Equivariant sheaves and their applications to invariant theory

Mitsuyasu Hashimoto

Nagoya University

October 29, 2009

A (G, A)-module

Let k be an algebraically closed field and G an affine algebraic group over k.

Definition 1

Let A be a commutative G-algebra. We say that M is a (G, A)-module if

- *M* is a *G*-module;
- *M* is an *A*-module;
- the *k*-space structures of *M* coming from the above two items agree;
- The action $A \otimes M \to M$ ($a \otimes m \mapsto am$) is G-linear.

(日) (同) (三) (三)

An application

Let *k* be an algebraically closed field of characteristic p > 0. Let *G* be a reductive group over *k*. Let *U* be the unipotent radical of a Borel subgroup of *G*. Let *V* be a finite dimensional *G*-module. Let C := Sym V be the symmetric algebra.

Theorem 1 (H-)

Assume that C has a good filtration. Then

- C^{G} is strongly F-regular. In particular, C^{G} is Cohen–Macaulay.
- C^U is (finitely generated and) F-pure. In particular, Proj C^U is Frobenius split.

イロト イポト イヨト イヨト

A diagram of S-schemes

Let *S* be the base scheme, and let Sch /*S* be the category of *S*-schemes. Let *I* be a small category. Let X_{\bullet} be an I^{op} -diagram of *S*-schemes. That is, let $X_{\bullet} \in \text{Func}(I^{\text{op}}, \text{Sch} / S)$ be a contravariant functor form *I* to Sch /*S*.

Zariski site of a diagram of schemes (1) Definition 2 We define a category $Zar(X_{\bullet})$ by:

 $ob(Zar(X_{\bullet})) := \{(i, U) \mid i \in ob I, U \in ob(Zar X_i)\};$

 $\operatorname{Zar}(X_{\bullet})((j, V), (i, U)) := \{(\phi, h) \mid \phi \in I(i, j), \\ h : V \to U, \quad V \xrightarrow{h} U \text{ is commutative} \}.$ $\bigvee_{X_j \xrightarrow{X_{\phi}} X_i}$

The composition is given by $(\phi, h) \circ (\phi', h') = (\phi'\phi, hh')$.

Zariski site of a diagram of schemes (2)

We introduce a Grothendieck topology into $Zar(X_{\bullet})$.

A class of morphisms $((i_{\lambda}, U_{\lambda}) \xrightarrow{(\phi_{\lambda}, h_{\lambda})} (i, U))_{\lambda \in \Lambda}$ is said to be a covering if $\forall \lambda \ i_{\lambda} = i, \ \phi_{\lambda} = id_{i}$, and $U = \bigcup_{\lambda} h_{\lambda}(U_{\lambda})$.

Moreover, defining $\Gamma((i, U), \mathcal{O}_{X_{\bullet}}) := \Gamma(U, \mathcal{O}_{X_i}), \mathcal{O}_{X_{\bullet}}$ is a sheaf of commutative rings on $\operatorname{Zar}(X_{\bullet})$. Thus $\operatorname{Zar}(X_{\bullet})$ is a ringed site. We denote the category $\operatorname{Mod}(\operatorname{Zar}(X_{\bullet}))$ simply by $\operatorname{Mod}(X_{\bullet})$.

The restriction and the β map

For $i \in ob(I)$, we define $(?)_i : Mod(X_{\bullet}) \to Mod(X_i)$ by $\Gamma(U, \mathcal{M}_i) := \Gamma((i, U), \mathcal{M})$ for $\mathcal{M} \in Mod(X_{\bullet})$. $(?)_i$ is called the restriction functor. Note that $(?)_i$ has both a left adjoint and a right adjoint. In particular, $(?)_i$ preserves arbitrary limits and colimits. In particular, $(?)_i$ is exact.

