
Matijevic–Roberts type theorems for
F -singularities

Mitsuyasu Hashimoto

Graduate School of Mathematics, Nagoya University
Chikusa-ku, Nagoya 464–8602 JAPAN

hasimoto@math.nagoya-u.ac.jp

1. Matijevic–Roberts type theorem

Consider the following statement.

1.1 Statement (Matijevic–Roberts type theorem (MRTT)). Let C be
a class of noetherian local rings. Let R be a noetherian Zn-graded ring, and P
its prime ideal. Let P ∗ be the prime ideal generated by the all homogeneous
elements of P . If RP ∗ ∈ C, then RP ∈ C.

Clearly, the truth of the statement depends on the choice of C. Nagata
conjectured the Matijevic–Roberts type theorem for the case that C is the class
of Cohen–Macaulay local rings, and n = 1. Nagata’s conjecture was solved af-
firmatively by Hochster–Ratliff [25] and Matijevic–Roberts [29] independently.

After that, due to the contribution of Aoyama–Goto [1], Avramov–Achilles
[2], Cavaliere–Niesi [6], Goto–Watanabe [14], and Matijevic [28], it was proved
that the Matijevic–Roberts type theorem is true for the case that C is the class
of Cohen–Macaulay, Gorenstein, complete intersection, and regular local rings,
for arbitrary n.

After that, the result was generalized to an assertion for group actions in
[17], and then M. Miyazaki and the author [20] proved the following.

1.2 Theorem. Let S be a scheme, G a smooth S-group scheme of finite type,
X a noetherian G-scheme, y ∈ X, Y := {y}, Y ∗ the smallest G-stable closed
subscheme of X containing Y . Let η be the generic point of an irreducible
component of Y ∗. Let C and D be classes of noetherian local rings. Assume:
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1. (Smooth base change) If A→ B is a regular (i.e., flat with geometrically
regular fibers) local homomorphism essentially of finite type and A ∈ C,
then B ∈ D.

2. (Flat descent) If A → B is a regular local homomorphism essentially of
finite type and B ∈ D, then A ∈ D.

If OX,η ∈ C, then OX,y ∈ D.

Considering the case that S = SpecZ, G = Gn
m, and X = SpecR is affine,

we immediately have the following.

1.3 Corollary. Let R be a Zn-graded noetherian ring, and P ∈ SpecR. Let C
and D be classes of noetherian local rings which satisfy 1 and 2 in the theorem.
If RP ∗ ∈ C, then RP ∈ D.

When we let C = D be the class of Cohen–Macaulay, Gorenstein, complete
intersection, or regular local rings, then the conditions 1 and 2 in the theorem
are well-known, and the classical Matijevic–Roberts type theorem for these
properties follows from the corollary.

Although the theorem requires some generality on group actions, it is easy
to give a proof of the corollary.

Proof of Corollary 1.3. Let A = R[t±1
1 , . . . , t±1

n ] be the Laurent polynomial
ring. Let i : R ↪→ A be the inclusion. Let ϕ : R → A be the ring ho-
momorphism given by ϕ(x) = xtλ for x ∈ Rλ, where tλ = tλ1

1 · · · tλnn for
λ = (λ1, . . . , λn) ∈ Zn. Let ρ+ : A → A and ρ− : A → A be the ring ho-
momorphisms given by ρ+(xtµ) = xtλ+µ and ρ−(xtµ) = xt−λ+µ for x ∈ Rλ and
µ ∈ Zn.

It is easy to check that

1. ρ+ and ρ− are inverse each other.

2. ϕ = ρ+ ◦ i.
3. i and ϕ are smooth.

Let Q := i(P ) · A = P [t±1 , . . . , t
±
n ]. Letting xtλ be of degree λ for x ∈ R, ϕ

is degree-preserving. If x ∈ Rλ is homogeneous, then ϕ(x) = xtλ ∈ Q if and
only if x ∈ P . This shows that ϕ−1(Q) = P ∗. So ϕ induces RP ∗ → AQ, which
is regular local, essentially of finite type. By the smooth base change (1 of the
theorem), AQ ∈ D. As i induces RP → AQ, which is regular local, essentially
of finite type, RP ∈ D, by the flat descent (2 of the theorem).
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The purpose of this survey paper is to introduce Matijevic–Roberts type
theorems on F -singularities developed by the author and Miyazaki [20] and
the author [19]. We treat (strong, weak) F -regularity, F -rationality, F -purity,
and Cohen–Macaulay F -injectivity. As we have already seen, the smooth base
change and the flat descent are important.

