Equivariant total ring of fractions and factoriality of rings generated by semiinvariants

Mitsuyasu Hashimoto

Nagoya University

December 14, 2010

The purpose

The purpose of this talk is two fold.

- Introducing an equivariant version of the total ring of fractions.
- Giving its applications to invariant theory. In particular, we give some new criteria on factoriality (the UFD property) of the rings of (semi)invariants.

Extending an action

R: a commutative ring. *F*: an affine flat *R*-group scheme. *S*: an *F*-algebra (i.e., an *R*-algebra on which *F* acts).

We sometimes want to extend the action of F on S to that on Q(S), the total ring of fractions of S.

An action of an abstract group Γ on S is always extended to an action on Q(S) via g(a/b) = ga/gb. But this does not apply to the (rational) action of F on S...

< 回 > < 三 > < 三 >

An example

Example 1

Let R = k be a field, $F = \mathbb{G}_m$, and S = k[x]. F acts on S via deg x = 1. Then Q(S) = k(x) cannot be \mathbb{Z} -graded so that the inclusion $S \hookrightarrow Q(S)$ preserves grading.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The definition of the equivariant total ring of fractions

Let $\omega : S \to S \otimes R[F]$ be the coaction. As F is R-flat, ω is flat. So $\omega' : Q(S) \to Q(S \otimes R[F])$ is induced. Set $\Omega := \{M \subset Q(S) \mid \omega'(M) \subset M \otimes R[F]\},\$ and define $Q_F(S) := \sum_{M \in \Omega} M$, and call $Q_F(S)$ the F-total ring of fractions of S.

Basic properties

- $Q_F(S)$ is an *R*-subalgebra of Q(S).
- Letting $\omega' : Q_F(S) \to Q_F(S) \otimes R[F]$ be the coaction, $Q_F(S)$ is an *F*-algebra.
- S is an F-subalgebra of $Q_F(S)$.
- If $S \subset T \subset Q(S)$, T is an S-submodule of Q(S), and T has an (F, S)-module structure such that $S \hookrightarrow T$ is F-linear, then $T \subset Q_F(S)$.
- $(\omega')^{-1}(Q(S)\otimes R[F])=Q_F(S).$

- 3

くほと くほと くほと

Another description in Noetherian case

Lemma 2

- Let **S** be Noetherian. Then
 - Q_F(S) = ⋃_I S :_{Q(S)} I, where I runs through all the F-ideals of S containing a nonzerodivisor.
 - $Q_F(S) = \varinjlim \Gamma(U, \mathcal{O}_{\text{Spec }S})$, where U runs through all the *F*-stable open subsets such that $S \to \Gamma(U, \mathcal{O}_{\text{Spec }S})$ are injective.

Corollary 3

Let S be Noetherian, and I and J be F-stable ideals of S. If J contains a nonzerodivisor, then $I :_{Q(S)} J$ is an (F, S)-submodule of $Q_F(S)$.

3

(日) (同) (三) (三)

Normalization

Lemma 4 Let *F* be smooth over *R*, and *S* be Noetherian and reduced. Then the integral closure *S'* of *S* in Q(S) is an *F*-subalgebra of $Q_F(S)$.

Some examples

Example 5

If S is Noetherian and F is finite over R, then $Q_F(S) = Q(S)$.

Example 6 Let $R = \mathbb{Z}$, $F = \mathbb{G}_m^n$, and S a domain. Then S is \mathbb{Z}^n -graded. We have $Q_F(S) = S_{\Gamma}$, where Γ is the set of nonzero homogeneous elements of S.

Example 7

Let R = k be a field, V a finite dimensional k-vector space, F = GL(V), and S = Sym V. If dim $V \ge 2$, then $Q_F(S) = S$.

- 3

(日) (周) (三) (三)

$Q_F(S)$ as a subintersection

Lemma 8

Let S be a Noetherian normal domain. Then

$$Q_F(S) = \bigcap_{P \in X^1(S), P^*=0} S_P,$$

where $X^1(S)$ is the set of height one prime ideals of S, and P^* is the largest F-ideal of S contained in P. In particular, $Q_F(S)$ is a Krull domain.

 $Q(S)^F$

Let $\iota: S \to S \otimes R[F]$ be the map given by $\iota(s) = s \otimes 1$. As it is flat, it induces $\iota': Q(S) \to Q(S \otimes R[F])$. We define $Q(S)^F$ to be the kernel of the map $\iota' - \omega': Q(S) \to Q(S \otimes R[F])$.