For
$$\phi \in I(i,j)$$
, we define $\beta_{\phi} : (?)_i \to (X_{\phi})_*(?)_j$ by

$$\Gamma(U, \mathcal{M}_i) = \Gamma((i, U), \mathcal{M}) \xrightarrow{\operatorname{res}_{(\phi, X_{\phi} \mid X_{\phi}^{-1}(U))}} \Gamma((j, X_{\phi}^{-1}(U)), \mathcal{M}) = \Gamma(X_{\phi}^{-1}(U), \mathcal{M}_j) = \Gamma(U, (X_{\phi})_* \mathcal{M}_j).$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The α map and equivariant modules

For $\phi \in I(i,j)$, we define $\alpha_{\phi} : X_{\phi}^*(?)_i \to (?)_j$ to be the composite

$$X_{\phi}^{*}(?)_{i} \xrightarrow{\beta_{\phi}} X_{\phi}^{*}(X_{\phi})_{*}(?)_{j} \xrightarrow{\varepsilon} (?)_{j},$$

where ε is the counit of adjunction of the adjoint pair $(X_{\phi}^*, (X_{\phi})_*)$.

Definition 3

 $\mathcal{M} \in Mod(X_{\bullet})$ is said to be equivariant if $\alpha_{\phi} : X_{\phi}^* \mathcal{M}_i \to \mathcal{M}_j$ is an isomorphism for $\phi \in Mor(I)$. The full subcategory of $Mod(X_{\bullet})$ consisting of equivariant $\mathcal{O}_{X_{\bullet}}$ -modules is denoted by $EM(X_{\bullet})$.

Quasi-coherent and coherent modules

Definition 4

 $\mathcal{M} \in \mathsf{Mod}(X_{\bullet})$ is said to be:

1 locally quasi-coherent (resp. locally coherent) if \mathcal{M}_i is quasi-coherent (resp. coherent) for any $i \in ob(I)$.

2 quasi-coherent (resp. coherent) if it is locally quasi-coherent (resp. locally coherent) and equivariant.

The full subcategory of locally quasi-coherent (resp. quasi-coherent, coherent) modules in $Mod(X_{\bullet})$ is denoted by $Lqc(X_{\bullet})$ (resp. $Qch(X_{\bullet})$, $Coh(X_{\bullet})$).

3

(日) (周) (三) (三)

Direct and inverse image

Let $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ be a morphism in Func(I^{op} , Sch). Then a ringed continuous functor $f_{\bullet}^{-1}: \operatorname{Zar}(Y_{\bullet}) \to \operatorname{Zar}(X_{\bullet})$ is defined by $f_{\bullet}^{-1}((i, U)) = (i, f_i^{-1}(U))$. Thus $(f_{\bullet})_*: \operatorname{Mod}(X_{\bullet}) \to \operatorname{Mod}(Y_{\bullet})$ is defined by $\Gamma((i, U), (f_{\bullet})_*\mathcal{M}) = \Gamma(f_{\bullet}^{-1}(i, U), \mathcal{M})$. $(f_{\bullet})_*$ has a left adjoint f_{\bullet}^* .

Note that f_{\bullet}^* preserves equivariance, local quasi-coherence, and quasi-coherence. Note also that $(f_{\bullet})_*$ preserves local quasi-coherence if f_i is quasi-compact quasi-separated for each $i \in ob(I)$. If, moreover, $Y_{\phi}f_j = f_iX_{\phi}$ is a cartesian square for each $\phi \in Mor(I)$ (f_{\bullet} is cartesian), then $(f_{\bullet})_*$ also preserves quasi-coherence.

The category Δ_M

Let [n] denote the totally ordered set $\{0, 1, ..., n\}$ for $n \ge -1$. Define (Δ^+) by $ob(\Delta^+) = \{[n] \mid n \ge -1\}$ and $(\Delta^+)([m], [n]) = \{\varphi \in Map([m], [n]) \mid \varphi \text{ is a monotone map}\}.$ Define the subcategory Δ_M of (Δ^+) by $ob(\Delta_M) = \{[0], [1], [2]\}$, and

 $\Delta_{\mathcal{M}}([m], [n]) = \{ \varphi \in (\Delta^+)([m], [n]) \mid \varphi \text{ is injective} \}.$

Pictorially, Δ_M looks like

$$[2] \underbrace{\underbrace{\overset{\delta_0(2)}{\overleftarrow{\delta_1(2)}}}_{\underbrace{\delta_2(2)}}^{\underbrace{\delta_0(2)}} [1] \underbrace{\overset{\delta_0(1)}{\overleftarrow{\delta_1(1)}}}_{\underbrace{\delta_1(1)}} [0] .$$

- 3

・ロン ・四 ・ ・ ヨン ・ ヨン

The groupoid B_G^M

Let *S* be a scheme, *G* an *S*-group scheme, and *X* a *G*-scheme. We define $B_G^M(X) \in \operatorname{Func}(\Delta_M^{\operatorname{op}}, \operatorname{Sch}/S)$ by

$$B_G^M(X) = G \times G \times X \xrightarrow[\mu \times 1]{p_{23}} G \times X \xrightarrow[p_2]{p_{23}} X,$$

where $a: G \times X \to X$ is the action, $\mu: G \times G \to G$ is the product, and p_{23} and p_2 are projections.