We also introduce the notion of F -purity of homomorphisms, and discuss
some basic properties. In particular, we discuss the flatness of F -pure homo-
morphisms. It seems that strong F -regularity without F -finite assumption was
not studied so much before. We prove the F -pure base change theorem of
strong F -regularity.

Finally, we mention the openness of loci of F -singularities. Vélez [36] proved
the openness of F -rationality under mild hypothesis, using Γ-construction. We
apply the same technique to the strong F -regularity and Cohen–Macaulay F -
injectivity. Hoshi proved the openness of the F -pure locus using the same
technique.

In section 2, we introduce (weak, strong, very strong) F -regularity and
F -rationality. In section 3, we discuss the smooth base change and the flat
descent for (weak) F -regularity and F -rationality. In section 4, we treat strong
F -regularity, F -purity, and Cohen–Macaulay F -injectivity. F -purity of homo-
morphisms is introduced in this section.

2. Some F -singularities

From now on, p denotes a prime number, and R denotes a noetherian ring of
characteristic p. We set R◦ := R \⋃P∈MinR P .

For e ≥ 0, let eR denote the R-algebra R with the structure map F e
R : R→

eR, where F e
R is the eth power of the Frobenius map. For c ∈ R, c viewed as

an element of eR = R is denoted by ec. So for example, F e
R(c) = ecp

e
.

2.1 Definition. For an R-module M and its submodule N , define

N∗M = ClR(N,M) := {x ∈M | ∃c ∈ R◦
∃e0 ≥ 1 ∀e ≥ e0 x⊗ ec ∈M/N ⊗R eR is zero}.

We call N∗M the tight closure of N in M . For an ideal I of R, I∗R is simply
denoted by I∗, and called the tight closure of I.

It is easy to see that N∗M is an R-submodule of M containing N . If N = N∗M ,
then we say that N is tightly closed in M . For an ideal I, we say that I is tightly
closed if I = I∗.
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2.2 Definition. Let A be a commutative ring, and ϕ : M → N an A-linear
map of A-modules. We say that ϕ is pure (or A-pure) if for any A-module W ,
1W ⊗ ϕ : W ⊗AM → W ⊗A N is injective. A submodule N ⊂M is said to be
pure if the inclusion map N ↪→M is A-pure.

2.3 Definition. A ring homomorphism f : A → B is said to be pure if f is
pure as an A-linear map. A subring A ⊂ B is said to be pure if the inclusion
map A ↪→ B is pure.

2.4 Definition. We say that R is

1. (cf. [24]) very strongly F -regular if for any c ∈ R◦, there exists some e ≥ 1
such that ecF e : R→ eR (x 7→ e(cxp

e
)) is R-pure.

2. (Hochster [21]) strongly F -regular if for any R-module M and its sub-
module N , N∗M = N .

3. (Hochster–Huneke [23]) F -regular if RP is weakly F -regular (see below)
for any P ∈ SpecR.

4. (Hochster–Huneke [23]) weakly F -regular if I∗ = I for any ideal I of R.

5. (Fedder–Watanabe [13]) F -rational if for any ideal I of R such that I is
generated by ht I elements, I = I∗.

In [24], very strong F -regularity is simply called “strong F -regularity.” As
I do not know if the definitions 1 and 2 agree, I give different names to them.

2.5 Definition. We say that R is F -finite if 1R is a finite R-module.

2.6 Lemma. The following hold.

• ([24], [19]) Very strongly F -regular implies strongly F -regular. Strongly
F -regular implies F -regular. F -regular implies weakly F -regular. Weakly
F -regular implies F -rational. F -rational implies normal.

• (Vélez [36]) Excellent F -rational implies Cohen–Macaulay.

• F -rational Gorenstein implies strongly F -regular.

• (Lyubeznik–Smith [27]) For a positively graded finitely generated algebra
over a field, weakly F -regular implies strongly F -regular.
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• ([22], [19]) For a local ring, F -finite ring, and an essentially finite-type al-
gebra over an excellent local ring, strongly F -regular implies very strongly
F -regular.

Some F -singularities are known to be deeply related to singularities in char-
acteristic zero, using the modulo p reduction.

