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1 Preface

In the theory of commutative rings, there are many cases where we must use

methods of singularity theory or algebraic geometry. For example, if we want to

classify commutative rings which satisfy certain condition, there frequently occur

that we need classification of algebraic varieties of corresponding property. Or, we

are given many kinds of examples from singularity theory or algebraic geometry.

In this lecture, I try to talk about some of most basic languages of singular-

ity theory, especially relationship of graded rings and projective varieties and 2-

dimernsional singularities and its corresponding graph of exceptional curves.

2 Resolution of singularities and Rational Sin-

gularities.

In this article, let (A, m) be a Noetherian local ring or graded ring over a field k

and m is the unique (graded) maximal ideal. We always assume that A is normal.

Definition 2.1. Assume that A is essentially of finite type over a field k of

characteristic 0.

1. f : X → Spec(A) is a resolution of singularities of A if f is a projective mor-

phism, X is a regular scheme and f is an isomorphism outside the singular

locus of Spec(A).

2. A is a rational singularity if A is normal and H i(X,OX) = 0 for every i > 0.

∗This paper is a survey of singularity theory for commutative algebraists.
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To construct a resolution of singularities, the concept of Rees algebra RA(I) =

⊕n≥0I
ntn is seesntial.

By Grauert=Riemenschneider (GR) vanishing theorem, we get the implication

that rational singularities are Cohen-Macaulay rings.

Theorem 2.2. Let A be a normal local ring of dim A = d. Let f : X → Spec(A)

be a resolution of singularities of Spec(A) and assume that GR vanishing theorem

holds for f . That is, H i(X,ωX) = 0 for all i > 0. Then the following conditions

are equivalent 1.

1. A is a rational singularity.

2. A is Cohen-Macaulay and H0(X, ωX) is a reflexive A module.

Proof. Let D•
A (resp. D•

X) be a dualizing complex of A (resp. X). Note that

A (resp. X) is Cohen-Macaulay if and only if D•
A
∼= ωA[d] (resp. D•

X
∼= ωX [d]),

where ωA (resp. ωX) is the dualizing (canonical) module of A (resp. X). We use

so called Grothendieck duality theorem

(2.2.1) RHomA(Rf∗F , D•
A) ∼= Rf∗(RHomOX

(F , D•
X))

for coherent OX module F .

Now, assume the condition (1) and put F = OX . This is equivalent to say that

Rf∗OX = A. Since X is regular, D•
X

∼= ωX [d] and by GR vanishing, Rf∗ωX
∼=

f∗ωX . Hence we get RHomA(Rf∗OX , D•
A) ∼= D•

A

∼= Rf∗(ωX [d]) ∼= f∗(ωX)[d] and we get condition (2).

Conversely, if we assume condition (2), putting F = OX , we get RHS of (2.2.1)

is D•
A. Then taking RHomA(−, D•

A) of both sides, we gat Rf∗OX = A.

If Spec(A) \ {m} has at most rational singularities and if GR vanishing holds

for f , then we have isomorphisms

(2.2.2) H i(X, OX) ∼= H i+1
m (A) for 0 < i < dim A − 2.

and natural inclusion Hd−1(X, OX) ⊂ Hd
m(A) (d = dim A). Thus we can see

that H i(X, OX) is important for commutative ring theory.

The following Boutot’s Theorem is very important for the theory of rational

singularities and theory of invariants.

1It is known that GR vanishing theorem holds if A is essentially of finite type over a field of
characteristic 0. There are counterexamples in characteristic p > 0 in general.
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Theorem 2.3 (Boutot’s Theorem). ([Bo]) Let B be essentially of finite type over

a field of characteristic 0 and A be a pure subring of B 2. If B is a rational

singularity, then so is A.

An important corollaly of Boutot’s theorem is;

Corollary 2.4. Let k be a field of cahracteristic 0 and G be a linearly reduc-

tive algebraic subgroup of GL(n, k) acting linearly on the polynomial ring S :=

k[X1, . . . , Xn]. Then the invariant subring SG of S is a rational singularity and

hence is Cohen-Mcaulay.

3 Reduction modulo p.

In positive characteristic, there are concepts of F-rational, F-regular, F-pure

rings, defined by the notion of tight closure introduced by C. Huneke and M.

Hochster [HH] and splitting of Frobenius, which is connected to the concepts of

algebraic geometry over a field of characteristic 0.

Definition 3.1. Let A be a commutative Noetherian ring containing a field of

characteristic p > 0 and I be an ideal of A. We assume that A is an integral

domain.

