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The main aim of this talk is to classify all Ulrich ideals and Ulrich modules for simple
singularities. In order to do that, we investigate the relationship between Ulrich ideals
and Ulrich modules for hypersurface local domain with the multiplicity e0m(A) = 2.

1. Ulrich ideals on hypersurfaces

Throughout this talk, let (A,m, k) be a Cohen-Macaulay local ring of dimension d with
infinite residue field, and let I be an m-primary ideal which is not a parameter ideal.
Let M be a finitely generated A-module. For such an A-module M , µA(M) (resp.ℓA(M),
e0I(M)) denotes the minimal number of generators (resp. the length, the multiplicity with
respect to I) of M .

First of all, we recall the definition of Ulrich ideals.

Definition 1.1 ([GIW, GOTWY1] etc.). An ideal I ⊂ A is called stable if I2 = QI holds
true (note that this condition does not depend on the choice of the minimal reduction Q
of I). An ideal I is called Ulrich (resp. good) if I is stable and I/I2 is A/I-free (resp.
I = Q : I).

The following proposition gives a relationship between Ulrich ideals and good ideals.

Proposition 1.2 ([GOTWY1, Corollary 2.6]). Let A, I be as above.

(1) Any Ulrich ideal is a good ideal.
(2) Suppose that A is Gorenstein. Then I is an Ulrich ideal if and only if it is a good

ideal with µA(I) = d+ 1 (or A/I is Gorenstein).

There are many examples of good ideals but not Ulrich ideals. For instance, in dimen-
sion 2, all powers of any good ideals are also good ideals. Moreover, if A is a regular local
ring of d = dimA ≥ 3, then A has no Ulrich ideals but A admits many good ideals.

Let us recall the definition of Ulrich modules.

Definition 1.3 ([GOTWY1]). Let M be a finitely generated A-module. Then M is said
to be an Ulrich A-module with respect to I if the following conditions holds true:

(a) M is a maximal Cohen-Macaulay A-module.
(b) e0I(M) = ℓA(M/IM) (i.e. IM = QM for some minimal reduction Q of I).
(c) M/IM is A/I-free (i.e. ℓA(M/IM) = µA(M) · ℓA(A/I)).

Remark 1.4. A maximal Cohen-Macaulay A-module which satisfies µA(M) = e0m(M)
is called an MGMCM module ([BHU]). Such an module is also said to be an Ulrich
A-module, which means an Ulrich A-module with respect to m in our sense.

1This paper is announcement of our result and the detailed version will be submitted to somewhere.



Remark 1.5 (See [HKuh]). Let A be a hypersurface local ring of e0m(A) = 2. It is known
that any maximal Cohen-Macaulay A-module can be written as a direct sum of a free
module and an Ulrich A-module. In particular, Syz1A(M) is an Ulrich A-module for every
maximal Cohen-Macaulay A-module M .

We can construct Ulrich modules with respect to I from a given Ulrich ideal I.

Proposition 1.6 (See [GOTWY1, Theorem 4.1]). Let I be an Ulrich ideal of A. Then
SyziA(A/I) is an Ulrich A-module with respect to I for every i ≥ d.

If I ⊂ A is an Ulrich ideal, then it is a good ideal and there exists an Ulrich A-module
M with respect to I. When A is a hypersurface local domain, this characterizes Ulrich
ideals.

Theorem 1.7 ([GOTWY1, Corollary 3.5]). Suppose that A is a hypersurface local do-
main. Then the following conditions are equivalent:

(1) I is an Ulrich ideal.
(2) I is a good ideal and there exists an Ulrich A-module M with respect to I.

Furthermore, if e0m(A) = 2, then we can give one more equivalent condition.

Corollary 1.8. Suppose that A is a hypersurface local domain of e0m(A) = 2. Then the
following conditions are equivalent:

(1) I is an Ulrich ideal.
(2) I is a good ideal and there exists an Ulrich A-module M with respect to I.
(3) I is a stable ideal and there exists an Ulrich A-module M with respect to I.

Proof. It is enough to show (3) =⇒ (2). Since A is not a regular local ring, an Ulrich
A-module M with respect to I has no free summands. As e0m(A) = 2, M is an Ulrich
A-module in the classical sense. Namely,

µA(M) = e0m(M) = e0m(A) · rankAM = 2 · rankAM.

It follows from the freeness of M/IM as an A/I-module that

ℓA(M/IM) = µA(M) · ℓA(A/I) = 2 · rankAM · ℓA(A/I).

On the other hand, by assumption, we have

ℓA(M/IM) = e0I(M) = e0I(A) · rankAM.

Hence e0I(A) = 2·ℓA(A/I), that is, I = Q : I for some minimal reduction Q of I. Therefore
I is a good ideal. �

In the corollary above, the stablity of I is needed as the next example shows.