2.7 Definition. Let k be a field of characteristic zero, and X a k-scheme of
finite type. We say that X has rational singularities if X is normal, and for
any (or equivalently, some) resolution of singularities π : Y → X, Riπ∗OY = 0
for i > 0.

2.8 Definition. Let X be a Q-Gorenstein normal variety over a field of char-
acteristic zero. Let π : Y → X be a resolution such that the exceptional set is
a simple normal crossing divisor with the irreducible components E1, . . . , Er.
Then we can write

KY = π∗KX +
∑
i

aiEi.

We say that X is log terminal (resp. log canonical) if ai > −1 (resp. ai ≥ −1)
for every i.

2.9 Definition. Let k be a field of characteristic zero, and A a k-algebra
of finite type. Let P be a property of finitely generated algebras over finite
fields. We say that A has open (resp. dense) P type if there exists some finitely
generated Z-subalgebra B of k and a finitely generated B-algebra AB such that
k⊗B AB ∼= A, and there exists some dense open subset U (resp. dense set D of
closed points) of SpecB such that for any closed point x of U (resp. any point
x of D), κ(x)⊗B AB satisfies P.

2.10 Theorem (Smith [34], Hara [15], Mehta–Srinivas [30]). Let k be a
field of characteristic zero, and A a k-algebra of finite type. Then SpecA has
rational singularities if and only if A has open F -rational type.

2.11 Theorem (K.-i. Watanabe–Hara [16], [15], Smith [35]). Let k be a
field of characteristic zero, and A a k-algebra of finite type. Assume that A is a
Q-Gorenstein normal domain. Namely, A is normal, and the canonical divisor
of SpecA is Q-Cartier. Then A has log-terminal singularities if and only if A
is of open F -regular type.

Thus F -rationality and Q-Gorenstein F -regular properties are related to
rational and log-terminal singularities, respectively.
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3. Smooth base change and flat descent for F -singularities

The smooth base change for the (weak) F -regularity was proved by Hochster
and Huneke [24].

3.1 Theorem. Let R→ S be a regular local homomorphism between noetherian
local rings of characteristic p. If R is weakly F -regular and S is excellent, then
S is weakly F -regular.

3.2 Corollary. Let R → S be a regular homomorphism between noetherian
rings of characteristic p. If R is F -regular and S is locally excellent, then S is
F -regular.

Next we consider the F -rationality. As for the characteristic zero counter-
part, the rational singularity, the following is known.

3.3 Theorem (Elkik [9]). Let k be a field of characteristic zero, and f :
X → Y a flat k-morphism between k-schemes of finite type. If Y has rational
singularities and f has fibers with rational singularities, then X has rational
singularities.

The smooth base change for F -rationality was proved by Vélez [36].

3.4 Theorem (Vélez). Let R→ S be a regular homomorphism between locally
excellent noetherian rings of characteristic p. If R is F -rational, then S is F -
rational.

After that, Aberbach and Enescu [3] proved the following (see also the
weaker results in [10] and [18]).

3.5 Theorem. Let (R,m) → (S, n) be a flat local homomorphism between
noetherian local rings of characteristic p. Assume

1. R is Cohen–Macaulay F -rational.

2. S is excellent.

3. For any minimal prime P of R, SP is F -rational.

4. S/mS is Cohen–Macaulay and geometrically F -injective over R/m.

Then S is F -rational.

Next we consider the flat descent. The following is proved in [19].
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3.6 Lemma. Let ϕ : A → B be a homomorphism of rings. Assume that ϕ is
cyclically pure. That is, IS∩R = I for any ideal I of R. If B is noetherian, of
characteristic p, and is weakly F -regular (resp. F -regular, strongly F -regular,
very strongly F -regular, normal), then so is A.

Note that faithfully flat implies pure, and pure implies cyclically pure. Thus
the flat descent is true for weak F -regularity, F -regularity, strong F -regularity,
and very strong F -regularity.

The flat descent for (Cohen–Macaulay) F -rationality is also true.

3.7 Lemma. Let A → B be a faithfully flat homomorphism of rings. If B is
noetherian, characteristic p, Cohen–Macaulay and F -rational, then so is A.

Because of [24, (4.2)], we may assume that A→ B is a local homomorphism
of local rings in order to prove the lemma. Let I be an ideal of A generated by
a regular sequence. Then IB is so, and hence (IB)∗ = IB by the F -rationality.
By the faithful flatness, it is easy to see that I∗ ⊂ I∗B ∩ A ⊂ (IB)∗ ∩ A =
IB ∩ A = I.