1. We denote F : A → A, the Frobenius map defined by F (a) = ap. Note that

this map is a ring homomorphism. We say that A is F finite if F is a finite

map. This is the case if A is seesntially of finite type over a perfect field.

2. For a power q = pe of p, I [q] is the ideal generated by q-th powers of elements

of I.

3. The “tight closure” I∗ of I is defined by x ∈ I∗ ⇐⇒ ∃c 6= 0, such that

cxq ∈ I [q]∀q = pe. If I = I∗, I is called tightly closed.

4. A is weakly F-regular if every ideal I of A is tightly closed

5. A is strongly F-regular if A is F finite and for every c ∈ A, c 6= 0, ∃q = pe

such that cF e sending caq to a ∈ A splits as A-module 3 .

2A subring A of B is a pure subring of B if for every A module M , the natural map M =
M ⊗A A → M ⊗A B is injective. This condition implies that for every ideal I of A, we have
IB ∩ A = I.

3In many cases, the concepts “strongly F-regular” and “weakly F regular are known to be
equivalent.
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6. A is F pure if F : A → A is a pure map in the sense of 2.3. This condition is

equivalent to say that A is F split in the sense that F : A → A splits, under

a mild condition.

7. A local ring A is F rational if every parameter ideal of A is 4 tightly closed.

If A is not local, we say that A is F rational if Ap is F every prime ideal p

of A. If A is Gorenstein, then A is F rational if and only if A is F regular.

Example 3.2. If the defining equations of A are of simple form, it is easy to know

if A is F rational (F pure) or not.

Let k be a field of characteristic p and put A = k[X0, . . . , Xd]/(X
n
0 + . . . + Xn

d )

and we assume that p does not divide n. We denote by xi the image of Xi in A.

then I = (x1, . . . , xd) is a parameter ideal and the socle of A/I is generated by

xn−1
0 . Thus I = I∗ if and only if xn−1

0 6∈ I∗. The condition is equivalent to say

that
∪

q=pe I [q] : x
(n−1)q
0 = 0 and we can conclude that A is F rational if and only

if n ≤ d. Also, we can show that A is F pure and not F regular if and only if

n = d + 1 and p ≡ 1 (mod n) by the following Fedder’s criterion.

Theorem 3.3 (Fedder’s criterion). ([Fe]) Assume that A = B/I is a local ring,

where (B, n) is a regular local ring. Then

1. A is F pure if and only if [I [p] : I] 6⊂ n[p].

2. If A is F finite, then A is strongly F regular ⇐⇒ ∃c 6∈ I such that

c[I [q] : I] 6⊂ n[q] (∀q = pe � 1).

Assume that A is essentially of finite type over a field k of characteristic 0. Since

A is defined by finitely many relations, we can take a finitely generated ring R over

Z and a subring A0 of A, which is a flat R algebra and such that A ∼= A0 ⊗R k. In

this case, for every maximal ideal n of R, R/n is a finite field. We call A ⊗R R/n

reduction mod p if R/n is a field of characteristic p.

We can characterize rational singularity via mod p reduction.

Theorem 3.4. ([Sm],[Ha], [MS]) If A is essentially of finite type over a field k of

characteristic 0, then A is a rational singularity if and only if for sufficiently large

p, reduction mod p of A is F-rational.

4 Case of Graded Rings as Examples.

If A = ⊕n≥0An is a normal graded ring over a field k = A0 and if Spec(A) \ {m}
has at most rational singularity, then the weighted blowing-up

C(A) = Spec(⊕n≥0OX(n))) where X = Proj(A)
4It is equivalent to say, some parameter ideal of A is
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is a partial resolution of Spec(A) with has at most rational singularities. Moreover,

we have isomorphisms H i(X, OX(n)) ∼= H i+1
m (A)n. Hence we have the following

theorem.

Theorem 4.1. ([Fl],[Wa2]) A is a rational singularity if and only if

1. A is Cohen-Macaulay,

2. Spec(A) \ {m} has at most rational singularities and

3. a(R) < 0, where a(R) = sup{n | Hd
m(A)N 6= 0} is the a-invariant of A

defined by Goto-Watanabe [GW], [GW0].

Theorem of the same type also holds for F rational rings [FW]. But the

“Boutot’s Theorem for F rational ring” does not hold. Actually, there exist local

rings A and ideal I of A, whose Rees algebra RA(I) = ⊕n≥0I
n is F rational, while

A is not F rational ([Wa3]).

5 Normal 2-dimensional Singularities and Graph

of Exceptional Sets.