Example 1.9. Let (A,m) be a Gorenstein local domain of dimension 1 and e = e0m(A) ≥ 2.
Then me−1 is an Ulrich A-module with respect to m. But if e ≥ 3, then m is not stable.



2. Ulrich ideal and c(f)

The main purpose of this section is to classify all Ulrich ideals of simple singularities.
In order to do that, we discuss about the relationship between the set of Ulrich ideals and
the set c(f) (see the definition below).

In what follows, let S be a formal power series ring over an algebraically closed field k
of characteristic 0, and let f be a nonzero element of m2

S, where mS denotes the unique
maximal ideal of S.

Definition 2.1 (see e.g. [Yos]). Put c(f) = {J | J is a proper ideal of S with f ∈ J2}.
The ring A = S/(f) is called a simple singularity if ♯c(f) <∞.

In the last symposium, we classified all Ulrich ideals and Ulrich modules for some ideal
for any rational double point ([GOTWY2]). In dimension 2, A is a simple singularity if
and only if A is a rational double point, which follows from the following lemma.

Lemma 2.2 (See e.g. [Yos]). Assume that A = S/(f) is a simple singularity. Then f is
one of the following equations:

(An) x2 + yn+1 + z2 (n ≥ 1)
(Dn) x2y + yn−1 + z2 (n ≥ 4)
(E6) x3 + y4 + z2

(E7) x3 + xy3 + z2

(E8) x3 + y5 + z2,

where z2 denotes z22 + · · ·+ z2d.

Therefore if we classify all Ulrich ideals of simple singularities of dimension d ≥ 2,
then it generalizes the main theorem ([GOTWY2, Theorem 1.4]) to higher dimensional
case. In order to accomplish it, we investigate the relationship between χA and c(f). The
following proposition is useful in order to find all Ulrich ideals.

Proposition 2.3. Let A = S/(f) be as above. Put

χ∗
A = {J ⊂ S | J/(f) is an Ulrich ideal of A}.

Then we have χ∗
A ⊂ c(f).

As an application, we give the following.

Corollary 2.4. Let A = S/(f) be as above. Put e = e0m(A) ≥ 2. If I = J/(f) ⊂ A is an

Ulrich ideal, then J ̸⊂ m
⌈ e+1

2
⌉

S .
In particular, if A is a hypersurface local ring of e0m(A) ≤ 3 and I is an Ulrich ideal,

then I ̸⊂ m2.

Proof. Suppose that J ⊂ m
⌈ e+1

2
⌉

S . Then we have

f ∈ J2 ⊂ (m
⌈ e+1

2
⌉

S )2 ⊂ me+1
S .

But this contradicts the assumption that e = ord(f).
Now suppose that e = ord(f) ≤ 3 and I ⊂ m2. Then J ⊂ m2

S + (f). Hence f ∈ J2 ⊂
(m2

S, f)
2. Then f = af + b for some a ∈ m2

S and b ∈ m4
S. As 1 − a is unit in S, we get

f ∈ m4
S, which is a contradiction. �



We need the following lemma in order to prove Proposition 2.3.

Lemma 2.5 ([GOTWY1, Theorem 7.6]). Let A be a Cohen-Macaulay local ring and
I ⊂ A an Ulrich ideal. Let i ≥ d be an integer. Put M = SyziA(A/I). Let

F1
∂−→ F0 →M → 0 (ex)

be a finite presentation of M over A, where Fi are free A-modules and rankA F0 = µA(M).
Then I1(∂) = I.

Proof of Proposition 2.3. Let I = J/(f) be an Ulrich ideal. Consider M = SyzdA(A/I).
Since M is a maximal Cohen-Macaulay A-module over a hypersurface A = S/(f), we can
find a matrix factorization (φ, ψ) of f as follows:

φ ◦ ψ = ψ ◦ φ = f · idS⊕n , 0 → S⊕n φ−→ S⊕n →M → 0 (ex).

This gives a minimal free resolution of M over A, which is a periodic free resolution with
periodicity 2 (see [Yos]) as follows:

· · · · · · → A⊕n φ−→ A⊕n ψ−→ A⊕n φ−→ A⊕n →M → 0 (ex).

Applying Lemma 2.5 implies that I1(φ) = I1(ψ) = I, that is, I1(φ) = I1(ψ) = J . Then
f ∈ I1(φ)I1(ψ) = J2. Hence J ∈ c(f). �

The following main theorem, which generalizes such a result in higher dimensional case.
The key idea is to caluculate c(f) in each case.