In characteristic zero, the following holds.

3.8 Theorem (Boutot [5]). Let k be a field of characteristic zero, B a k-
algebra essentially of finite type, A a pure k-subalgebra of B which is essentially
of finite type over k. If SpecB has rational singularities, then so does SpecA.

Nevertheless, F -rationality is not inherited by a pure subring in general, as
was shown by an example by K.-i. Watanabe [37].

As we have seen, smooth base change of (weak) F -regularity and F -rationality
holds. The flat descent is also true, and thus we have

3.9 Theorem ([20]). Let R be a Zn-graded locally excellent noetherian ring of
characteristic p, and P ∈ SpecR. If RP ∗ is weakly F -regular (resp. F -regular,
F -rational), then RP is so.

We give some applications of the theorem. Before that, we need some results
on localizations.

3.10 Theorem ([24], [20]). Let R be a noetherian ring of characteristic p,
and S its multiplicatively closed subset. If R is Cohen–Macaulay F -rational
(resp. F -regular, strongly F -regular, very strongly F -regular), then so is RS.

But it is not known if weak F -regularity localizes (if so, then weak F -
regularity is equivalent to F -regularity by definition).
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3.11 Theorem ([23], [24], [20]). Let R be a noetherian ring of characteristic
p, If Rm is Cohen–Macaulay F -rational (resp. weakly F -regular, F -regular,
strongly F -regular) for any maximal ideal m of R, then so is R.

But it is not known if the similar statement holds for very strong F -
regularity (if so, then strong F -regularity implies very strong F -regularity).

We also need the following result on deformation.

3.12 Theorem (Hochster–Huneke [24]). Let (R,m) be a noetherian lo-
cal ring of characteristic p, and t ∈ m a nonzerodivisor. If R/tR is Cohen–
Macaulay F -rational, then R is Cohen–Macaulay F -rational.

Here is a corollary of Matijevic–Roberts type theorem for F -rationality.

3.13 Corollary (graded deformation [20]). Let R be a locally excellent
noetherian N-graded ring of characteristic p, and t ∈ R+ :=

⊕
i>0 Ri a nonze-

rodivisor. If R/tR is F -rational, then R is F -rational.

Proof. First, if M is a *maximal ideal, then M ⊃ R+, as R is N-graded. So
t ∈ M. As RM/tRM is F -rational and t ∈ MRM is a nonzerodivisor, RM is
F -rational. Note that RM is also Cohen–Macaulay, since R is locally excellent.

As any graded prime ideal is contained in some *maximal ideal and Cohen–
Macaulay F -rational property localizes, RP is also F -rational for any graded
prime ideal P.

Now take any prime P . Then RP ∗ is F -rational, since P ∗ is a graded prime.
So by Matijevic–Roberts type theorem, RP is F -rational. It is also Cohen–
Macaulay by locally excellent assumption. Thus R is F -rational.

Here is another corollary.

3.14 Corollary. Let A be a commutative ring of characteristic p, and (Ft)t≥0

its filtration. That is, each Fi is an additive subgroup of A, 1 ∈ F0 ⊂ F1 ⊂ F2 ⊂
· · · , FiFj ⊂ Fi+j for i, j ≥ 0, and

⋃
i≥0 Fi = A. Set R =

⊕
i≥0 Fit

i ⊂ A[t], and
G = R/tR. If G is noetherian locally excellent F -rational, then so is A.

See for the proof, [20].

4. F -purity, strong F -regularity, and Cohen–Macaulay F -injectivity

We consider the Matijevic–Roberts type theorem for F -purity, strong F -regularity,
and Cohen–Macaulay F -injectivity.
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4.1 Definition. R is said to be F -pure if the Frobenius map FR : R → 1R is
pure.

A weakly F -regular ring is F -pure. As for the relationship with the char-
acteristic zero singularities, the following is known.

4.2 Theorem (K.-i. Watanabe [38]). Let A be a normal Q-Gorenstein
finite-type algebra over a field of characteristic zero. If A is of dense F -pure
type, then SpecA is log canonical.

In order to prove the smooth base change of F -purity, it is convenient to
introduce the notion of F -purity of homomorphisms.