In this section, we assume (A, m) is a normal local ring of dimension 2, which

has a resolution of singularity.

If f : X → Spec(A) is a resolution of singularity and E = f−1(m) = ∪r
i=1Ei be

the exceptional set of f , we have the intersection theory on X and the intersection

matrix (Ei.Ej)1≤i,j≤r is a negative-definite symmetric matrix. We express the

exceptional set E by the “dual graph” as follows.

Definition 5.1. Let f : X → Spec(A) be a resolution of singularity and E =

f−1(m) = ∪r
i=1Ei be the exceptional set of f . We also assume that each Ei is

smooth and Ei and Ej (i 6= j) intersect transversally at at most one point 5. Then

the dual graph Γ(X) of X is defined as follows.

1. Γ(X) has r circles v1, . . . , vr corresponding E1, . . . , Er. We write the self

intersection number E2
i inside the circle vi. If E2

i = −2, sometimes, we don’t

write −2 inside the circle. If the genus of Ei is g we write [g] under the circle

vi.

2. We connect vi and vj if EiEj = 1.

Then the graph Γ(X) is always a connected graph.

5Such resolution always exists if A is excellent ([Li2]) and called a “good resolution”.
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The examples of dual graphs are found in Figures (5.1) and (5.2).

We define some terminology concerning the resolution of singularity.

Definition 5.2. Let X be a resolution of Spec(A) with exceptional set E = ∪r
i=1Ei.

1. A cycle Z =
∑r

i=1 niEi with (∀ni ≥ 0) is called anti-nef if Z.Ei ≤ 0(∀i).

2. The Fundamental cycle Z0 of E (or X) is the unique minimal anti-nef cycle
6 , where we write Z =

∑r
i=1 niEi ≥ Z ′ =

∑r
i=1 n′

iEi if ni ≥ n′
i for every i.

3. For a cycle Z, we put pa(Z) =
Z2 + KX .Z

2
+ 1. We know (M. Artin) A is

a rational singularity if and only if pa(Z0) = 0, where Z0 is the fundamental

cycle of X.

4. A resolution X of Spec(A) is said to be the minimal resolution if it contains

no (−1) curve (Ei
∼= P1 with E2

i = −1). Since (−1) curve can be contracted

to a smooth point, the minimal resolution of Spec(A) is unique.

Example 5.3. (1) If A = k[X,Y, Z]/(X2 + Y 3 + Z4), then the dual graph of

minimal resolution of Spec(A) is given by the following. The number attached to

the cycles expresses the multiplicity of the fundamental cycle Z0. Namely, Z0 =

E1 + 2E2 + 3E3 + 2E4 + E5 + 2E6.

1

?>=<89:;
2

?>=<89:;
2

?>=<89:;
3

?>=<89:;
3

?>=<89:;
2

?>=<89:;
3

?>=<89:;
2?>=<89:;

2

?>=<89:;
1

?>=<89:;
(5.1)

(2) If A = k[X, Y, Z]/(X2 + Y 3 + Z7), then the dual graph of minimal good

resolution of Spec(A) 7 is given by the following.

GFED@ABC−2 GFED@ABC−1GFED@ABC−1 GFED@ABC−3GFED@ABC−1

GFED@ABC−7

(5.2)

We can express integrally closed m primary ideals by cycles on some resolution

X of Spec(A).

6If Z, Z ′ are anti-nef cycles, so is inf(Z,Z ′). Thus the fundamental cycle is uniquely deter-
mined.

7Minimal good resolution is a resolution which is minimal among the good resolutions.
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Definition 5.4. Let A be a Noetherian ring and J ⊂ I be ideals of A.

1. We say that I is integral over J if Ir = Ir−1J for some r ≥ 2. We also say

that J is a reduction of I.

2. We say that I is integrally closed if any I ′ ) I is not integral over I.

Theorem 5.5. ([Li1], [Gi]) Assume that (A, m) is a 2 dimensional rational sin-

gularity and let I be an integrally closed m primary ideal. Let X be a resolution

of Spec(A) so that I.OX = OX(−Z) is an invertible OX- module 8. We denote

I = IZ in this case and say I is represented on X. Then the following properties

hold.

1. Z is an anti-nef cycle and there is a one to one correspondence between anti-

nef cycles on X and integrally closed m primary ideals represented on X.

This correspondence gives isomorphism of semigroups so that IZIZ′ = IZ+Z′.

2. The multiplicity e(I) and the colength I is calculated by

e(I) = −Z2 and `A(A/I) =
−Z2 − KXZ

2
,

where KX is a canonical divisor on X (or a rational exceptional cycle deter-

mined by pa(Ei) =
E2

i + KX .Ei

2
+ 1 for every Ei).

