X)$.

Then Cl(Y) is a finitely generated abelian group.

Remark 5

Theorem 4

Let $S = \operatorname{Spec} R$, $G = \operatorname{Spec} \Gamma$, and $\varphi : X \to Y$ be as in the lemma above. Assume one of the following.

• $\Gamma(G \times X, \mathcal{O}_{G \times X})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times}$ (e.g., $X = \mathbb{A}_{R}^{n}$);

2 G is connected and smooth, X is quasi-compact quasi-separated, and k is integrally closed in $\Gamma(X, \mathcal{O}_X)$.

Then Cl(Y) is a finitely generated abelian group.

Remark 5

Theorem 4

Let $S = \operatorname{Spec} R$, $G = \operatorname{Spec} \Gamma$, and $\varphi : X \to Y$ be as in the lemma above. Assume one of the following.

• $\Gamma(G \times X, \mathcal{O}_{G \times X})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times} \text{ (e.g., } X = \mathbb{A}_{R}^{n} \text{)};$

Solution G is connected and smooth, X is quasi-compact quasi-separated, and k is integrally closed in $\Gamma(X, \mathcal{O}_X)$.

Then Cl(Y) is a finitely generated abelian group.

Remark 5

Let N be an S-flat closed normal subgroup scheme of G.

Definition 6

We say that $\pi: X \to Y$ is a *G*-equivariant principal *N*-bundle if

• π is a *G*-morphism. That is, *G* acts on *X* and *Y*, and $\pi(gx) = g\pi(x)$.

N acts trivially on Y.

• π is fpqc (i.e., π is faithfully flat, and for any quasi-compact open subset V of Y, there exists some quasi-compact open subset U of X such that $\pi(U) = V$).

• $\Phi: N \times X \to X \times_Y X \ (\Phi(g, x) = (gx, x))$ is an isomorphism.

3

Let N be an S-flat closed normal subgroup scheme of G.

Definition 6

We say that $\pi: X \to Y$ is a *G*-equivariant principal *N*-bundle if

- π is a *G*-morphism. That is, *G* acts on *X* and *Y*, and $\pi(gx) = g\pi(x)$.
- O N acts trivially on Y.

T is fpqc (i.e., π is faithfully flat, and for any quasi-compact open subset V of Y, there exists some quasi-compact open subset U of X such that $\pi(U) = V$).

• $\Phi: N \times X \to X \times_Y X$ ($\Phi(g, x) = (gx, x)$) is an isomorphism.

Let N be an S-flat closed normal subgroup scheme of G.

Definition 6

We say that $\pi: X \to Y$ is a *G*-equivariant principal *N*-bundle if

- π is a *G*-morphism. That is, *G* acts on *X* and *Y*, and $\pi(gx) = g\pi(x)$.
- \bigcirc N acts trivially on Y

π is fpqc (i.e., π is faithfully flat, and for any quasi-compact open subset V of Y, there exists some quasi-compact open subset U of X such that π(U) = V).

• $\Phi: N \times X \to X \times_Y X$ ($\Phi(g, x) = (gx, x)$) is an isomorphism.

- 32

Let N be an S-flat closed normal subgroup scheme of G.

Definition 6

We say that $\pi: X \to Y$ is a *G*-equivariant principal *N*-bundle if

- π is a *G*-morphism. That is, *G* acts on *X* and *Y*, and $\pi(gx) = g\pi(x)$.
- **2** N acts trivially on Y.

π is fpqc (i.e., π is faithfully flat, and for any quasi-compact open subset V of Y, there exists some quasi-compact open subset U of X such that π(U) = V).

• $\Phi: N \times X \to X \times_Y X$ ($\Phi(g, x) = (gx, x)$) is an isomorphism.

- 3

Let N be an S-flat closed normal subgroup scheme of G.

Definition 6

We say that $\pi: X \to Y$ is a *G*-equivariant principal *N*-bundle if

- π is a *G*-morphism. That is, *G* acts on *X* and *Y*, and $\pi(gx) = g\pi(x)$.
- **2** N acts trivially on Y.

π is fpqc (i.e., π is faithfully flat, and for any quasi-compact open subset V of Y, there exists some quasi-compact open subset U of X such that π(U) = V).

• $\Phi: N \times X \to X \times_Y X \ (\Phi(g, x) = (gx, x))$ is an isomorphism.

イロト 不得下 イヨト イヨト 二日

Let N be an S-flat closed normal subgroup scheme of G.

Definition 6

We say that $\pi: X \to Y$ is a *G*-equivariant principal *N*-bundle if

- π is a *G*-morphism. That is, *G* acts on *X* and *Y*, and $\pi(gx) = g\pi(x)$.
- **2** N acts trivially on Y.
- π is fpqc (i.e., π is faithfully flat, and for any quasi-compact open subset V of Y, there exists some quasi-compact open subset U of X such that π(U) = V).

• $\Phi: N \times X \to X \times_Y X$ ($\Phi(g, x) = (gx, x)$) is an isomorphism.

イロト 不得下 イヨト イヨト 二日

A remark

Remark 7

A principal N-bundle is locally trivial in the fpqc topology, and the converse is also true.

We set H = G/N

Let $q: G \to H$ be a homomorphism of S-group scheme, and assume that q is a G-equivariant principal N-bundle.

- Roughly speaking, H = G/N.

・ 同 ト ・ ヨ ト ・ ヨ ト

We set H = G/N

Let $q: G \rightarrow H$ be a homomorphism of *S*-group scheme, and assume that q is a *G*-equivariant principal *N*-bundle.

Remark 8

- We have N = Ker q.
- Roughly speaking, H = G/N.

・ 同 ト ・ ヨ ト ・ ヨ ト

We set H = G/N

Let $q: G \rightarrow H$ be a homomorphism of *S*-group scheme, and assume that q is a *G*-equivariant principal *N*-bundle.

Remark 8

- We have N = Ker q.
- Roughly speaking, H = G/N.

くほと くほと くほと

16 / 48

Important properties of principal bundles

Lemma 9

Let $\pi: X \to Y$ be a *G*-equivariant principal *N*-bundle. Then

- π is quasi-separated.
- ② If G is of finite presentation (resp. separated, affine, finite), then so is π .

 (Grothendieck) π^{*}: Qch(H, Y) → Qch(G, X) is an equivalence, and (π_{*}?)^N is its quasi-inverse.

* E • * E •

Important properties of principal bundles

Lemma 9

Let $\pi: X \to Y$ be a *G*-equivariant principal *N*-bundle. Then

- π is quasi-separated.

