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Abstract

The cohomology rings of the flag varieties of complex Lie groups have the strong Lefschetz
property thanks to the Hard Lefschetz theorem, and these rings are isomorphic to the coinvariant
algebras of the corresponding Weyl groups as graded rings. Namely, the coinvariant algebras
of Weyl groups are typical and basic examples of graded rings that have the strong Lefschetz
property. The coinvariant algebras of the real reflection groups, which contains the Weyl groups,
are known to have the strong Lefschetz property. In this note, we first focus on the complex
reflection groups, which contain the real reflection groups, and show that the coinvariant algebras
of the complex reflection groups except five primitive groups.

Second, we focus on ideals generated by polynomials invariant under the action of complex
reflection groups. We study when the ideas are complete intersections, when the quotient of the
ideals have the strong Lefschetz property, and other related problems.

1 The Lefschetz property

1.1 The strong Lefschetz property

Definition 1 (The strong Lefschetz property). An artinian graded algebra A

A =
c⊕

i=0

Ai (the graded decomposition. A0 ≃ K, dimK Ac = 1)

over a field K has the strong Lefschetz property if there exist L ∈ A1 such that the multiplication
map

(×Lc−2i) : Ai → Ac−i

is bijective for all i = 0, 1, . . . , ⌊c/2⌋.
In this case, the Hilbert function of A should be symmetric. Although we can define the strong

Lefschetz property for graded algebras whose Hilbert functions are not symmetric, we have defined
the strong Lefschetz property as above since we consider graded algebras whose Hilbert functions
are symmetric in this note.

1.2 The Hard Lefschetz theorem

The strong Lefschetz property is an abstraction of the property satisfied by the cohomology rings
due to the Hard Lefschetz theorem.

Theorem 2 (Hard Lefschetz theorem. See [2], for example). Let X be a d-dimensional complex
compact Kähler manifold, and ω the Kähler metric. Define the endomorphism L on the cohomology
ring H∗(X,C) to be the multiplication map by the class of ω, which belongs to H2(X,C). Then the
map

Ld−k : Hk(X,C) → H2d−k(X,C)

is bijective for k = 0, 1, . . . , d− 1.

Example 3. (1) C[x]/(xm) has the strong Lefschetz property. This algebra is isomorphic to the
cohomology ring of the complex projective space CPm−1.
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Table 1: irreducible real reflection groups

type G order fundamental degree

An Sn+1 (n+ 1)! 2, . . . , n+ 1 (n ≥ 1)
Bn Sn ! (Z2)n 2nn! 2, 4, . . . , 2n (n ≥ 2)
Dn Sn ! (Z2)n−1 2n−1n! 2, 4, . . . , 2(n− 1);n (n ≥ 4)
E6 51840 2, 5, 6, 8, 9, 12
E7 2903040 2, 6, 8, 10, 12, 14, 18
E8 696729600 2, 8, 12, 14, 18, 20, 24, 30
F4 1152 2, 6, 8, 12
G2 12 2, 6
H3 120 2, 6, 10
H4 14400 2, 12, 20, 30
I2(m) 2m 2,m m = 5 or m ≥ 7

(2) C[x1, x2, . . . , xn]/(e1, e2, . . . , en) has the strong Lefschetz property. This algebra is isomorphic to
the cohomology ring of the flag varieties GL(n;C)/B, where B ⊂ GL(n;C) is a Borel subgroup,
and ej denotes the elementary symmetric polynomials of degree j.

2 The coinvariant algebra of complex reflection groups

2.1 The classification of complex reflection groups

Reflection groups are by definition groups generated by reflections. In this note we consider finite
reflection groups only.

Definition 4 (Complex reflection groups). A unitary transform σ on Cn is called a reflection if σ is
diagonalizable, is not the identity, but the identity on some hyperplane. In particular, reflections of
finite order are diagonalizable unitary transforms such that the eigenvalues are (n− 1)-fold 1 and a
root of unity.