4.3 Definition. For a homomorphism f : A → B of commutative rings of
characteristic p, we define

Ψe(f) = Ψe(A,B) : B ⊗A eA→ eB

by Ψe(f)(b⊗ ea) = e(bp
e
a), and call it the eth Radu–André homomorphism or

the eth relative Frobenius map.

The following was proved by Radu [31] and André [4]. See also [7].

4.4 Theorem. Let f : A → B be a homomorphism of noetherian rings of
characteristic p. Then the following are equivalent.

1. f is regular.

2. Ψe(f) is flat for some e ≥ 1.

3. Ψe(f) is flat for every e ≥ 1.

The absolute case (i.e., the case that A = Fp) is due to Kunz [26].

4.5 Definition. A homomorphism f : A → B of commutative rings of char-
acteristic p is said to be F -pure if Ψe(f) is pure for every e ≥ 1.

By the Radu–André theorem (Theorem 4.4), we immediately have that a
regular homomorphism is F -pure.

We list some basic properties of F -pure homomorphisms.

4.6 Lemma. Let f : A → B and g : B → C be homomorphisms between
Fp-algebras.
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1. If f and g are F -pure, then so is gf .

2. A is F -pure if and only if the unique map Fp → A is F -pure.

3. If gf is F -pure and g is pure, then f is F -pure.

4. If A is F -pure and f is F -pure, then B is F -pure.

5. A pure subring of an F -pure ring is F -pure.

6. Let A′ be an A-algebra, and B′ = B ⊗A A′. If f is F -pure, then the base
change A′ → B′ is also F -pure.

7. If A → A′ is a pure homomorphism and A′ → B′ is F -pure, then f is
F -pure.

Thus the smooth base change and the flat descent are true for F -purity.
Matijevic–Roberts type theorem is true for F -purity.

When the base ring is a field, F -purity of a homomorphism is described well
as follows.

4.7 Lemma. Let k be a field of characteristic p, and B a k-algebra. Then the
following are equivalent.

1. k → B is F -pure, and B is noetherian.

2. For any e > 0, B ⊗k ek is noetherian and F -pure.

3. There exists some e > 0 such that B ⊗k ek is noetherian and F -pure.

4. B is noetherian, and B is geometrically F -pure over k, that is, for any
finite algebraic extension L of k, B ⊗k L is F -pure.

4.8 Remark. Thus an F -pure homomorphism has geometrically F -pure fibers.
But Singh’s example shows that even a flat homomorphism with geometrically
F -pure fibers may not be F -pure.

4.9 Example (Singh [33]). There is a flat local homomorphism f : A → B
essentially of finite type with A a DVR, f has geometrically F -regular fibers,
but B is not F -pure.

It is natural to ask if an F -pure map is flat.

4.10 Definition. A homomorphism f : A → B of rings of characteristic p is
said to be Dumitrescu if Ψ1(f) : B ⊗A 1A→ 1B is 1A-pure.
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4.11 Theorem (Dumitrescu [8]). For a flat homomorphism f : A → B of
noetherian rings of characteristic p, the following are equivalent.

1. f is Dumitrescu.

2. f is reduced.

By definition, a pure homomorphism is Dumitrescu. We ask if a Dumitrescu
map is flat. The following is relatively easy to prove.

4.12 Theorem. Let f : A → B be a homomorphism of noetherian rings of
characteristic p. If f is Dumitrescu and the image of SpecB → SpecA contains
all maximal ideals of A, then f is pure.

4.13 Corollary. A Dumitrescu local homomorphism between noetherian local
rings of characteristic p is pure. In particular, an F -pure local homomorphism
is pure.

For a homomorphism with finite fibers, Dumitrescu homomorphism is flat.
Namely,

4.14 Theorem. Let f : A→ B be a homomorphism between noetherian rings
of characteristic p. Assume that the fiber B⊗Aκ(P ) is finite over κ(P ) for any
P ∈ SpecA. Then the following are equivalent.

1. f is F -pure.

2. f is Dumitrescu.

3. f is regular.

4.15 Remark. The case that B is a domain and f is finite is due to K.-i. Watan-
abe.

Here is another sufficient condition for a Dumitrescu homomorphism flat.

4.16 Theorem. Let f : (A,m)→ (B, n) be a Dumitrescu local homomorphism
between noetherian local rings of characteristic p. If t ∈ m, A is normally flat
along tA, and A/tA→ B/tB is flat, then f is flat.