We denote $Mod(B_G^M(X))$ by Mod(G, X) and call its object a (G, \mathcal{O}_X) -module. $Lqc(B_G^M(X))$, $Qch(B_G^M(X))$, and $Coh(B_G^M(X))$ are denoted by Lqc(G, X), Qch(G, X), and Coh(G, X), respectively.

Direct and inverse images

For a *G*-morphism $f : X \to Y$, $B_G^M(f) : B_G^M(X) \to B_G^M(Y)$ is a cartesian morphism, and the direct image $B_G^M(f)_* : Mod(G, X) \to Mod(G, Y)$ and the inverse image $B_G^M(f)^* : Mod(G, Y) \to Mod(G, X)$ are induced.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Why diagrams of schemes?

Lemma 5

 $\mathsf{EM}(B^M_G(X))$ is equivalent to the category of *G*-linearized \mathcal{O}_X -modules by Mumford. The equivalence induces the equivalence between $\mathsf{Qch}(G, X)$ and the category of quasi-coherent *G*-linearized \mathcal{O}_X -modules.

What is the merit of considering diagrams of schemes?

- We can use induction on the number of objects of *I*.
- Mod(G, X) = Mod(B^M_G(X)) is a module category of a ringed site. So Mod(G, X) has <u>Hom</u>, ⊗, etc. and is flexible enough. The embedding Qch(G, X) → Mod(G, X) is a natural generalization of the embedding Qch(X) → Mod(X).
- The use of Lqc(G, X) is sometimes effective.

Local noetherian property

In the rest of this talk, let S be a noetherian scheme, G a flat S-group scheme of finite type, and X a noetherian G-scheme.

Lemma 6

The category Qch(G, X) is a locally noetherian abelian category, and $\mathcal{M} \in Qch(G, X)$ is a noetherian object of Qch(G, X) if and only if $\mathcal{M} \in Coh(G, X)$ if and only if $\mathcal{M}_{[0]}$ is coherent as an \mathcal{O}_X -module. The forgetful functor

 $(?)_{[0]}: \operatorname{Qch}(G, X) \to \operatorname{Qch}((B^M_G(X)_{[0]}) = \operatorname{Qch}(X)$

given by $\mathcal{M} \mapsto \mathcal{M}_{[0]}$ is faithful exact, and admits a right adjoint.

An abuse of notation

Example 7

If k is a field, $S = \operatorname{Spec} k$ and G is affine, and X = S, then $\operatorname{Qch}(G, X)$ (resp. $\operatorname{Coh}(G, X)$) is equivalent to the category $\operatorname{Mod}(G)$ of G-modules (resp. finite dimensional G-modules). The functor $(?)_{[0]} : \operatorname{Qch}(G, S) \to \operatorname{Qch}(S) \cong \operatorname{Mod}(k)$ is identified with the forgetful functor, forgetting the G-action.

Usually, a *G*-module and its underlying vector space are expressed by the same symbol, say *V*. We use this abuse of notation, and express a (G, \mathcal{O}_X) -module \mathcal{M} and its underlying \mathcal{O}_X -module $\mathcal{M}_{[0]}$ by the same symbol. For example, $\mathcal{O}_{B^M_G(X)}$ is simply denoted by \mathcal{O}_X because $(\mathcal{O}_{B^M_G(X)})_{[0]}$ is \mathcal{O}_X . For a *G*-morphism $f: X \to Y$, the associated direct image $B^M_G(f)_*$ is simply denoted by f_* . Similarly for $B^M_G(f)^*$.

Operations on Qch(G, X)

Let \mathcal{M} , \mathcal{N} , \mathcal{L} be in Qch(G, X), \mathcal{I} be a G-ideal, and \mathcal{M}_1 , \mathcal{M}_2 , \mathcal{M}_3 , and \mathcal{M}_λ be quasi-coherent (G, \mathcal{O}_X)-submodules of \mathcal{M} . Let \mathcal{L} and \mathcal{M}_3 be coherent. Then the following modules have structures of quasi-coherent G-linearized \mathcal{O}_X -modules.