Theorem 2.6. Assume that A = S/(f) is a simple singularity of dimension d ≥ 1. Then
c(f) consists of the following ideals:

(An) {(x, yk, z) | k = 1, . . . , ⌊n+1
2
⌋},

(D2m) {(x, yk, z) | k = 1, . . . ,m− 1} ∪ {(x±
√
−1ym−1, ym, z)} ∪ {(x2, y, z)},

(D2m+1) {(x, yk, z) | k = 1, . . . ,m− 1} ∪ {(x, ym, z)} ∪ {(x2, y, z)},
(E6) {(x, y, z), (x, y2, z)},
(E7) {(x, y, z), (x, y2, z), (x, y3, z)},
(E8) {(x, y, z), (x, y2, z)},

where z = z2, . . . , zd.
Moreover, if d ≥ 2, then χ∗

A equals to c(f). Note that if d = 1, then χ∗
A consists of all

ideals of underlined sets.

If A is a simple singularity, then it is of finite Cohen-Macaulay representation type. If
A is Gorenstein (and the homomorphic image of a regular local ring), then the converse is
also true. On the other hand, if A is of finite Cohen-Macaulay representation type, then
the set of Ulrich ideals χA is a finite set.

Question 2.7. Let A be a hypersurface local domain. If χA is a finite set, then is A a
simple singularity?

Example 2.8. Let k be an algebrically closed field of characteristic 0.



(1) Let A = k[[x, y, z]]/(x3 + y6 + z2). Then

χ∗
A = c(f) =

{
(x, y, z), (x, y2, z), (x, y3, z)

}
∪
{
(x− εy2, y3, z)

∣∣ ε ∈ k×
}

∪
{
(x− ωy2, y4, z)

∣∣ω3 = 1
}
.

(2) Let A = k[[x, y, z]]/(xa + yb + z2), where a ≥ 3, b ≥ 2a + 1. If ε ∈ k×, then
Iε = (x+ ϵy2, ya, z) is an Ulrich ideal. In particular, χ∗

A and hence χA is an infinite
set.

If both a and b are odd integers (≥ 3), then it is known that the set of Ulrich ideals of
monomial type (say, χgA) is empty; see [GOTWY1, Theorem 4.7]. But as a corollary of
Example 2.8, we have the following.

Proposition 2.9. Let a,b be integers with a ≥ 3 and b ≥ 2a + 1. Let A = k[[ta, tb]] be a
numerical semigroup ring. Then the set of Ulrich ideals χA is an infinite set.

In fact, for each ε ∈ k×, we can show that Iε = (tb + εt2a, ta
2
) is an Ulrich ideal.

3. Ulrich modules over simple singularities

We can determine all Ulrich modules with respect to some stable ideal over simple
singularities. The key points are the following theorem and Knörrer’s periodicity. In fact,
any simple singularity A of dimension d ≥ 2 is a hypersurface local domain of e0m(A) = 2.
If I is an m-primary stable ideal and there exists an Ulrich module M with respect to
I, then I is a good ideal (and thus an Ulrich ideal). Such Ulrich ideals are completely
classified in Section 2.

Theorem 3.1. Let A = S/(f) be a hypersurface local domain of e0m(A) = 2, where S is a
formal power series ring over an algebraically closed field k of characteristic 0. Assume
that I = J/(f) is an Ulrich ideal. LetM be a maximal Cohen-Macaulay A-module without
free summands. Then the following conditions are equivalent:

(1) M is an Ulrich A-module with respect to I.
(2) I(M) ⊂ J , where (φ, ψ) is a matrix factorization of f corresponding to M (see

the previous section) and I(M) = I1(φ) + I1(ψ).

Proof. (1) =⇒ (2) : As M ∼= Syz2A(M), we may assume that M ⊂ F = A⊕n, where
n = µA(M). Write

M =

⟨ a11
...
an1

 , · · · ,
 a1n

...
ann

⟩
and put ψ = (aij) : F → F.

Then since IM = QM for some minimal reduction Q of I, we have Iaij ⊂ Q. Hence
aij ∈ Q : I = I for all i, j. Namely, I1(ψ) ⊂ J .

As A/I is Gorenstein by Proposition 1.2, Syz1A(M) is also an Ulrich A-module with
respect to I;see [GOTWY1, Theorem 4.1]. Hence it follows from the argument as above
that I1(φ) ⊂ I. Therefore I(M) = I1(φ) + I1(ψ) ⊂ J , as required.



(2) =⇒ (1) : Let F1
φ→ F0 →M → 0 (ex) be a minimal free representation ofM over A.

Since I1(φ) ⊂ I, we have F0/IF0
∼= M/IM . In particular, ℓA(M/IM) = ℓA(F0/IF0) =

µA(M) · ℓA(A/I).
On the other hand, e0I(M) = e0I(A) · rankAM = 2 · ℓA(A/I) · rankAM , where the last

equality follows from the goodness of I. Since e0m(A) = 2, we have 2 ·rankAM = e0m(M) =
µA(M). Therefore e0I(M) = µA(M) · ℓA(A/I) = ℓA(M/IM). It follows that M is an
Ulrich module with respect to I. �
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