Remark 9

The notation $Q(S)^F$ does not mean that F acts on Q(S).

くぼう くほう くほう しほ

 $Q(S)^F$ and $Q_F(S)^F$

The following are easy.

- $Q(S)^F$ is a subring of Q(S).
- Q(S)^F ∩ Q(S)[×] = (Q(S)^F)[×]. In particular, if S is a domain, then Q(S)^F is a subfield of Q(S).
- If R is a field, F is of finite type over R, and F(k) is Zariski dense in F, then Q(S)^F = Q(S)^{F(k)}.
- $Q(S)^F = Q_F(S)^F$.

- 3

ヨト イヨト

Application to invariant theory

We give an application of $Q_F(S)$ to invariant theory.

3

- < ∃ →

Factoriality of invariant subrings

From now on, until the end of this talk, let k be a field, G an affine algebraic group (smooth of finite type) over k, and S a G-algebra.

Question 10 When S^{G} is a UFD?

The first cohomology group and the factoriality

Lemma 11

Let *B* be a UFD on which an abstract group Γ acts. If the first cohomology group $H^1(\Gamma, B^{\times})$ vanishes, then B^{Γ} is a UFD.

Corollary 12

Let *B* be a UFD on which an abstract group Γ acts. If $B^{\times} \subset B^{\Gamma}$, and if there is no nontrivial group homomorphism $\Gamma \to B^{\times}$, then B^{Γ} is a UFD.

3

Algebraic group over an algebraically closed field

```
Theorem 13 (Popov)
```

Let k be algebraically closed, S a UFD, and the character group X(G) be trivial. Assume either

```
(a) S is finitely generated and G is connected; or
```

(b) $S^{\times} \subset S^{G}$.

Then S^G is a UFD.

The ring of semiinvariants

Let χ be a character (that is, one-dimensional *G*-module) of *G*. Let *V* be a *G*-module. We define

$$V^{\chi} := \{ v \in V \mid \omega_V(v) = v \otimes \chi \} = \sum_{\phi \in \operatorname{Hom}_G(\chi, V)} \operatorname{Im} \phi,$$

where we identify $\chi \in \operatorname{Hom}_{\operatorname{Alggrp}}(G, \mathbb{G}_m) \subset \operatorname{Hom}_{\operatorname{Sch}/k}(G, \mathbb{A}^1 \setminus \{0\}) = k[G]^{\times}$. Note that $S_G := \bigoplus_{\chi \in X(G)} S^{\chi}$ is a *k*-subalgebra of *S*. It is X(G)-graded, where X(G) is the character group of *G*. A homogeneous element of S_G is called a semiinvariant of *S*. The degree zero component S_G is S^G .

Notation

Let *B* be a domain, and $f \in B$. There is a unique largest open subset *U* of Spec *B* such that $f \in \Gamma(U, \mathcal{O}_{Spec B})$. We call *U* the domain of definition of *f*, and denote it by U(f).

Then $f : U(f) \to \mathbb{A}^1_{\mathbb{Z}}$ is a morphism. Let $(\mathbb{A}^1_{\mathbb{Z}})^* := \mathbb{A}^1_{\mathbb{Z}} \setminus 0$, where $0 \cong \operatorname{Spec} \mathbb{Z}$ is the origin. We denote $f^{-1}((\mathbb{A}^1_{\mathbb{Z}})^*)$ by $U^*(f)$.

A generalization of a theorem of Popov and Kamke (1)

Lemma 14

Let G be connected. Let S be a G-algebra domain of finite type over k. Let K be the integral closure of k in Q(S). Assume that $X(G) \rightarrow X(K \otimes_k G)$ is surjective. Then for $f \in Q(S)$, the following are equivalent.

- $f \in Q_G(S)$, and f is a semiinvariant of $Q_G(S)$.
- $U^*(f)$ is a *G*-stable open subset of Spec *S*.
- $Sf \subset Q_G(S)$ is a *G*-submodule.

In particular, any unit of S is a homogeneous unit of S_G .

3

くほと くほと くほと

Similar lemmas for disconnected G(1)

Lemma 15

Let S be a domain, and K denote the integral closure of k in Q(S). Assume that

- $S^{\times} \subset S^{G}$:
- G(K) is dense in $K \otimes_k G$;
- Sf is a G-submodule of $Q_G(S)$;
- $X(G) \to X(K \otimes_k G)$ is surjective.