- $\underline{\operatorname{Tor}}_{i}^{\mathcal{O}_{X}}(\mathcal{M},\mathcal{N}), \ \underline{\operatorname{Ext}}_{\mathcal{O}_{X}}^{i}(\mathcal{L},\mathcal{M}),$
- $\underline{H}^{i}_{\mathcal{I}}(\mathcal{M}) \cong \varinjlim \underline{\operatorname{Ext}}^{i}_{\mathcal{O}_{X}}(\mathcal{O}_{X}/\mathcal{I}^{n},\mathcal{M}),$
- The Fitting ideal $\underline{\text{Fitt}}_{i}(\mathcal{L})$,
- $\mathcal{M}_1 \cap \mathcal{M}_2$, $\sum_{\lambda} \mathcal{M}_{\lambda}$, $\mathcal{I}\mathcal{M}_1$,
- $\mathcal{M}_1 : \mathcal{M}_3, \ \mathcal{M}_1 : \mathcal{I}, \ldots$

G-dualizing complex

Definition 8

Let $\mathbb{F} \in D(G, X)$ (= D(Mod(G, X))). We say that \mathbb{F} is *G*-dualizing if \mathbb{F} has coherent cohomology groups, and the restriction $\mathbb{F}_{[0]} \in D(X)$ is a dualizing complex of *X*.

Example 9

If X is Gorenstein of finite Krull dimension, then \mathcal{O}_X is a G-dualizing complex of X.

Definition 10

Let X be connected with a fixed G-dualizing complex I. The lowest nonzero cohomology sheaf ω_X of I is called the G-canonical sheaf of X. Note that $\omega_X \in \text{Coh}(G, X)$.

Equivariant twisted inverse (1)

Theorem 11 (H-)

Let $f : Y \to X$ be a *G*-morphism separated of finite type. Then there is a functor $f^! : D_{Lqc}(G, X) \to D_{Lqc}(G, Y)$, called the (equivariant) twisted inverse, which satisfies:

- $f^!$ is triangulated, $id_X^! \cong Id$, and $g^!f^! \cong (fg)^!$.
- $f^!(D_{\mathsf{Qch}}(G,X)) \subset D_{\mathsf{Qch}}(G,Y)$, and $f^!(D_{\mathsf{Coh}}(G,X)) \subset D_{\mathsf{Coh}}(G,Y)$.
- If \mathbb{I}_X is *G*-dualizing, then $f^!(\mathbb{I}_X)$ is also *G*-dualizing.
- If f is proper, then $f^!$ is a right adjoint of $Rf_*: D_{Lqc}(G, Y) \rightarrow D_{Lqc}(G, X).$

Equivariant twisted inverse (2)

Theorem 11 (continued)

- If f is an open immersion, then $f^!$ agrees with the restriction f^* .
- If f is of finite flat dimension, then $f^!(\mathbb{F}) \cong f^!(\mathcal{O}_X) \otimes^L Lf^*\mathbb{F}$.
- Let $f: Y \to X$ be a finite *G*-morphism, and let *Z* denote the ringed site $(\operatorname{Zar}(B_G^M(X)), f_*\mathcal{O}_Y)$. Let $g: Z \to \operatorname{Zar}(B_G^M(Y))$ be the obvious ringed continuous functor. Then $g_{\#}R \operatorname{Hom}_{\mathcal{O}_X}^{\bullet}(\mathcal{O}_Z, ?)$ is isomorphic to $f^!$ $(g_{\#}: \operatorname{Mod}(Z) \to \operatorname{Mod}(G, Y)$ is the canonical functor, which is exact).

- 3

くほと くほと くほと

Equivariant twisted inverse (3)

Theorem 11 (continued)

- If f: Y → X is a regular embedding of a well-defined codimension, say d, then f[!]O_X ≅ \scale{d}(f*I)[∨][-d], where I is the defining ideal sheaf of Y in X (it belongs to Qch(G, X)).
- If $f: Y \to X$ is smooth of a well-defined relative dimension, say d, then $\Omega_{Y/X}$ has a canonical coherent (G, \mathcal{O}_Y) -module structure, and $f^! \mathcal{O}_X \cong \bigwedge^d \Omega_{Y/X}[d]$.