A (finite) subgroup of U(n) generated by reflections is called a complex reflection group. If a
complex reflection group G ⊂ U(n) is contained in the orthogonal group O(n), then G is called a
real reflection group. Table 1 is the classification of the irreducible real reflection groups.

Theorem 5 (Chevalley). Let G be a finite subgroup of U(n) acting on R = C[x1, x2, . . . , xn]. Then
the following conditions are equivalent.

(1) G is a complex reflection group.

(2) The invariant subring RG of R is the polynomial ring generated by n algebraically independent
G-invariant polynomials.

When these conditions are satisfied, n algebraically independent G-invariant polynomials are
called the fundamental invariants. The fundamental invariants are not unique. They can be taken
to be homogeneous, and the their degrees are then unique. The degrees are called fundamental
degrees of G.

It is known that the fundamental invariants form a regular sequence. For example, the sequence
e1, e2, . . . , en consisting of elementary symmetric polynomials in the polynomial ring in n variables
is a regular sequence.
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Table 2: G(r, p, n)

group rank order fundamental degree

G(r, p, n) n rnn!/p r, 2r, . . . , (n− 1)r; nr/p

Theorem 6 (Shephard-Todd [7]). Irreducible finite complex reflection groups are classified as fol-
lows:

1. the nth symmetric group Sn (n ≥ 2),

2. G(r, p, n) (r ≥ 2, n ≥ 1, p | r, (r, p, n) ̸= (2, 2, 2)),

3. 34 primitive groups,

where G(r, p, n) is defined as

G(r, p, n) = A(r, p, n)" Sn,

A(r, p, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωn

⎞

⎟⎟⎟⎠

∣∣∣∣
(ωj)r = 1 and
(ω1ω2 · · ·ωn)r/p = 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

We list their data in Table 2 and Table 3.

G(2, 1, n), G(2, 2, n) and G(m,m, 2) are isomorphic to the Weyl group of types Bn, Dn and I2(m),
respectively.

2.2 The strong Lefschetz property of the coinvariant algebras

Definition 7 (coinvariant algebras). Let G ⊂ U(n) be a complex reflection group of rank n acting
on the polynomial ring R = C[x1, x2, . . . , xn]. Let I be an ideal of R generated by G-invariant
polynomials without constant terms. We call the quotient algebra R/I the coinvariant algebra of G.
Namely, if we denote the fundamental invariants by f1, f2, . . . , fn ∈ RG, then

R/(f1, f2, . . . , fn)

is the coinvariant algebra of G.

Since the fundamental invariants form a regular sequence, the coinvariant algebra is a complete
intersection. Let us consider the strong Lefschetz property of the coinvariant algebras of complex
reflection groups. The coinvariant algebra Sn is already proved to have the strong Lefschetz property.
This is the first case in the classification (Theorem 6). The second case in the classification isG(r, p, n)
(p | r), for which the strong Lefschetz property is also already proved. The proof needs the theory
of central simple modules, and we omit the details of the proof.

Lemma 8 (G(r, p, n) [3, Proposition 4.26]). For r ≥ 2, n ≥ 1, p | r, the coinvariant algebra of
G(r, p, n) has the strong Lefschetz property.

In the classification the remaining groups are 34 primitive groups. Some of them are already
proved to have the strong Lefschetz property.
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Table 3: primitive irreducible complex reflection groups

No. rank order
fundamental
degree

4 2 24 4, 6
5 2 72 6, 12
6 2 48 4, 12
7 2 144 12, 12
8 2 96 8, 12
9 2 192 8, 24
10 2 288 12, 24
11 2 576 24, 24
12 2 48 6, 8
13 2 96 8, 12
14 2 144 6, 24
15 2 288 12, 24
16 2 600 20, 30
17 2 1200 20, 60
18 2 1800 30, 60
19 2 3600 60, 60
20 2 360 12, 30
21 2 720 12, 60
22 2 240 12, 20