A B K A B K
Important properties of principal bundles

Lemma 9

Let $\pi: X \to Y$ be a *G*-equivariant principal *N*-bundle. Then

- π is quasi-separated.
- **2** If G is of finite presentation (resp. separated, affine, finite), then so is π .
- ③ (Grothendieck) π^{*} : Qch(H, Y) → Qch(G, X) is an equivalence, and (π_{*}?)^N is its quasi-inverse.

Important properties of principal bundles

Lemma 9

Let $\pi : X \to Y$ be a *G*-equivariant principal *N*-bundle. Then

- **1** π is quasi-separated.
- **2** If G is of finite presentation (resp. separated, affine, finite), then so is π .
- (Grothendieck) π^{*} : Qch(H, Y) → Qch(G, X) is an equivalence, and (π_{*}?)^N is its quasi-inverse.

Affine quotients are rarely prinicipal fiber bundles

So principal fiber bundles are very good quotients. However, If $X = \operatorname{Spec} B$ is a spectrum of a *G*-algebra and $Y = \operatorname{Spec} B^N$, the canonical map $\pi : X \to Y$ is rarely a principal *N*-bundle.

Rational almost principal fiber bundles

Definition 10

We say that a diagram of S-schemes

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a G-equivariant rational almost principal N-bundle if
G acts on X and Y, and N acts tryially on Y.
V is a G-stable open subset of X, and codim_X(X \ V)
U is an H-stable open subset of Y, and codim_Y(Y \ U
ρ: V → U is a G-equivariant principal N-bundle.

Rational almost principal fiber bundles

Definition 10

We say that a diagram of S-schemes

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a *G*-equivariant rational almost principal *N*-bundle if *G* acts on *X* and *Y*, and *N* acts trvially on *Y*. *V* is a *G*-stable open subset of *X*, and codim_X(*X* \ *V*) ≥ 1 *U* is an *H*-stable open subset of *Y*, and codim_Y(*Y* \ *U*) ≥ *P*: *V* → *U* is a *G*-equivariant principal *N*-bundle.

Rational almost principal fiber bundles Definition 10

We say that a diagram of S-schemes

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a G-equivariant rational almost principal N-bundle if
G acts on X and Y, and N acts trivially on Y.
V is a G-stable open subset of X, and codim_X(X \ V) ≥ 2.
U is an H-stable open subset of Y, and codim_Y(Y \ U) ≥ 2.
ρ: V → U is a G-equivariant principal N-bundle.

4 3 5 4 3 5

Rational almost principal fiber bundles Definition 10

We say that a diagram of S-schemes

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a *G*-equivariant rational almost principal *N*-bundle if

- G acts on X and Y, and N acts tryially on Y.
- **②** *V* is a *G*-stable open subset of *X*, and $\operatorname{codim}_X(X \setminus V) \ge 2$.
- **3** U is an H-stable open subset of Y, and $\operatorname{codim}_Y(Y \setminus U) \ge 2$.

 $\rho: V \rightarrow U$ is a *G*-equivariant principal *N*-bundle.

4 3 5 4 3 5

Rational almost principal fiber bundles Definition 10

We say that a diagram of S-schemes

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a G-equivariant rational almost principal N-bundle if

- G acts on X and Y, and N acts tryially on Y.
- **2** *V* is a *G*-stable open subset of *X*, and $\operatorname{codim}_X(X \setminus V) \ge 2$.
- U is an H-stable open subset of Y, and $\operatorname{codim}_Y(Y \setminus U) \ge 2$.
- $\rho: V \to U$ is a *G*-equivariant principal *N*-bundle.

12 N 4 12 N

Almost principal fiber bundles

Definition 11

We say that $\pi : X \to Y$ is a *G*-equivariant almost principal *N*-bundle if

- $\pi: X \to Y$ is a *G*-morphism.
- (2) There exist some open subsets V of X and U of Y such that

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a G-equivariant rational almost principal N-bundle, where $ho=\pi|_V.$

Almost principal fiber bundles

Definition 11

We say that $\pi : X \to Y$ is a *G*-equivariant almost principal *N*-bundle if

•
$$\pi: X \to Y$$
 is a *G*-morphism.

Intervise of the second state of the second

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a G-equivariant rational almost principal N-bundle, where $ho=\pi|_V.$

A 12 N A 12 N

Almost principal fiber bundles

Definition 11

We say that $\pi : X \to Y$ is a *G*-equivariant almost principal *N*-bundle if

- $\pi: X \to Y$ is a *G*-morphism.
- There exist some open subsets V of X and U of Y such that

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a G-equivariant rational almost principal N-bundle, where $\rho = \pi|_V$.

Notation

From now on, we assume that G is of finite presentation.

Let Z be a locally Krull G-scheme. We denote the category of quasi-coherent (G, \mathcal{O}_Z) -modules which are reflexive as \mathcal{O}_Z -modules by Ref(G, Z).

くほと くほと くほと

3

21 / 48

Notation

From now on, we assume that G is of finite presentation.

Let Z be a locally Krull G-scheme. We denote the category of quasi-coherent (G, \mathcal{O}_Z) -modules which are reflexive as \mathcal{O}_Z -modules by Ref(G, Z).

A B M A B M

21 / 48

Main theorem (1)

Theorem 12

Let

 $X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$

be a G-equivariant rational almost principal N-bundle such that X and Y are locally Krull. Then

- $\mathcal{N} \mapsto i_* \rho^* j^* \mathcal{N} : \operatorname{Ref}(H, Y) \to \operatorname{Ref}(G, X)$ is an equivalence, and $\mathcal{M} \mapsto (j_* \rho_* j^* \mathcal{M})^N$ is its quasi-inverse.
- The equivalence above induces an isomorphism $Cl(H, Y) \cong Cl(G, X)$.

くほと くほと くほと

Main theorem (1)

Theorem 12

Let

 $X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$

be a G-equivariant rational almost principal N-bundle such that X and Y are locally Krull. Then

• $\mathcal{N} \mapsto i_* \rho^* j^* \mathcal{N} : \operatorname{Ref}(H, Y) \to \operatorname{Ref}(G, X)$ is an equivalence, and $\mathcal{M} \mapsto (j_* \rho_* j^* \mathcal{M})^N$ is its quasi-inverse.

The equivalence above induces an isomorphism $Cl(H, Y) \cong Cl(G, X)$.