くほと くほと くほと

A remark

Remark 12

In the construction of $f^{!}: D_{Lqc}(G, X) \to D_{Lqc}(G, Y)$, we use the existence of a factorization $B_{G}^{M}(Y) \xrightarrow{\varphi} Z \xrightarrow{\psi} B_{G}^{M}(X)$, where $Z \in Func(\Delta_{M}^{op}, Sch/S), \psi$ is (componentwise) proper, and φ is a (componentwise) image-dense open immersion. However, Z is not necessarily of the form $B_{G}^{M}(W)$ for some G-scheme W (we avoid the problem of equivariant compactification).

(本間) (本語) (本語) (語)

Duality of proper morphisms

Theorem 13 (Duality of proper morphisms, H–) Let $f : X \rightarrow Y$ be a proper *G*-morphism of noetherian *G*-schemes. Then the canonical map

 $Rf_*R \operatorname{\underline{Hom}}_{Mod(G,X)}(\mathbb{F}, f^!\mathbb{G}) \to R \operatorname{\underline{Hom}}_{Mod(G,Y)}(Rf_*\mathbb{F}, \mathbb{G})$

is an isomorphism for $\mathbb{F} \in D_{\mathsf{Qch}}(G, X)$ and $\mathbb{G} \in D^+_{\mathsf{Lqc}}(G, Y)$.

Serre duality for representations of reductive groups

Corollary 14

Let $S = \operatorname{Spec} k$, and G a reductive group over k. Let T be a maximal torus of G, and fix a base of the root system of G. Let B be the negative Borel subgroup. For any finite dimensional B-module M and any $i \in \mathbb{Z}$, there is an isomorphism of G-modules

$$R^{n-i}$$
 ind ${}^{\mathcal{G}}_{\mathcal{B}}(M^*\otimes (-2\rho))\cong (R^i$ ind ${}^{\mathcal{G}}_{\mathcal{B}}M)^*$,

where ρ is the half sum of positive roots, and $n = \dim G/B$.

くほと くほと くほと

An application to invariant theory

Theorem 15 (H—)

Let *k* be a field, *G* a linearly reductive finite *k*-group scheme. Let *A* be a finitely generated *k*-algebra with a *G*-action. If *A* is Gorenstein and $\omega_A \cong A$ as a (G, A)-module, then $B := A^G$ is Gorenstein and $\omega_B \cong B$.

Corollary 16

Let k and G be as above, and V a finite dimensional G-module. If the representation $G \to GL(V)$ factors through SL(V), then $B := (Sym V)^G$ is Gorenstein and $\omega_B \cong B$.

Remark 17

The case that G is a finite group is due to K.-i. Watanabe.

Mitsuyasu Hashimoto (Nagoya University)

A proof

Proof.

Cohen–Macaulay property is trivial, since $B \to A$ is finite, and B is a direct summand of A. As dim $A = \dim B$ and $\operatorname{Ext}_{B}^{i}(A, \omega_{B}) = 0$ for i > 0,

 $\omega_{A} \cong \pi^{!} \omega_{B} \cong \operatorname{Hom}_{B}(A, \omega_{B})$

as (G, B)-modules by the equivariant duality of finite morphisms, where $\pi : \operatorname{Spec} A \to \operatorname{Spec} B$ is the canonical map. Hence

 $\omega_B \cong \operatorname{Hom}_B(B, \omega_B) \cong \operatorname{Hom}_B(A, \omega_B)^G \cong \omega_A^G \cong A^G \cong B.$

(日) (同) (三) (三)

Z^* of a closed subscheme Z of X

Definition 18

Let Z be a closed subscheme of X. Then we denote the scheme theoretic image of the action $a: G \times Z \to X$ by Z^* .

The following hold:

- Z^* is the smallest G-stable closed subscheme of X containing Z.
- If Z is irreducible and G has connected geometric fibers, then Z* is irreducible.
- If Z is reduced and G is S-smooth, then Z^* is reduced.

くほと くほと くほと

Some operations on G-closed subschemes

Lemma 19 (M. Miyazaki–H—)

Let Z be a G-stable closed subscheme of X. If $p_2 : G \times X \to X$ has regular fibers, then Z_{red} is G-stable. In particular, if G is S-smooth, then Z_{red} is G-stable.