No. rank order fundamental degree

23 3 120 2, 6, 10 H3

24 3 336 4, 6, 14
25 3 648 6, 9, 12
26 3 1296 6, 12, 18
27 3 2160 6, 12, 30
28 4 1152 2, 6, 8, 12 F4

29 4 7680 4, 8, 12, 20
30 4 14400 2, 12, 20, 30 H4

31 4 64 · 6! 8, 12, 20, 24
32 4 216 · 6! 12, 18, 24, 30
33 5 72 · 6! 4, 6, 10, 12, 18
34 6 108 · 9! 6, 12, 18, 24, 30, 42
35 6 72 · 6! 2, 5, 6, 8, 9, 12 E6

36 7 8 · 9! 2, 6, 8, 10, 12, 14, 18 E7

37 8 192 · 10! 2, 8, 12, 14, 18, 20, 24, 30 E8

Lemma 9 (primitive groups of rank two and real reflection groups). In Table 3 of primitive complex
reflection groups the coinvariant algebras of the groups of Nos. 4, 5, . . . , 22; 23, 28, 30, 35, 36, 37 have
the strong Lefschetz property.

Proof. Since every artinian graded algebra which is a quotient of the polynomial ring of two variables
has the strong Lefschetz property, the coinvariant algebras of the primitive groups from No. 4 to
No. 22 in Table 3 have the strong Lefschetz property.

As indicated in Table 3, the primitive groups of Nos. 23, 28, 30, 35, 36 and 37 are the real
reflection groups of types H3, F4, H4, E6, E7 and E8, respectively. It follows from the Hard Lefschetz
theorem that the coinvariant algebras of Weyl groups have the strong Lefschetz property. In addition,
for the real reflection groups the coinvariant algebras have the strong Lefschetz property by [9], [6],
[3, Theorem 8.13], [4], etc. Hence the coinvariant algebras of primitive complex reflection groups of
Nos. 23, 28, 30, 35, 36 and 37 have the strong Lefschetz property.

There remain nine groups for which we need to prove the strong Lefschetz property. For groups
of small rank we can use a computer.

Lemma 10 (primitive groups of rank three). For the primitive groups of No. 24, 25, 26 and 27 in
Table 3, the coinvariant algebras have the strong Lefschetz property.

Proof. Once we obtain the fundamental invariants it is easy to check the strong Lefschetz property
with a computer. We list the fundamental invariants of the primitive complex reflection groups of
Nos. 24, 25, 26 and 27.
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No. 24 (See Springer [8, §4.6, p. 98], Miller-Blichfeldt-Dickson [5, §125 (J), p. 254] , e.g. ):

f4 = x3y + y3z + z3x,

f6 = xy5 + yz5 + zx5 − 5x2y2z2,

f14 =
1

9

∣∣∣∣∣∣∣∣

(f4)xx (f4)xy (f4)xz (f6)x
(f4)yx (f4)yy (f4)yz (f6)y
(f4)zx (f4)zy (f4)zz (f6)z
(f6)x (f6)y (f6)z 0

∣∣∣∣∣∣∣∣
.

No. 25 (See Springer [8, §4.7, p. 101], Miller-Blichfeldt-Dickson [5, §125 (G), p. 253], e.g. ):

f6 = x6 + y6 + z6 − 12(x3y3 + x3z3 + y3z3),

f9 = (x3 − y3)(x3 − z3)(y3 − z3),

f12 = (x3 + y3 + z3)((x3 + y3 + z3)3 + 216x3y3z3).

No. 26 (See Shephard-Todd [7, §6, p. 286], Miller-Blichfeldt-Dickson [5, §125 (G), p. 253], e.g.
): Polynomials f6, f9, f12 are the same as in No. 25, and the fundamental invariants are f6, f12, f18,
where

f18 = 432f2
9 − f3

6 + 3f6f12.