- (個) - (日) - (日) - 日

Main theorem (1)

Theorem 12

Let

 $X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$

be a G-equivariant rational almost principal N-bundle such that X and Y are locally Krull. Then

- $\mathcal{N} \mapsto i_* \rho^* j^* \mathcal{N} : \operatorname{Ref}(H, Y) \to \operatorname{Ref}(G, X)$ is an equivalence, and $\mathcal{M} \mapsto (j_* \rho_* i^* \mathcal{M})^N$ is its quasi-inverse.
- The equivalence above induces an isomorphism $Cl(H, Y) \cong Cl(G, X)$.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Settings for discussing canonical modules

When we discuss canonical modules, we assume the following.

Assumption (#)

S is Noetherian, and has a fixed dualizing complex \mathbb{I}_S . *X* and *Y* are connected normal *S*-schemes separated of finite type over *S*.

くほと くほと くほと

Settings for discussing canonical modules

When we discuss canonical modules, we assume the following.

Assumption (#)

S is Noetherian, and has a fixed dualizing complex \mathbb{I}_S . *X* and *Y* are connected normal *S*-schemes separated of finite type over *S*.

A B M A B M

Main theorem (2)

Theorem 13

Assume that Assumption (#) is satisfied.

● Let *N* be smooth of relative dimension *d*. Set $\Theta = \bigwedge^d \operatorname{Lie} N$. Then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong i_* \rho^* j^* \omega_Y \otimes_{\mathcal{O}_X} (f^* \Theta)^*$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (j_* \rho_* i^* (\omega_X \otimes_{\mathcal{O}_X} f^* (\Theta)))^N$, where $f : X \to S$ is the structure map.

2 Let $S = \operatorname{Spec} k$, and N be a finite linearly reductive group scheme. Then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong i_* \rho^* j^* \omega_Y$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (j_* \rho_* i^* \omega_X)^N$.

- 4 同 6 4 日 6 4 日 6

Main theorem (2)

Theorem 13

Assume that Assumption (#) is satisfied.

• Let *N* be smooth of relative dimension *d*. Set $\Theta = \bigwedge^d \operatorname{Lie} N$. Then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong i_* \rho^* j^* \omega_Y \otimes_{\mathcal{O}_X} (f^* \Theta)^*$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (j_* \rho_* i^* (\omega_X \otimes_{\mathcal{O}_X} f^* (\Theta)))^N$, where $f : X \to S$ is the structure map.

2 Let $S = \operatorname{Spec} k$, and N be a finite linearly reductive group scheme. Then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong i_* \rho^* j^* \omega_Y$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (j_* \rho_* i^* \omega_X)^N$.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main theorem (2)

Theorem 13

Assume that Assumption (#) is satisfied.

• Let *N* be smooth of relative dimension *d*. Set $\Theta = \bigwedge^d \operatorname{Lie} N$. Then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong i_* \rho^* j^* \omega_Y \otimes_{\mathcal{O}_X} (f^* \Theta)^*$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (j_* \rho_* i^* (\omega_X \otimes_{\mathcal{O}_X} f^* (\Theta)))^N$, where $f : X \to S$ is the structure map.

2 Let $S = \operatorname{Spec} k$, and N be a finite linearly reductive group scheme. Then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong i_* \rho^* j^* \omega_Y$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (j_* \rho_* i^* \omega_X)^N$.

イロト 不得下 イヨト イヨト 二日

A remark

Remark 14

If S = Spec k with k a field of characteristic zero, then Theorem 13 is due to Knop.

The idea of the theorem is based on his result.

A corollary

Corollary 15

If Assumption (#) is satisfied and $\Theta \cong \mathcal{O}_S$, then the following are equivalent.

• $\omega_Y \cong \mathcal{O}_Y$ in Ref(H, Y); • $\omega_X \cong \mathcal{O}_X$ in Ref(G, X).

< 🗇 🕨

3

A B A A B A

A corollary

Corollary 15

If Assumption (#) is satisfied and $\Theta \cong \mathcal{O}_S$, then the following are equivalent.

- $\omega_Y \cong \mathcal{O}_Y$ in Ref(H, Y);
- $\omega_X \cong \mathcal{O}_X \text{ in } \operatorname{Ref}(G, X).$

3

A B M A B M

< 🗇 🕨

A corollary

Corollary 15

If Assumption (#) is satisfied and $\Theta \cong \mathcal{O}_S$, then the following are equivalent.

- $\omega_Y \cong \mathcal{O}_Y$ in Ref(H, Y);
- $\omega_X \cong \mathcal{O}_X \text{ in } \operatorname{Ref}(G, X).$

3

프 에 에 프 어

< 17 ▶

Remark 16

If $S = \operatorname{Spec} k$ and G an affine algebraic group over k, then the following hold.

• If G is connected reductive, then $\Theta \cong k$.

2 If G is finite, then $\Theta \cong k$.

• (Knop) In general, Θ may not be trivial.

Remark 16

If $S = \operatorname{Spec} k$ and G an affine algebraic group over k, then the following hold.

• If G is connected reductive, then $\Theta \cong k$.

② If G is finite, then $\Theta \cong k$.

3 (Knop) In general, Θ may not be trivial.

∃ ► < ∃ ►</p>

Remark 16

If S = Spec k and G an affine algebraic group over k, then the following hold.

- If G is connected reductive, then $\Theta \cong k$.
- 2 If G is finite, then $\Theta \cong k$.
- **3** (Knop) In general, Θ may not be trivial.

Remark 16

If $S = \operatorname{Spec} k$ and G an affine algebraic group over k, then the following hold.

- If G is connected reductive, then $\Theta \cong k$.
- **2** If *G* is finite, then $\Theta \cong k$.
- (Knop) In general, ⊖ may not be trivial.

The case of almost principal fiber bundles (1)

Corollary 17

Let $\pi : X \to Y$ be a *G*-equivariant almost principal *N*-bundle such that *X* and *Y* are locally Krull.

• $\mathcal{N} \mapsto (\pi^* \mathcal{N})^{**} : \operatorname{Ref}(H, Y) \to \operatorname{Ref}(G, X)$ is an equivalence, and $\mathcal{M} \mapsto (\pi_* \mathcal{M})^N$ is its quasi-inverse.

(a) The equivalence induces $Cl(H, Y) \cong Cl(G, X)$.

- 4 当下 4 当下

The case of almost principal fiber bundles (1)

Corollary 17

Let $\pi : X \to Y$ be a *G*-equivariant almost principal *N*-bundle such that *X* and *Y* are locally Krull.