Then f is a semiinvariant of $Q_G(S)$. If, moreover, X(G) is trivial, then $f \in Q(S)^G$.

A B F A B F

Similar lemmas for disconnected G(2)

Lemma 16

Let S be a domain. Let G(k) be dense in G. Assme that $S^{\times} = k^{\times}$. If Sf is a G(k)-submodule of Q(S), then $f \in Q_G(S)$, and f is a semiinvariant.

Groups with trivial character groups

If X(G) is trivial, then a semiinvariant is an invariant.

Remark 17

Let k be algebraically closed.

- If N is a normal subgroup of G and X(N) is trivial, then $X(G/N) \cong X(G)$.
- The canonical map $X(G/[G,G]) \rightarrow X(G)$ is an isomorphism.
- If G is unipotent, then X(G) is trivial.
- If G is semisimple, then G = [G, G], and X(G) is trivial.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A generalization of Popov's theorem (1)

Theorem 18

Let *G* be connected. Let *S* be a finitely generated *G*-algebra domain over *k*. Let *K* be the integral closure of *k* in Q(S). Assume that $X(G) \rightarrow X(K \otimes_k G)$ is surjective. Set $A := S_G$. Assume that if *P* is a *G*-stable height one prime ideal of *S* such that $P \cap A$ is a minimal prime of some nonzero principal ideal, then *P* is a principal ideal. Then

- If P is a G-stable height one prime ideal of S such that P ∩ A is a minimal prime of a nonzero principal ideal, then P = Sf for some homogeneous prime element f of A.
- A is a UFD.
- Any homogeneous prime element of A is a prime element of S.
- If, moreover, X(G) is trivial, then $S^G = A$ is a UFD.

A generalization of Popov's theorem (2)

Proposition 19

Let G be connected. Let S be a G-algebra. Assume that S is a UFD. Assume that $X(G) \rightarrow X(K \otimes_k G)$ is surjective, where K is the integral closure of k in S. Then $A := S_G$ is a UFD. Any homogeneous prime element of A is a prime element of S. If, moreover, X(G) is trivial, then $S^G = A$ is a UFD.

Remark 20

In the proposition, we need not assume that S is finitely generated.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A generalization of Popov's theorem (3)

Lemma 21

Let S be a G-algebra which is a UFD. Assume that G(K) is dense in $K \otimes_k G$, where K is the integral closure of k in S. Assume that $X(K \otimes_k G)$ is trivial. Assume also that $S^{\times} \subset A = S^G$. Then A is a UFD.

Corollary 22

Let S be a G-algebra which is a UFD. Assume that $S^{\times} = k^{\times}$. If G(k) is dense in G and X(G) is trivial, then S^{G} is a UFD.

3

A B F A B F

The Italian problem

Problem 23 (Mukai) When we have $Q(S)^G = Q(S^G)$?

The problem is called the Italian problem.

3

- < ∃ →

A generalization of a theorem of Popov and Kamke (2)

Proposition 24

Let *G* be connected. Let *S* be a *G*-algebra which is a Krull domain. Assume also that any *G*-stable height one prime ideal of *S* is principal (e.g., *S* is a UFD). Moreover, assume that $X(G) \rightarrow X(K \otimes_k G)$ is surjective, where *K* is the integral closure of *k* in *S*. Then $Q_G(S)_G = Q_T(A)$, where T = Spec kX(G). If, moreover, X(G) is trivial, then $Q(S)^G = Q(S^G)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Geometric approach (1)

Let S be a finitely generated G-algebra domain. Set X := Spec S. Let

 $s := \max\{\dim Gx \mid x \in X\} = \dim G - \min\{\dim G_x \mid x \in X\}.$

Proposition 25 We have $s = \dim S - \operatorname{trans.} \deg_k Q(S)^G$.

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

```
Geometric approach (2)
```

Let S be a finitely generated G-algebra domain. Set $r := \dim S - \operatorname{trans.} \deg_k Q(S^G)$.

Lemma 26 If S is normal, then $Q(S^G) = Q(S)^G$ if and only if r = s.

ヨト イヨト ニヨ

Example

Let
$$G = \mathbb{G}_m$$
 act on $\mathbb{A}^2 = \operatorname{Spec} k[x, y]$ via deg $x = \deg y = 1$. Then $r = 2$ and $s = 1$. $Q(S)^G = k(x/y)$ and $Q(S^G) = k$.