If A is regular local or A ∼= k[[X, Y, Z]]/(X2+Y 3+Z5), then the intersection ma-

trix (EiEj)1≤i,j≤r is unimodular and we have the unique factorization of integrally

closed ideals.

Corollary 5.6. If A is regular local or A ∼= k[[X, Y, Z]]/(X2 + Y 3 + Z5), then

the semigroup of integrally closed m ideals has unique factorization. Namely, there

are “prime” integrally closed ideals {Pα} such that any integrally closed ideal i is

written as I =
∏r

i=1 P ni
αi

uniquely.

Finally we show how to draw the graph Γ(X) for a resolution X of Spec(A)

in the case A = ⊕n≥0An of a normal graded ring over an algebraically closed

field k = A0. For that purpose, we recall so called DPD (Dolgachev-Pinkham-

Demazure) construction of normal graded rings.

Theorem 5.7. ([Dem], [Wa0],[Wa1]) Let R = ⊕nRn be a Noetherian normal

graded ring with X = Proj(R). Then there exists an ample Q-Cartier divisor D 9

on X such that R ∼= R(X, D) := ⊕n≥0H
0(X,OX(nD))T n, where we denote

8Such a resolution X exists.
9D ∈ Div(X) ⊗ Q such that ND is an ample Cartier divisor on X for some positive integer

N .
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H0(X,OX(nD)) = {f ∈ k(X) | divX(f) + nD ≥ 0}.
Actually, fix some homogeneous element T = f/g of degree 1 in the quotient field

of R and let D = divX(T ) = divX(f)−divX(g), then R = ⊕n≥0H
0(X,OX(nD))T n.

When dim R = 2, then X is a smooth curve over k and Div(X) = ⊕P∈XZP ,

where P moves on closed points of X. Then the weighted blowing-up of R has

only toric singularities and we can resolve Spec(R) by method of toric geometry.

Theorem 5.8. Assume R = R(X, D), where X is a smooth curve and D is

an ample Q-Cartier divisor on X. We put D = E −
∑r

i=1

pi

qi

Pi, where E ∈

Div(X) with deg E = a > 0 and (qi, pi) are relatively prime integers with 0 <

pi < qi. Then the graph X of minimal good resolution X of Spec(R) consists of

the “central curve” corresponding to X and r “branches” B1, . . . , Br intersecting

with X at point Pi (1 ≤ i ≤ r) determined by continued fraction expression of
pi

qi

.

Namely, if qi/pi = [b1, . . . , bmi
], then the branch Bi consists of chain of mi P1’s of

self-intersection number −b1, . . . ,−bmi
, where the first curve with self-interstction

number −b1 intersecting with X at Pi. Here, we denote

[b1, . . . , bm] = b1 −
1

b2 −
1

· · · − 1

bm

Let us explain by the graph of Example 5.3.

Example 5.9. (1) Let R = k[X, Y, Z]/(X2 +Y 3 +Z4), with deg(x) = 6, deg(y) =

4, deg(z) = 3. Then we can calculate a(R) = 12− (6+4+3) = −1 and hence X =

Proj(R) = P1. Then we can take T = y/z. Then since A/yA ∼= k[x, z]/(x2 + z4)

with x2 + z4 = (x + iz)(x − iz), then divX(y) = (P1 + P2)/3, where 1/3 comes

from the fact that k[x, z]/(x + iz) is generated by element of deg3. In general,

for irreducible variety V of codimension 1 of X corresponding pV , then we take

qV = GCD{i | (R/pV )i 6= 0}. Likewise, we can see divX(z) = P3/2. Thus we see

that

R = R(P1, D), D =
1

3
(P1 + P2) −

1

2
P3 = (P1 + P2) −

2

3
(P1 + P2) −

1

2
P3.

Since
3

2
= [2, 2], B1, B2 consists of 2 P1’s with self-intersection number −2 and

also since E = P1 + P2 with deg E = 2, we get the graph (5.1) of Example 5.3.

(2) Let A = k[X,Y, Z]/(X2 +Y 3 +Z7), with deg(x) = 21, deg(y) = 14, deg(z) =

6. Then we can take T = x/(yz). Similarly as in (1), we get

R = R(P1, D), D =
1

2
P1 −

1

3
P2 −

1

7
P3 = P1 −

1

2
P1 −

1

3
P2 −

1

7
P3.

Thus we get the graph (5.2) of Example 5.3.
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