• $\mathcal{N} \mapsto (\pi^* \mathcal{N})^{**} : \operatorname{Ref}(H, Y) \to \operatorname{Ref}(G, X)$ is an equivalence, and $\mathcal{M} \mapsto (\pi_* \mathcal{M})^N$ is its quasi-inverse.

The equivalence induces $Cl(H, Y) \cong Cl(G, X)$.

くほと くほと くほと

The case of almost principal fiber bundles (1)

Corollary 17

Let $\pi : X \to Y$ be a *G*-equivariant almost principal *N*-bundle such that *X* and *Y* are locally Krull.

- $\mathcal{N} \mapsto (\pi^* \mathcal{N})^{**} : \operatorname{Ref}(H, Y) \to \operatorname{Ref}(G, X)$ is an equivalence, and $\mathcal{M} \mapsto (\pi_* \mathcal{M})^N$ is its quasi-inverse.
- **2** The equivalence induces $Cl(H, Y) \cong Cl(G, X)$.

The case of almost principal fiber bundles (2)

Corollary 18

Let $\pi : X \to Y$ be a *G*-equivariant almost principal *N*-bundle. Assume that (#) is satisfied. Then

• if G is smooth of relative dimension d, there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong (\pi^* \omega_Y)^{**} \otimes_{\mathcal{O}_X} (f^* \Theta)^*$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (\pi_*(\omega_X \otimes_{\mathcal{O}_X} f^*(\Theta)))^N$.

(a) If $S = \operatorname{Spec} k$ and N is finite linearly reductive, then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong (\pi^* \omega_Y)^{**}$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (\pi_* \omega_X)^N$.

A 12 N A 12 N

The case of almost principal fiber bundles (2)

Corollary 18

Let $\pi : X \to Y$ be a *G*-equivariant almost principal *N*-bundle. Assume that (#) is satisfied. Then

- if G is smooth of relative dimension d, there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong (\pi^* \omega_Y)^{**} \otimes_{\mathcal{O}_X} (f^* \Theta)^*$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (\pi_*(\omega_X \otimes_{\mathcal{O}_X} f^*(\Theta)))^N$.
- (a) If $S = \operatorname{Spec} k$ and N is finite linearly reductive, then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong (\pi^* \omega_Y)^{**}$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (\pi_* \omega_X)^N$.

The case of almost principal fiber bundles (2)

Corollary 18

Let $\pi : X \to Y$ be a *G*-equivariant almost principal *N*-bundle. Assume that (#) is satisfied. Then

- if G is smooth of relative dimension d, there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong (\pi^* \omega_Y)^{**} \otimes_{\mathcal{O}_X} (f^* \Theta)^*$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (\pi_*(\omega_X \otimes_{\mathcal{O}_X} f^*(\Theta)))^N$.
- If S = Spec k and N is finite linearly reductive, then there are a (G, O_X)-isomorphism $\omega_X \cong (\pi^* \omega_Y)^{**}$ and an (H, O_Y)-isomorphism $\omega_Y \cong (\pi_* \omega_X)^N$.

Example of finite groups (1)

Let k be an algebraically closed field, $B = k[x_1, ..., x_n]$, $V = \bigoplus_i kx_i$, and $G \subset GL(V)$ a finite subgroup. Set N = G and $H = \{e\}$. Let $A = B^G$, and $\pi : X = \text{Spec } B \to \text{Spec } A = Y$ be the canonical map.

Definition 19

We say that $g \in GL(V)$ is a pseudo-reflection if $\operatorname{codim}_V \{ v \in V \mid gv = v \} = 1.$

Lemma 20

 $\pi : X \to Y$ is an almost principal *G*-bundle if and only if *G* does not have a pseudo-reflection.

イロト 不得下 イヨト イヨト 二日
Let k be an algebraically closed field, $B = k[x_1, ..., x_n]$, $V = \bigoplus_i kx_i$, and $G \subset GL(V)$ a finite subgroup. Set N = G and $H = \{e\}$. Let $A = B^G$, and $\pi : X = \text{Spec } B \to \text{Spec } A = Y$ be the canonical map.

Definition 19

We say that $g \in GL(V)$ is a pseudo-reflection if $\operatorname{codim}_V \{ v \in V \mid gv = v \} = 1.$

Lemma 20

 $\pi : X \to Y$ is an almost principal *G*-bundle if and only if *G* does not have a pseudo-reflection.

イロト 不得 トイヨト イヨト 二日

Let k be an algebraically closed field, $B = k[x_1, ..., x_n]$, $V = \bigoplus_i kx_i$, and $G \subset GL(V)$ a finite subgroup. Set N = G and $H = \{e\}$. Let $A = B^G$, and $\pi : X = \text{Spec } B \to \text{Spec } A = Y$ be the canonical map.

Definition 19

We say that $g \in GL(V)$ is a pseudo-reflection if $\operatorname{codim}_V \{ v \in V \mid gv = v \} = 1.$

Lemma 20

 $\pi: X \to Y$ is an almost principal *G*-bundle if and only if *G* does not have a pseudo-reflection.

Lemma 21 Assume that *G* does not have a pseudo-reflection. Then • $Cl(Y) \cong Cl(G, X) \cong X(G)$. • $\omega_B \cong (B \otimes_A \omega_A)^*$ and $\omega_A \cong \omega_B^G$. • $(7)^G : Ref(G, B) \rightarrow Ref(A)$ is an equivalence.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Lemma 21 Assume that G does not have a pseudo-reflection. Then $Cl(Y) \cong Cl(G,X) \cong X(G).$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lemma 21 Assume that *G* does not have a pseudo-reflection. Then • $Cl(Y) \cong Cl(G, X) \cong X(G).$ • $\omega_B \cong (B \otimes_A \omega_A)^{**}$ and $\omega_A \cong \omega_B^G.$ • $(?)^G : Ref(G, B) \to Ref(A)$ is an equivalence.

- 4 緑 ト 4 日 ト - 4 日 ト - 日

Lemma 21 Assume that G does not have a pseudo-reflection. Then a $Cl(Y) \cong Cl(G, X) \cong X(G).$ a $\omega_B \cong (B \otimes_A \omega_A)^{**}$ and $\omega_A \cong \omega_B^G.$ b $(?)^G : Ref(G, B) \to Ref(A)$ is an equivalence.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Corollary 22 (Watanabe–Braun)

The following are equivalent.

ω_B ≅ B;
G ⊂ SL(V);
ω_A ≅ A;
A is quasi-Gorenstein (i.e., ω_A is projective)

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary 22 (Watanabe–Braun)

The following are equivalent.