3

<ロ> (日) (日) (日) (日) (日)

The main theorem

Theorem 27

Let S be a finitely generated G-algebra which is a normal domain. Assume that G is connected. Assume that $X(G) \to X(K \otimes_k G)$ is surjective, where K is the integral closure of k in S. Let $X_{c}^{1}(S)$ be the set of height one G-stable prime ideals of S. Let M(G) be the subgroup of the class group Cl(S) of S generated by the image of $X_{C}^{1}(S)$. Let Γ be a subset of $X_{C}^{1}(S)$ whose image in M(G) generates M(G). Set $A := S_G$. Assume that $Q_G(S)_G \subset Q(A)$. Assume that if $P \in \Gamma$, then either the height of $P \cap A$ is not one or $P \cap A$ is principal. Then A is a UFD. If, moreover, X(G) is trivial, then $S^{G} = A$ is a UFD.

3

くほと くほと くほと

Example (1)

Example 28

An example of Theorem 27. Let $n \ge m \ge t \ge 2$ be positive integers, $V := k^m$, $W := k^n$, and $M := V \otimes W$. Let v_1, \ldots, v_m and w_1, \ldots, w_n be the standard bases of V and W, respectively. Let $S := (\text{Sym } M)/I_t$, where $I_t = I_t(v_i \otimes w_j)$ is the determinantal ideal. Let G be the subgroup of the unipotent upper triangular matrices in $GL_m = GL(V)$. Then $A = S^G$ is a UFD.

くぼう くほう くほう しほ

Example (2)

The sketch of the proof of Example 28. Let P be the ideal of S generated by the (t - 1)-minors of the first (t - 1) rows of the matrix $(v_i \otimes w_j)$. P is G-invariant, and generates $Cl(S) = M(G) \cong \mathbb{Z}$. We set $\Gamma := \{P\}$. It is easy to check that

- dim S = (t-1)(m+n-t+1);
- S^G is finitely generated, and dim $S^G = (t-1)(n+1-t/2)$;
- dim $S^G/P^G = (t-2)(n+1-(t-1)/2);$
- ht $P^G = n t + 2 \ge 2$.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Examples (3)

Note that S is normal and K = k. As G is unipotent, X(G) is trivial. To apply the theorem, it remains to show that $Q_G(S)_G \subset Q(S_G)$. As X(G) is trivial. This is equivalent to $Q(S)^G = Q(S^G)$. So it suffices to show that r = s. Clearly $r = \dim S - \dim S^G = (t-1)(m-t/2)$. On the other hand, the orbit Gx, where

$$x = egin{pmatrix} E_{t-1} & O \ O & O \end{pmatrix} \in (\operatorname{Spec} S)(k),$$

is (t-1)(m-t/2)-dimensional, as can be seen easily. So r = s, a desired.

Another Example

Example 29

A finite group G acting on a UFD S such that there is no nontrivial homomorphism $G \to S^{\times}$, but S^{G} is not a UFD.

 $G := \mathbb{Z}/3\mathbb{Z} = \langle \sigma \rangle$, k an algebraically closed field of characteristic 3. $S := k[A^{\pm 1}, B^{\pm 1}]$, and G acts on S via $\sigma A = B$ and $\sigma B = (AB)^{-1}$. Then S is a UFD. Spec $S \to \text{Spec } S^G$ is étale in codimension one. So by Fossum's theorem, $\text{Cl}(S^G) \cong H^1(G, S^{\times}) \cong \mathbb{Z}/3\mathbb{Z}$.

周 と くき とくき とうき

Yet another example (1)

Example 30

S is a finitely generated UFD over k, G is connected, X(G) is trivial, but S^G is not a UFD.

$$k = \mathbb{R}$$
,
 $G = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a^2 + b^2 = 1 \right\} \subset GL_2(k).$
Let G act on $S := \mathbb{C}[x, y, s, t]$ by

Yet another example (2)

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} x = (a + b\sqrt{-1})x, \quad \begin{pmatrix} a & -b \\ b & a \end{pmatrix} y = (a + b\sqrt{-1})y,$$
$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} s = (a - b\sqrt{-1})s, \quad \begin{pmatrix} a & -b \\ b & a \end{pmatrix} t = (a - b\sqrt{-1})t$$

(*G* acts trivially on \mathbb{C}). Then *S* is a finitely generated UFD over \mathbb{R} , *G* is connected, *X*(*G*) is trivial, but $S^G = \mathbb{C}[xs, xt, ys, yt]$ is not a UFD.

Thank you.

This slide will soon be available at http://www.math.nagoya-u.ac.jp/~hasimoto/

3