No. 27 (See Miller-Blichfeldt-Dickson [5, §125 (I), p. 254], e.g. ):

f6 = (x2 + yz)3 + λx(x5 + y5 + z5 + 5xy2z2 − 5x3yz),

f12 =

∣∣∣∣∣∣

(f6)xx (f6)xy (f6)xz
(f6)yx (f6)yy (f6)yz
(f6)zx (f6)zy (f6)zz

∣∣∣∣∣∣
,

f30 =

∣∣∣∣∣∣∣∣

(f6)xx (f6)xy (f6)xz (f12)x
(f6)yx (f6)yy (f6)yz (f12)y
(f6)zx (f6)zy (f6)zz (f12)z
(f12)x (f12)y (f12)z 0

∣∣∣∣∣∣∣∣
,

where

λ =
−9±

√
−15

20
.

We conjecture the strong Lefschetz property for the remaining primitive groups of Nos. 29, 31,
32, 33, 34.

Conjecture 11 (The strong Lefschetz property of the coinvariant algebras of complex reflection
groups). The coinvariant algebras of complex reflection groups have the strong Lefschetz property.

3 Regular sequences consisting of invariant polynomials

The coinvariant algebra of a complex reflection group is a quotient by the regular sequence consisting
of the fundamental invariants. In this section we study regular sequences consisting of (not necessarily
fundamental) invariant polynomials. We give a necessarily condition for a sequence consisting of
invariant polynomials to be a regular sequence.

This topic is related to the conjecture that complete intersections have the strong Lefschetz
property, or that artinian graded Gorenstein algebras which admit the action of Sn have the strong
Lefschetz property.
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3.1 Results of Conca-Krattenthaler-Watanabe

In Conca-Krattenthaler-Watanabe [1] they study the condition for sequences consisting of power
sum symmetric polynomial or complete symmetric polynomials to be regular sequences, and the give
necessary conditions and conjectures.

Proposition 12 ([1, Conca-Krattenthaler-Watanabe]). Let a, b, c, d be different positive integers.

(1) In the polynomial ring in two variables the sequence pa, pb of power sum symmetric polynomials
is a regular sequence if and only if at least one of a/g and b/g is even, where g = gcd(a, b).

(2) In the polynomial ring in two variables the sequence ha, hb of complete symmetric polynomials
is a regular sequence if and only if gcd(a+ 1, b+ 1) = 1.

(3) In the polynomial ring in three variables if the sequence pa, pb, pc is a regular sequence, then
6 | abc.

(4) In the polynomial ring in three variables if the sequence ha, hb, hc is a regular sequence, then the
following holds:

(a) 6 | abc
(b) gcd(a+ 1, b+ 1, c+ 1) = 1

(c) for any integer t ≥ 3, there exists u ∈ {a, b, c} such that u+ 2 ̸≡ 0, 1 (mod t).

(5) In the polynomial ring in four variables if the sequence pa, pb, pc, pd is a regular sequence, then
the following three conditions hold.

(a) at least two of a, b, c, d are even, at least one of them is a multiple of three, and at least one
of them is a multiple of four.

(b) Let E be the subset of {a, b, c, d} consisting of even numbers, and g = gcd(E). Then the set
{t/g | t ∈ E} contains an even number.

(c) {a, b, c, d} does not contain any subset of the form {t, 2t, 5t}.

Remark 13. In [1], they conjecture that the converse of Proposition 12 (3), (4) and (5) hold.

3.2 A necessary condition for sequences of invariant polynomials to be regular
sequences

Theorem 14. Let G be a complex reflection group of rank n, and δ1, δ2, . . . , δn be its fundamen-
tal degrees. Let f1, f2, . . . , fn ∈ R be a regular sequence consisting of homogeneous G-invariant
polynomials with dj := deg fj > 0. Then we have the following.

(1)
(1− qd1)(1− qd2) · · · (1− qdn)

(1− qδ1)(1− qδ2) · · · (1− qδn)
is a polynomial with coefficients in nonnegative integers.