4.17 Corollary. Let f : (A,m)→ (B, n) be a Dumitrescu local homomorphism
between noetherian local rings of characteristic p. If t ∈ m is a nonzerodivisor
of A and A/tA→ B/tB is flat, then f is flat.
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4.18 Corollary. Let f : (A,m)→ (B, n) be a Dumitrescu local homomorphism
between noetherian local rings of characteristic p. If A is regular, then f is flat.

Stronger than the smooth base change, the “F -pure base change” of the
strong F -regularity holds.

4.19 Theorem. Let ϕ : A → B be a homomorphism of noetherian rings of
characteristic p. Assume that A is a strongly F -regular domain. Assume that
the generic fiber Q(A) ⊗A B is strongly F -regular, where Q(A) is the field of
fractions of A. If ϕ is F -pure and B is locally excellent, then B is strongly
F -regular.

Thus the smooth base change for strong F -regularity holds. Flat descent
also holds, and thus Matijevic–Roberts type theorem for strong F -regularity
holds.

Next we consider Cohen–Macaulay F -injectivity.

4.20 Definition. We say that a noetherian local ring of characteristic p, (R,m)
is F -injective if for any i ∈ N, the Frobenius map on the local cohomology
H i

m(R) → H i
m(1R) is injective. A noetherian ring of characteristic p is F -

injective if its localizations at all maximal ideals are F -injective.

4.21 Lemma. The following hold.

1. (Fedder [12]) An F -pure ring is F -injective.

2. An F -rational ring is F -injective.

3. (Fedder [12]) A Gorenstein F -injective ring is F -pure.

4. (Schwede [32]) A finite-type algebra over a field of characteristic zero is
Du Bois if it is of dense F -injective type.

The following statement, which is stronger than the smooth base change,
was proved by Aberbach–Enescu [3]. See also [11].

4.22 Proposition. Let A→ B be a flat homomorphism with Cohen–Macaulay
and geometrically F -injective fibers. If A is Cohen–Macaulay F -injective, then
B is Cohen–Macaulay F -injective.

4.23 Corollary. Let (R,m) be a noetherian local ring of characteristic p, and
t ∈ m a nonzerodivisor. If R/tR is Cohen–Macaulay F -injective, then so is R.
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Proposition 4.22 shows that the smooth base change holds for Cohen–
Macaulay F -injective property. The flat descent is easy, and Matijevic–Roberts
type theorem holds for Cohen–Macaulay F -injective property.

So the following holds.

4.24 Theorem. Let R be a Zn noetherian ring of characteristic p, and P ∈
SpecR. If RP ∗ is F -pure (resp. excellent and strongly F -regular, Cohen–
Macaulay F -injective), then RP is F -pure (resp. strongly F -regular, Cohen–
Macaulay F -injective).

A localization of a Cohen–Macaulay F -injective ring is Cohen–Macaulay
F -injective. Similarly to the F -rational property, we have the following, as
corollaries to Matijevic–Roberts type theorem.

4.25 Corollary. Let R be a N-graded noetherian ring of characteristic p, and
t ∈ R+ =

⊕
i>0 Ri a nonzerodivisor. If R/tR is Cohen–Macaulay F -injective,

then so is R.

4.26 Corollary. Let A be a commutative ring, and (Fi)i≥0 be a filtration of
A. Set R =

⊕
i≥0 Fit

t ⊂ A[t] and G = R/tR. If G is noetherian and Cohen–
Macaulay F -injective, then so is A.

Finally, we introduce some results on the openness of loci of F -singularities.
The following was proved using the technique of the Γ-construction developed
by Hochster–Huneke [24].

4.27 Theorem (Vélez [36]). Let R be a noetherian ring of characteristic p
which is of finite type over an excellent local ring. Then the F -rational locus of
R is open in SpecR.

Using the same technique, we have the following.

4.28 Theorem. Let R be a noetherian ring of characteristic p which is either
F -finite or essentially of finite type over an excellent local ring. Then the
strongly F -regular locus and the Cohen–Macaulay F -injective locus of R is open
in SpecR.

Recently, M. Hoshi proved the following, using the same technique.

4.29 Theorem. Let R be a noetherian ring of characteristic p which is either
F -finite or essentially of finite type over an excellent local ring. Then the F -
pure locus of R is open in SpecR.
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