- $\bullet \ \omega_{B} \cong B;$
- $G \subset SL(V);$

• A is quasi-Gorenstein (i.e., ω_A is projective)

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary 22 (Watanabe–Braun)

The following are equivalent.

- $G \subset SL(V);$

• A is quasi-Gorenstein (i.e., ω_A is projective)

A B M A B M

Corollary 22 (Watanabe–Braun)

The following are equivalent.

- $G \subset SL(V);$

• A is quasi-Gorenstein (i.e., ω_A is projective)

프 에 에 프 어

Corollary 22 (Watanabe–Braun)

The following are equivalent.

- $\omega_B \cong B;$
- $G \subset SL(V);$
- A is quasi-Gorenstein (i.e., ω_A is projective).

If $n = \dim B = 2$, then the equivalence $(?)^G : \operatorname{Ref}(G, B) \to \operatorname{Ref}(A)$ has the following interpretation.

 $\mathsf{Ref}(G,B) = \mathsf{Proj}(G,B) = \{ M \in \mathsf{Mod}(G,B) \mid M \text{ is a finite} \\ \mathsf{projective } B \text{-module} \}$

and $\operatorname{Ref}(A) = \operatorname{MCM}(A)$. If, moreover, $\#G \neq 0$ in k, then indecomposable objects of $\operatorname{Proj}(G, B)$ and irreducible representations of G are in one-to-one correspondence, and hence A is of finite representation type (well-known).

A B K A B K

If $n = \dim B = 2$, then the equivalence $(?)^G : \operatorname{Ref}(G, B) \to \operatorname{Ref}(A)$ has the following interpretation.

 $\mathsf{Ref}(G,B) = \mathsf{Proj}(G,B) = \{ M \in \mathsf{Mod}(G,B) \mid M \text{ is a finite} \\ \mathsf{projective } B \text{-module} \}$

and $\operatorname{Ref}(A) = \operatorname{MCM}(A)$. If, moreover, $\#G \neq 0$ in k, then indecomposable objects of $\operatorname{Proj}(G, B)$ and irreducible representations of G are in one-to-one correspondence, and hence A is of finite representation type (well-known).

イロト 不得下 イヨト イヨト 二日

Let Y be a separated connected Noetherian normal scheme, and $D_1, \ldots, D_r \in \text{Div}(Y)$. Assume that $\sum_{i=1}^r \mathbb{Z}D_i$ contains an ample Cartier divisor. Set $U = Y_{\text{reg}}$. Let

$$V := \operatorname{\underline{Spec}}_{\lambda \in \mathbb{Z}^r} \mathcal{O}_U(\lambda_1 D'_1 + \dots + \lambda_r D'_r) \xrightarrow{
ho} U$$

be the canonical map, where $D'_i := D_i|_U$. Let

$$R := \bigoplus_{\lambda \in \mathbb{Z}^r} \Gamma(Y, \mathcal{O}_Y(\lambda_1 D_1 + \cdots + \lambda_r D_r))$$

and set $X = \operatorname{Spec} R$. Set $N = G = \mathbb{G}_m^r$.

- 本間 と えき と くき とうき

Lemma 23

Under the notation above,

R is a Krull domain.

O The diagram

is a rational almost principal *G*-bundle. The functor β : Ref $(Y) \rightarrow$ Ref(G, R) given by $\mathcal{M} \mapsto \bigoplus_{\lambda \in \mathbb{Z}^r} \Gamma(Y, (\mathcal{M} \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(\lambda_1 D_1 + \dots + \lambda_r D_r))^{**})$ is an equivalence, and gives an isomorphism β' : Cl $(Y) \cong$ Cl(G, R).

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma 23

Under the notation above,

- **1** *R* is a Krull domain.
- O The diagram

is a rational almost principal *G*-bundle. The functor β : Ref $(Y) \rightarrow$ Ref(G, R) given by $\mathcal{M} \mapsto \bigoplus_{\lambda \in \mathbb{Z}^r} \Gamma(Y, (\mathcal{M} \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(\lambda_1 D_1 + \dots + \lambda_r D_r))^{**})$ is an equivalence, and gives an isomorphism $\beta' : Cl(Y) \cong Cl(G, R)$.

くほと くほと くほと

Lemma 23

Under the notation above,

- R is a Krull domain.
- O The diagram

 $X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$

is a rational almost principal G-bundle.

• The functor β : Ref $(Y) \rightarrow$ Ref(G, R) given by $\mathcal{M} \mapsto \bigoplus_{\lambda \in \mathbb{Z}^r} \Gamma(Y, (\mathcal{M} \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(\lambda_1 D_1 + \dots + \lambda_r D_r))^{**})$ is an equivalence, and gives an isomorphism $\beta' : Cl(Y) \cong Cl(G, R)$.

くほと くほと くほと

Lemma 23

Under the notation above,

- R is a Krull domain.
- O The diagram

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a rational almost principal G-bundle.

• The functor $\beta : \operatorname{Ref}(Y) \to \operatorname{Ref}(G, R)$ given by $\mathcal{M} \mapsto \bigoplus_{\lambda \in \mathbb{Z}^r} \Gamma(Y, (\mathcal{M} \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(\lambda_1 D_1 + \dots + \lambda_r D_r))^{**})$ is an equivalence, and gives an isomorphism $\beta' : \operatorname{Cl}(Y) \cong \operatorname{Cl}(G, R)$.

Example of multi-section ring (3) Theorem 24 (Elizondo-Kurano-Watanabe) The sequence

$$\mathbb{Z}^{r} \xrightarrow{\gamma} \mathsf{Cl}(Y) \xrightarrow{\alpha \beta'} \mathsf{Cl}(R) \to 0$$

is exact, where $\gamma(\lambda) = \sum_{i=1}^{r} \lambda_i D_i$ and $\alpha \beta'(D) = [\bigoplus_{\lambda} \Gamma(Y, \mathcal{O}_Y(D + \sum_{i=1}^{r} \lambda_i D_i))].$

$$\omega_R = \bigoplus_{\lambda \in \mathbb{Z}^r} \Gamma(Y, \mathcal{O}_Y(K_Y + \sum_{i=1}^r \lambda_i D_i)).$$

Mitsuyasu Hashimoto (Nagoya University)