Lemma 20 (H—)

Let \mathcal{I} be a coherent *G*-ideal of \mathcal{O}_X . If *G* is *S*-smooth, then the integral closure $\overline{\mathcal{I}}$ of \mathcal{I} is again a *G*-ideal.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Matijevic-Roberts type theorem

Theorem 21 (M. Miyazaki–H––)

Assume either

- G is S-smooth; or
- $S = \operatorname{Spec} k$, where k is a perfect field.

Let ${\mathcal C}$ and ${\mathcal D}$ be class of noetherian local rings, and assume that

- If A ∈ C and A → B be a local homomorphism which is regular and essentially of finite type, then B ∈ D; and
- If B ∈ D and A → B is a regular essentially of finite type local homomorphism, then A ∈ D.

Let y be a point of X, Y the closure of $\{y\}$, and let η be the generic point of an irreducible component of Y^{*}. If $\mathcal{O}_{X,\eta} \in \mathcal{C}$, then $\mathcal{O}_{X,y} \in \mathcal{D}$.

Some consequences

Corollary 22

Let A be a \mathbb{Z}^n -graded noetherian ring. Let P be a prime ideal of A, and let P^* be the prime ideal generated by the homogeneous elements of P.

- If A_{P^*} is *regular*, then A_P is regular.
- (Matijevic-Roberts, Hochster-Ratliff, Goto-Watanabe) If A_{P*} is Cohen-Macaulay (resp. Gorenstein), then A_P is Cohen-Macaulay (resp. Gorenstein).
- (Miyazaki-H—) If A_{P*} is of char. *p*, *F*-regular (resp. *F*-rational) and excellent, then A_P is *F*-regular (resp. *F*-rational).
- (H—) If A_{P*} is of char. p, F-pure (resp. Cohen-Macaulay F-injective), then A_P is F-pure (resp. Cohen-Macaulay F-injective).

G-local G-schemes

Generalizing notions in algebraic geometry or commutative ring theory to notions in equivariant settings is an important problem.

What is the equivariant version of local rings?

Definition 23

A *G*-scheme *Z* is said to be *G*-local if there is a unique minimal non-empty *G*-stable closed subscheme *P* of *Z*. In this case, we say that (Z, P) is *G*-local.

If G is trivial, then a scheme Z is G-local if and only if $Z \cong \text{Spec } A$ for some local ring A. For a general G, a G-local scheme need not be affine.

Some examples of G-local G-schemes (1)

Example 24

Let $S = \operatorname{Spec} \mathbb{Z}$, and $G = \mathbb{G}_m^n$. Let A be a G-algebra (so A is a \mathbb{Z}^n -graded ring). Then $X = \operatorname{Spec} A$ is G-local if and only if A is H-local (i.e., there is a unique maximal graded ideal) as a \mathbb{Z}^n -graded ring.

Example 25

Let *k* be a field, and *G* a reductive group over *k*. Let *A* be a finitely generated *G*-algebra. For $\mathfrak{p} \in \operatorname{Spec} A^G$, the *G*-scheme $X = \operatorname{Spec} A'$ with $A' := A_{\mathfrak{p}}^G \otimes_{A^G} A$ is *G*-local.

Some examples of G-local G-schemes (2)

Example 26

Let k be a field, G an affine algebraic k-group scheme, H a closed subgroup scheme of G, and X = G/H. Then (X, X) is G-local. So a G-local scheme need not be affine, even if G is so.

Example 27

Let k be an algebraically closed field, G a reductive group over k, and B a Borel subgroup. Then (G/B, B/B) is B-local, since B/B is the smallest Schubert variety.

- 本間 と えき と くき とうき

Geometric quotients are of finite type

The following was proved using Fogarty's idea.

Theorem 28 (H—)

Let the *G*-scheme X be of finite type over S. If $\varphi : X \to Y$ is a universally submersive geometric quotient, then Y is of finite type over S. If \mathcal{M} is a coherent (G, \mathcal{O}_X) -module, then $(\varphi_* \mathcal{M})^G$ is a coherent \mathcal{O}_Y -module.

An application to invariant theory

Theorem 29 (M. Ohtani-H---)

Let k be a field, and G a linearly reductive algebraic group over k. Let Z be a noetherian, Cohen-Macaulay G-scheme with an affine geometric quotient $p: Z \to W$. Then W is (noetherian and) Cohen-Macaulay.