(2) For any k ≥ 1 we have #{j | dj is a multiple of k} ≥ #{j | δj is a multiple of k}.

(3) δ1δ2 · · · δn | d1d2 · · · dn.

Proof. (1) Since f1, f2, . . . , fn is a regular sequence in RG, RG factors as

RG = U ⊗C C[f1, f2, . . . , fn]

6



for some graded vector subspace of RG. By comparing the Hilbert functions, we have

Hilb(U) =
Hilb(RG)

Hilb(C[f1, f2, . . . , fn])

=
(
∏n

i=1(1− qδi))−1

(
∏n

i=1(1− qdi))−1

=

∏n
i=1(1− qdi)∏n
i=1(1− qδi)

.

Since this is a Hilbert function of finite dimensional graded vector space U , it should be a polynomial
with coefficients in nonnegative integers.

(2) Let Φk = Φk(q) be a cyclotomic polynomial whose roots are the primitive kth roots of unity.
Φk is an monic irreducible polynomial in Z[q], and satisfies

1− qd =
∏

k|d

Φk.

If we write the fraction in (1) in terms of Φk, the number of Φk in the denominator is greater than
or equal to that in the numerator since the fraction is a polynomial. This condition is nothing but
the desired condition.

(3) Since the fraction in (1) converges to an integer as q tends to one, the limit d1d2 · · · dn/δ1δ2 · · · δn
is an integer.

When G = Sn, Theorem 14 (2) and (3) are read as follows.

Corollary 15. Set R = K[x1, x2, . . . , xn]. Let f1, f2, . . . , fn ∈ R be a regular sequence consisting of
symmetric homogeneous polynomials with dj = deg fj > 0. Then we have the following.

(1) For any k ≥ 1 we have #{j | dj is a multiple of k} ≥ ⌊n/k⌋.

(2) n! | d1d2 · · · dn.

When G = G(r, 1, n), Theorem 14 (2) and (3) are read as follows.

Corollary 16. Let r ≥ 2, n ≥ 1, and R = K[x1, x2, . . . , xn]. Let f1, f2, . . . , fn ∈ R be a regular
sequence consisting of homogeneous symmetric polynomials in xr1, x

r
2, . . . , x

r
n with deg fj = rdj > 0.

Then we have

(1) For any k ≥ 1 we have #{j | dj is a multiple of k} ≥ ⌊n/k⌋.

(2) n! | d1d2 · · · dn.

Proof. (1) Since the fundamental degrees are r, 2r, . . . , nr, It follows from Theorem 14 (2) that
#{j | rdj is a multiple of k} ≥ #{j | rj is a multiple of k} for any k ≥ 1. When k is a multiple
rk′ of r, this condition becomes #{j | dj is a multiple of k′} ≥ #{j | j is a multiple of k′} for any
k′ ≥ 1. Since the right-hand side is equal to ⌊n/k′⌋, we have obtained the desired condition.

(2) By Theorem 14 (3) we have r · 2r · · ·nr | rd1 · rd2 · · · rdn. This is nothing but the desired
condition.

Example 17. Set R = K[x1, x2, x3, x4].

(1) Let f1, f2, f3, f4 ∈ R be a sequence consisting of non-constant symmetric polynomials with
degrees 1, 2, 5, 12, respectively. Since this sequence satisfies the condition of Corollary 15 (2),
but does not satisfy the condition in (3), the sequence is never a regular sequence independent
of the choice of fj .
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(2) The sequence p1, p3, p4, p12 ∈ R consisting of power sum symmetric polynomials is not a regular
sequence, but the degrees 1, 3, 4, 12 satisfy the condition in Corollary 15. Instead of the power
sums the sequence h1, h3, h4, h12 ∈ R consisting of complete symmetric polynomials is a regular
sequence.

Example 18. Let us compare our results with the results of Conca-Krattenthaler-Watanabe when
G = S3, S4.