- 4 週 ト - 4 三 ト - 4 三 ト

Example of multi-section ring (3) Theorem 24 (Elizondo-Kurano-Watanabe) The sequence

$$\mathbb{Z}^{r} \xrightarrow{\gamma} \mathsf{Cl}(Y) \xrightarrow{\alpha \beta'} \mathsf{Cl}(R)
ightarrow 0$$

is exact, where $\gamma(\lambda) = \sum_{i=1}^{r} \lambda_i D_i$ and $\alpha \beta'(D) = [\bigoplus_{\lambda} \Gamma(Y, \mathcal{O}_Y(D + \sum_{i=1}^{r} \lambda_i D_i))].$ (Kurano–H) Assume (#). Then

$$\omega_{R} = \bigoplus_{\lambda \in \mathbb{Z}^{r}} \Gamma(Y, \mathcal{O}_{Y}(K_{Y} + \sum_{i=1}^{r} \lambda_{i}D_{i})).$$

くほと くほと くほと

Example 25 (well-known)

Consider the case that $Y = \mathbb{P}^1$, r = 1, and $D_1 = \{0\}$. Then

 $\mathsf{vb}(\mathbb{P}^1) = \mathsf{Ref}(\mathbb{P}^1) \to \mathsf{Ref}(\mathbb{G}_m, k[x, y])$

is an equivalence. Any finitely generated graded free k[x, y]-module is a direct sum of rank-one free modules k[x, y](m) $(m \in \mathbb{Z})$. Thus any vector bundle of \mathbb{P}^1 is a direct sum of $\mathcal{O}_{\mathbb{P}^1}(m)$ $(m \in \mathbb{Z})$.

イロト 不得下 イヨト イヨト 二日

Let $S = \operatorname{Spec} k$, $m, n, t \in \mathbb{Z}$, and $m, n \ge t \ge 2$. Set $V = k^n$, $W = k^m$, and $E = k^{t-1}$. Define $X = \operatorname{Hom}(E, W) \times \operatorname{Hom}(V, E)$ and $Y = \{\varphi \in \operatorname{Hom}(V, W) \mid \operatorname{rank} \varphi < t\}$. Then $\pi : X \to Y$ is defined by $\pi(f, g) = f \circ g$.

Lemma 26

 $\pi : X \to Y$ is a $GL(V) \times GL(E) \times GL(W)$ -equivariant almost principal GL(E)-bundle.

イロト 不得下 イヨト イヨト 二日

Let $S = \operatorname{Spec} k$, $m, n, t \in \mathbb{Z}$, and $m, n \ge t \ge 2$. Set $V = k^n$, $W = k^m$, and $E = k^{t-1}$. Define $X = \operatorname{Hom}(E, W) \times \operatorname{Hom}(V, E)$ and $Y = \{\varphi \in \operatorname{Hom}(V, W) \mid \operatorname{rank} \varphi < t\}$. Then $\pi : X \to Y$ is defined by $\pi(f, g) = f \circ g$.

Lemma 26

 $\pi: X \to Y$ is a $GL(V) \times GL(E) \times GL(W)$ -equivariant almost principal GL(E)-bundle.

Corollary 27

- (Bruns) $\operatorname{Cl}(Y) \cong X(\operatorname{GL}(E)) \cong \mathbb{Z}$.
- (Svanes) The following are equivalent.

 $\mathbf{D} \quad m=n.$

- $\omega_Y \cong \mathcal{O}_Y$ as \mathcal{O}_Y -modules.
- Y is Gorenstein.

Corollary 27

- (Bruns) $\operatorname{Cl}(Y) \cong X(\operatorname{GL}(E)) \cong \mathbb{Z}$.
- (Svanes) The following are equivalent.

• Y is Gorenstein.

- 本間 と えき と くき とうき

Corollary 27

- (Bruns) $\operatorname{Cl}(Y) \cong X(\operatorname{GL}(E)) \cong \mathbb{Z}$.
- **2** (Svanes) The following are equivalent.

1 m = n.

- $\ \, {\boldsymbol{\omega}}_{\boldsymbol{Y}}\cong {\mathcal O}_{\boldsymbol{Y}} \text{ as } {\mathcal O}_{\boldsymbol{Y}}\text{-modules}.$
- Y is Gorenstein.

(本間) (本語) (本語) (語)

Corollary 27

- (Bruns) $\operatorname{Cl}(Y) \cong X(\operatorname{GL}(E)) \cong \mathbb{Z}$.
- **2** (Svanes) The following are equivalent.

1 m = n.

- $\omega_X \cong \mathcal{O}_X \text{ as } (\mathsf{GL}(E), \mathcal{O}_X) \text{-modules.}$
- **3** $\omega_Y \cong \mathcal{O}_Y$ as \mathcal{O}_Y -modules.
- Y is Gorenstein.

Corollary 27

- (Bruns) $\operatorname{Cl}(Y) \cong X(\operatorname{GL}(E)) \cong \mathbb{Z}$.
- **2** (Svanes) The following are equivalent.

1 m = n.

- $\omega_X \cong \mathcal{O}_X$ as $(GL(E), \mathcal{O}_X)$ -modules.
- - Y is Gorenstein.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Corollary 27

- (Bruns) $\operatorname{Cl}(Y) \cong X(\operatorname{GL}(E)) \cong \mathbb{Z}$.
- (Svanes) The following are equivalent.
 - $\mathbf{0} \quad m = n.$
 - **2** $\omega_X \cong \mathcal{O}_X$ as $(GL(E), \mathcal{O}_X)$ -modules.
 - 3 $\omega_Y \cong \mathcal{O}_Y$ as \mathcal{O}_Y -modules.
 - Y is Gorenstein.

< 🗗 🕨

Set $S = \operatorname{Spec} k$, $G = \mathbb{G}_m = \operatorname{Spec} k[t, t^{-1}]$, $N = \mu_m = \operatorname{Spec} k[t]/(t^m - 1) \hookrightarrow G \ (m > 1)$. $H = \operatorname{Spec} k[t^m, t^{-m}]$. A *G*-algebra is a \mathbb{Z} -graded *k*-alebra. For a *G*-algebra *B*, a (*G*, *B*)-module is nothing but a graded *B*-module. For a (*G*, *B*)-module *M*, M^N is nothing but the Veronese submodule $M^{(m\mathbb{Z})} = \bigoplus_{i \in m\mathbb{Z}} M_i$.

Let *B* be a Noetherian normal \mathbb{Z} -graded algebra such that $B_0 = k$ and $B = k[B_1]$. Assume that $B \neq k$ and $B \neq k[x]$. Or equivalently, dim $B \ge 2$. B^N is the Veronese subring $B^{(m\mathbb{Z})} = \bigoplus_{i \in m\mathbb{Z}} B_i$.