Remark 30

In the proof, we may assume that Z is G-local. The case that G is a finite group is due to Hochster-Eagon.

くほと くほと くほと

G-Nakayama's lemma

Equivariant versions of some theorems in local ring theory are obtained. Until the end of this talk, Let (X, Y) be *G*-local, and let η be the generic point of an irreducible component of *Y*. Let $i : Y \hookrightarrow X$ be the inclusion.

Lemma 31

The stalk functor $(?)_{\eta}$: Qch $(G, X) \rightarrow Mod(\mathcal{O}_{X,\eta})$ is faithful and exact.

Lemma 32 (*G*-Nakayama's lemma) For $\mathcal{M} \in Coh(G, X)$, if $i^*\mathcal{M} = 0$, then $\mathcal{M} = 0$.

Equivariant local cohomology

The functor $\underline{\Gamma}_Y = \text{Ker}(\text{Id} \to g_*g^*)$ is a functor from Mod(G, X) to itself, and preserves Lqc(G, X) and Qch(G, X), where $g: X \setminus Y \hookrightarrow X$ is the inclusion. The derived functor $R\underline{\Gamma}_Y: D(G, X) \to D(G, X)$ preserves $D^+_{\text{Qch}}(G, X)$.

From now on, assume that X has a (fixed) G-dualizing complex \mathbb{I} .

Lemma 33

The cohomology group of $R\underline{\Gamma}_{Y}(\mathbb{I})$ is concentrated in one place.

If $\underline{H}_{Y}^{0}(\mathbb{I}) := R^{0}\Gamma_{Y}(\mathbb{I}) \neq 0$, then we say that \mathbb{I} is *G*-normalized. From now on, we assume that \mathbb{I} is *G*-normalized.

G-sheaf of Matlis

Definition 34 We set $\mathcal{E}_X := \underline{H}_Y^0(\mathbb{I})$, and call it the *G*-sheaf of Matlis.

Lemma 35 The stalk $\mathcal{E}_{X,\eta}$ is the injective hull of the residue field of the local ring $\mathcal{O}_{X,\eta}$.

 \mathcal{E}_X is the equivariant version of the injective hull of the residue field of a local ring.

・ 同 ト ・ ヨ ト ・ ヨ ト

Equivariant version of modules of finite length

Lemma 36

For $\mathcal{M} \in \mathsf{Qch}(G, X)$, TFAE.

- \mathcal{M} is of finite length in Qch(G, X).
- \mathcal{M} is coherent in Qch(X), and $\exists n \mathcal{I}^n \mathcal{M} = 0$, where \mathcal{I} is the defining ideal of Y.
- \mathcal{M}_{η} is an $\mathcal{O}_{X,\eta}$ -module of finite length.

G-Matlis duality

Let \mathcal{F} denote the full subcategory of Qch(G, X) consisting of objects of finite length.

Theorem 37 (Ohtani–H—, *G*-Matlis duality)

Let \mathbb{D} denote the functor $\underline{\operatorname{Hom}}_{\mathcal{O}_X}(?, \mathcal{E}_X) : \operatorname{Mod}(G, X) \to \operatorname{Mod}(G, X).$

- \mathbb{D} is an exact functor on $\operatorname{Coh}(G, X)$.
- $\mathbb{D}(\mathcal{F}) \subset \mathcal{F}$.
- The canonical map $\mathcal{M} \to \mathbb{DD}\mathcal{M}$ is an isomorphism for $\mathcal{M} \in \mathcal{F}$.
- $\mathbb{D}: \mathcal{F} \to \mathcal{F}$ is an anti-equivalence.

Equivariant local duality

Theorem 38 (Equivariant local duality, M. Ohtani–H—) Let \mathbb{F} be a bounded below complex in Mod(G, X) with coherent cohomology groups. Then there is an isomorphism in Qch(G, X)

$$\underline{H}^{i}_{Y}(\mathbb{F}) \cong \underline{\mathrm{Hom}}_{\mathcal{O}_{X}}(\underline{\mathrm{Ext}}^{-i}_{\mathcal{O}_{X}}(\mathbb{F},\mathbb{I}),\mathcal{E}_{X}).$$

Thank you for your attention!

過 ト イヨト イヨト