(1) When G = S3 the condition in Corollary 15 (2) comes to 6 | d1d2d3. In this case there are at
least one even number and at least one multiple of three among d1, d2, d3. Then the condition
in Corollary 15 (1) is satisfied automatically.

Thus our result for G = S3 is a generalization of Conca-Krattenthaler-Watanabe’s result.

(2) When G = S4 the condition in Corollary 15 (2) is read as there are at least ⌊4/k⌋ multiple of k
among d1, d2, d3, d4 for each k = 1, 2, 3, 4. This corresponds to Conca-Krattenthaler-Watanabe’s
result, Proposition 12 (4) (a).

Conca-Krattenthaler-Watanabe essentially proved Corollary 15 (2) for any n. Thus Corollary 15
(2) generalizes Conca-Krattenthaler-Watanabe’s result from power sums to any symmetric poly-
nomials.

3.3 The Macaulay duals of complete intersections by regular sequences consisting
of invariant polynomials

Definition 19 (Macaulay dual). Let R = K[x1, . . . , xn] and Q = K[∂1, . . . , ∂n], where ∂j is the
partial differential operator corresponding to xj . Q acts on R by differentiation. When Q/J is
antinian Gorenstein for an ideal J of Q, there exists a unique F ∈ R such that

AnnQ(F ) = J

up to scaling.
When R/I is artinian Gorenstein for an ideal I of R, let J be the ideal of Q corresponding

to I under the identification of Q with R (∂j ↔ xj). We call the unique F ∈ R such such that
AnnQ(F ) = J the Macaulay dual of R/I. It is known that all the differentiations of F span R/I.

Theorem 20. Let G ⊂ U(n) be a complex reflection group of rank n, and f1, f2, . . . , fn be a regular
sequence consisting of invariant homogeneous polynomials of positive degree. Then the Macaulay
dual of the artinian Gorenstein algebra R/(f1, . . . , fn) is skew invariant, where a polynomial F is
said to be skew invariant if g.F = det(g−1)F for any g ∈ G.

Proof. Since the fundamental invariants form a regular sequence in R, and f1, f2, . . . , fn form a
regular sequence in RG, we have

R ≃ H ⊗C U ⊗C C[f1, . . . , fn],

where H is a graded subspace of R, and U is a graded subspace of RG. Let I be the ideal of
R generated by the fundamental invariants, and J = (f1, f2, . . . , fn). Then we have the following
isomorphisms as graded G-modules.

R/I ≃ H, R/J ≃ H ⊗C U

Since the basis of the highest-degree component of the coinvariant algebra R/I of the complex
reflection group G is known to be skew invariant, that of R/J is also skew invariant thanks to the
isomorphism above.

Finally since the Macaulay dual of R/J can be a basis of the highest-degree component of the
R/J , we conclude that the Macaulay dual of R/J is skew invariant.
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Example 21. (1) The Macaulay dual of the coinvariant algebra of Sn is the difference product∏
i<j(xi − xj) of x1, x2, . . . , xn, and it is skew symmetric.

(2) The Macaulay dual of the complete intersection (hd, hd+1, . . . , hd+n−1) ⊂ C[x1, x2, . . . , xn] by a
regular sequence consisting of complete symmetric polynomials of consecutive degrees is

(x1x2 · · ·xn)d−1
∏

i<j

(xi − xj).

This is skew symmetric.

(3) The complex reflection group G(3, 1, 2) of rank two is generated by Sn and the map σ (σ(x1) =
exp(2π/3)x1, σ(x2) = x2). The fundamental invariants are power sum symmetric polynomials
p3, p6. The sequence p6, p9 consisting of invariants is a regular sequence, and the Macaulay dual
of its quotient is F = (ab)2(a3 − b3)(2a6 + 35a3b3 + 2b6). Noting that σF = exp(−2π/3)F it is
easy to see that F is skew invariant.
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