イロト 不得下 イヨト イヨト 二日

Set $S = \operatorname{Spec} k$, $G = \mathbb{G}_m = \operatorname{Spec} k[t, t^{-1}]$, $N = \mu_m = \operatorname{Spec} k[t]/(t^m - 1) \hookrightarrow G \ (m > 1)$. $H = \operatorname{Spec} k[t^m, t^{-m}]$. A *G*-algebra is a \mathbb{Z} -graded *k*-alebra. For a *G*-algebra *B*, a (*G*, *B*)-module is nothing but a graded *B*-module. For a (*G*, *B*)-module *M*, M^N is nothing but the Veronese submodule $M^{(m\mathbb{Z})} = \bigoplus_{i \in m\mathbb{Z}} M_i$.

Let *B* be a Noetherian normal \mathbb{Z} -graded algebra such that $B_0 = k$ and $B = k[B_1]$. Assume that $B \neq k$ and $B \neq k[x]$. Or equivalently, dim $B \ge 2$. B^N is the Veronese subring $B^{(m\mathbb{Z})} = \bigoplus_{i \in m\mathbb{Z}} B_i$.

Lemma 28

Under the assumptions above,

- $\pi: X = \operatorname{Spec} B \to \operatorname{Spec} B^N = Y$ is a *G*-equivariant almost principal *N*-bundle.
- (2) $\omega_{B^N}\cong \omega_B^N$ and $\omega_B\cong (B\otimes_{B^N}\omega_{B^N})^{**}$

ω_B ≃ B(rm) ⇔ ω_{B^N} ≃ B^N(rm). In particular, B^N is quasi-Gorenstein if and only if B is quasi-Gorenstein and a(B) is divisible by m. A similar result (B is Cohen–Macaulay but may not be normal) is by Goto–Watanabe.

• $Cl(Y) \cong Cl(N, X)$. If $B = k[x_1, ..., x_n]$, then $Cl(Y) \cong X(N) \cong \mathbb{Z}/m\mathbb{Z}$.

Lemma 28

Under the assumptions above,

- $\pi: X = \operatorname{Spec} B \to \operatorname{Spec} B^N = Y$ is a *G*-equivariant almost principal *N*-bundle.
- ② $\omega_{B^N}\cong\omega_B^N$ and $\omega_B\cong(B\otimes_{B^N}\omega_{B^N})^{**}$

③ ω_B ≅ B(rm) ⇔ ω_{B^N} ≅ B^N(rm). In particular, B^N is quasi-Gorenstein if and only if B is quasi-Gorenstein and a(B) is divisible by m. A similar result (B is Cohen–Macaulay but may not be normal) is by Goto–Watanabe.

• $Cl(Y) \cong Cl(N, X)$. If $B = k[x_1, ..., x_n]$, then $Cl(Y) \cong X(N) \cong \mathbb{Z}/m\mathbb{Z}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma 28

Under the assumptions above,

- $\pi: X = \operatorname{Spec} B \to \operatorname{Spec} B^N = Y$ is a *G*-equivariant almost principal *N*-bundle.

③ ω_B ≃ B(rm) ⇔ ω_{B^N} ≃ B^N(rm). In particular, B^N is quasi-Gorenstein if and only if B is quasi-Gorenstein and a(B) is divisible by m. A similar result (B is Cohen-Macaulay but may not be normal) is by Goto-Watanabe.

• $\operatorname{Cl}(Y) \cong \operatorname{Cl}(N, X)$. If $B = k[x_1, \dots, x_n]$, then $\operatorname{Cl}(Y) \cong X(N) \cong \mathbb{Z}/m\mathbb{Z}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma 28

Under the assumptions above,

- $\pi: X = \operatorname{Spec} B \to \operatorname{Spec} B^N = Y$ is a *G*-equivariant almost principal *N*-bundle.

• $\operatorname{Cl}(Y) \cong \operatorname{Cl}(N, X)$. If $B = k[x_1, \dots, x_n]$, then $\operatorname{Cl}(Y) \cong X(N) \cong \mathbb{Z}/m\mathbb{Z}$.

イロト 不得下 イヨト イヨト 二日

Lemma 28

Under the assumptions above,

- $\pi: X = \operatorname{Spec} B \to \operatorname{Spec} B^N = Y$ is a *G*-equivariant almost principal *N*-bundle.

- $\operatorname{Cl}(Y) \cong \operatorname{Cl}(N, X)$. If $B = k[x_1, \dots, x_n]$, then $\operatorname{Cl}(Y) \cong X(N) \cong \mathbb{Z}/m\mathbb{Z}$.

イロト 不得下 イヨト イヨト 二日
Example of Veronese subring (3)

Consider the case that $G = N = \mu_m$, $H = \{e\}$, and B = k[[x, y]]. Then $MCM(B^N) = Ref(B^N) \cong Ref(N, B).$ The only indecomposed as of Pef(N, B) are

The only indecomposables of Ref(N, B) are $B, B(-1), \dots, B(-m+1)$. Hence B^N is of finite representation type.

Let k be an algebraically closed field of characteristic p > 0, G an affine algebraic group over k, and X a normal G-variety of finite type. Let

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

be a rational almost principal G-bundle.

When Y is affine, the decomposition of $F^e_*\mathcal{O}_Y$ is important to study the ring theoretic properties and invariants of Y, such as FFRT property, F-signature, dual F-signature, and so on.

- 4 同 6 4 日 6 4 日 6

Let k be an algebraically closed field of characteristic p > 0, G an affine algebraic group over k, and X a normal G-variety of finite type. Let

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

be a rational almost principal G-bundle.

When Y is affine, the decomposition of $F_*^e \mathcal{O}_Y$ is important to study the ring theoretic properties and invariants of Y, such as FFRT property, F-signature, dual F-signature, and so on.

- 本間 と えき と くき とうき

Theorem 29 (Sannai–H)

Let e > 0. Under the equivalence $\operatorname{Ref}(Y) \cong \operatorname{Ref}(G, X)$, the \mathcal{O}_Y -module $F^e_*\mathcal{O}_Y$ corresponds to $(F^e_*\mathcal{O}_X)^{G_e}$, where G_e is the kernel of the Frobenius map $F^e : {}^eG \to G$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example 30

Let $V = k^n$, G a finite subgroup of GL(V) without pseudo-reflection, and assume that (|G|, p) = 1. Set B = Sym V and $A = B^G$. Let $V_0 = k, V_1, \ldots, V_r$ be the set of irreducible representations of G, and set $M_i = (B \otimes_k V_i)^G$. Then G_e is trivial, and ^eA corresponds to the (G, B)-module ^eB. Each M_i is an indecomposable maximal

3

(日) (周) (三) (三)

Example 30

Let $V = k^n$, G a finite subgroup of GL(V) without pseudo-reflection, and assume that (|G|, p) = 1. Set B = Sym V and $A = B^G$. Let $V_0 = k, V_1, \ldots, V_r$ be the set of irreducible representations of G, and set $M_i = (B \otimes_k V_i)^G$. Then G_e is trivial, and eA corresponds to the (G, B)-module eB. Each M_i is an indecomposable maximal Cohen-Macaulay A-module, and the following are equivalent.

• $A \cong M_0^{c_{0,e}} \oplus \cdots \oplus M_r^{c_{r,e}}$ as A-modules. • $B \cong (B \otimes V_0)^{c_{0,e}} \oplus \cdots \oplus (B \otimes V_r)^{c_{r,e}}$ as (G, B)-modules. • $(B/\mathfrak{m}^{[p^e]}) \cong V_0^{c_{0,e}} \oplus \cdots \oplus V_r^{c_{r,e}}$ as G-modules, where $\mathfrak{m} = \bigoplus_{i > 0} B_i$ is the irrelevant ideal.

3

イロト イポト イヨト イヨト

Example 30

Let $V = k^n$, G a finite subgroup of GL(V) without pseudo-reflection, and assume that (|G|, p) = 1. Set B = Sym V and $A = B^G$. Let $V_0 = k, V_1, \ldots, V_r$ be the set of irreducible representations of G, and set $M_i = (B \otimes_k V_i)^G$. Then G_e is trivial, and eA corresponds to the (G, B)-module eB . Each M_i is an indecomposable maximal Cohen-Macaulay A-module, and the following are equivalent.

- $A \cong M_0^{c_{0,e}} \oplus \cdots \oplus M_r^{c_{r,e}}$ as A-modules.
- ^e B \approx (B \otimes V_0)^{c_{0,e}} \oplus \cdots \oplus (B \otimes V_r)^{c_{r,e}} as (G, B)-modules.
 ^e (B/m^[p^e]) \approx V_0^{c_{0,e}} \oplus \cdots \oplus V_r^{c_{r,e}} as G-modules,

where $\mathfrak{m} = \bigoplus_{i>0} B_i$ is the irrelevant ideal.

- 3

・ロン ・四 ・ ・ ヨン ・ ヨン

Example 30

Let $V = k^n$, G a finite subgroup of GL(V) without pseudo-reflection, and assume that (|G|, p) = 1. Set B = Sym V and $A = B^G$. Let $V_0 = k, V_1, \ldots, V_r$ be the set of irreducible representations of G, and set $M_i = (B \otimes_k V_i)^G$. Then G_e is trivial, and eA corresponds to the (G, B)-module eB . Each M_i is an indecomposable maximal Cohen-Macaulay A-module, and the following are equivalent.

- $A \cong M_0^{c_{0,e}} \oplus \cdots \oplus M_r^{c_{r,e}}$ as A-modules.
- $e B \cong (B \otimes V_0)^{c_{0,e}} \oplus \cdots \oplus (B \otimes V_r)^{c_{r,e}} \text{ as } (G,B) \text{-modules}.$

where $\mathfrak{m} = \bigoplus_{i>0} B_i$ is the irrelevant ideal.

- 3

(日) (周) (三) (三)

Example 30

Let $V = k^n$, G a finite subgroup of GL(V) without pseudo-reflection, and assume that (|G|, p) = 1. Set B = Sym V and $A = B^G$. Let $V_0 = k, V_1, \ldots, V_r$ be the set of irreducible representations of G, and set $M_i = (B \otimes_k V_i)^G$. Then G_e is trivial, and eA corresponds to the (G, B)-module eB . Each M_i is an indecomposable maximal Cohen-Macaulay A-module, and the following are equivalent.

- $A \cong M_0^{c_{0,e}} \oplus \cdots \oplus M_r^{c_{r,e}}$ as A-modules.
- $e B \cong (B \otimes V_0)^{c_{0,e}} \oplus \cdots \oplus (B \otimes V_r)^{c_{r,e}} \text{ as } (G,B) \text{-modules}.$

where $\mathfrak{m} = \bigoplus_{i>0} B_i$ is the irrelevant ideal.

- 3

(日) (周) (三) (三)

Example 30

Let $V = k^n$, G a finite subgroup of GL(V) without pseudo-reflection, and assume that (|G|, p) = 1. Set B = Sym V and $A = B^G$. Let $V_0 = k, V_1, \ldots, V_r$ be the set of irreducible representations of G, and set $M_i = (B \otimes_k V_i)^G$. Then G_e is trivial, and eA corresponds to the (G, B)-module eB . Each M_i is an indecomposable maximal Cohen-Macaulay A-module, and the following are equivalent.

- $A \cong M_0^{c_{0,e}} \oplus \cdots \oplus M_r^{c_{r,e}}$ as A-modules.
- $e B \cong (B \otimes V_0)^{c_{0,e}} \oplus \cdots \oplus (B \otimes V_r)^{c_{r,e}} \text{ as } (G,B) \text{-modules}.$
- where $\mathfrak{m} = \bigoplus_{i>0} B_i$ is the irrelevant ideal.

- 3

イロト イポト イヨト イヨト

Let Y be a smooth projective toric variety associated with a fan Δ . Then letting $X := \operatorname{Spec} \operatorname{Cox}(Y)$, there is a rational almost principal *G*-bundle of the form

$$X = \mathbb{A}^{\#\Delta(1)} \xrightarrow{i} V \xrightarrow{\rho} Y \xrightarrow{1_Y} Y,$$

where $G = \operatorname{Spec} k \operatorname{Cl}(Y)$.

Example 31 (Thomsen)

Let Y be a toric variety. Then there exists some finitely many rank one reflexive sheaves $\mathcal{M}_1, \ldots, \mathcal{M}_r$ such that for any e > 0, there exists some decomposition

$$F^e_*\mathcal{O}_Y\cong \mathcal{M}_1^{\oplus c_{1,e}}\oplus\cdots\oplus \mathcal{M}_r^{\oplus c_{r,e}}.$$

Thank you

This slide will soon be available at http://www.math.nagoya-u.ac.jp/~hasimoto/

3

< 回 > < 三 > < 三 >