NILPOTENCY OF FROBENIUS AND DIVISOR CLASS GROUPS

VASUDEVAN SRINIVAS AND SHUNSUKE TAKAGI

In this note, we will briefly summarize our results on two-dimensional F-nilpotent rings. See [7] for the details. All rings are excellent in this note.

Let R be a ring of prime characteristic p and $F : R \to R$ the Frobenius map which sends $x \in R$ to $x^p \in R$. If (R, \mathfrak{m}) is local, then the Frobenius map F induces a p-linear map $H^i_m(R) \to H^i_m(R)$ for each i, which we denote by the same letter F. The e-th iteration of F is denoted by F^e. Also, we denote by R^e the set of elements of R which are not in any minimal prime ideal.

Definition 1. Let (R, \mathfrak{m}) be a d-dimensional reduced local ring of characteristic $p > 0$.

(i) We say that R is F-injective if $F : H^i_m(R) \to H^i_m(R)$ is injective for all i.

(ii) We say that R is F-rational if R is Cohen-Macaulay and if for any $c \in R^e$, there exists $e \in \mathbb{N}$ such that $cF^e : H^d_m(R) \to H^d_m(R)$ is injective.

Remark 2. F-rationality implies F-injectivity.

The tight closure $0^*_{H^d_m(R)}$ of the zero submodule in $H^d_m(R)$ is the submodule of $H^d_m(R)$ consisting of all elements $z \in H^d_m(R)$ for which there exists $c \in R^e$ such that $cF^e(z) = 0$ for all large $e \in \mathbb{N}$. When R is analytically irreducible, $0^*_{H^d_m(R)}$ is the unique maximal proper R-submodule of $H^d_m(R)$ stable under the Frobenius action F (see [6]). It follows from the definition of F-rational rings that R is F-rational if and only if R is Cohen-Macaulay and $0^*_{H^d_m(R)} = 0$.

Definition 3. Let (R, \mathfrak{m}) be a d-dimensional reduced local ring of characteristic $p > 0$. We say that R is F-nilpotent\(^1\) if the natural Frobenius actions F on $H^0_m(R), \ldots , H^{d-1}_m(R), 0^*_{H^d_m(R)}$ are all nilpotent, that is, there exists $e \in \mathbb{N}$ such that $F^e(H^0_m(R)) = \cdots = F^e(H^{d-1}_m(R)) = F^e(0^*_{H^d_m(R)}) = 0$.

Remark 4. (i) When a (not necessarily finitely generated) R-module M has a Frobenius action F, we denote $M_{\text{nil}} := \{ z \in M \mid F^e(z) = 0 \text{ for some } e \in \mathbb{N} \}$.

By Hartshorne–Speiser–Lyubeznik Theorem, the definition of F-nilpotency is equivalent to saying that $H^i_m(R)_{\text{nil}} = H^i_m(R)$ for all $i \leq d - 1$ and $(0^*_{H^d_m(R)})_{\text{nil}} = 0^*_{H^d_m(R)}$.

(ii) R is F-rational if and only if R is F-injective and F-nilpotent.

\(^1\)Blickle and Bondu [2] called such rings “rings close to F-rational”.

This paper is an announcement of our result and the detailed version will be submitted to somewhere.
Example 5. Let k be a perfect field of characteristic $p > 0$.

1. $k[[x, y, z]]/(x^2 + y^3 + z^7)$ is F-nilpotent but not F-injective.
2. $k[[x, y, z]]/(x^2 + y^3 + z^7 + xyz)$ is not F-nilpotent but F-injective.
3. ([1, Example 5.28]) $k[[x, y, z]]/(x^4 + y^4 + z^4)$ is F-nilpotent if and only if $p \equiv 3 \mod 4$.

Using reduction from characteristic zero to positive characteristic, we can define the notion of F-singularities in characteristic zero.

Definition 6. Let $R = k[X_1, \ldots, X_n]/(f_1, \ldots, f_r)$ be a ring of finite type over a field k of characteristic zero. Let A be a \mathbb{Z}-subalgebra of k generated by the coefficients of the f_i, and put $R_A = A[X_1, \ldots, X_n]/(f_1, \ldots, f_r)$. Then $R_A \otimes_A k \cong R$. By the generic freeness, after possibly localizing A at a single element, we may assume that R_A is flat over A. We refer to R_A as a model of R.

We say that R is of F-rational type (resp. F-nilpotent type) if there exists a model R_A of R over a finitely generated \mathbb{Z}-subalgebra $A \subseteq k$ and a dense open subset $S \subseteq \text{Spec } A$ such that $R_\mu := R_A \otimes_A A/\mu$ is F-rational (resp. F-nilpotent) for all closed points $\mu \in S$.

Example 7. By Example 5, $\mathbb{C}[x, y, z]/(x^2 + y^3 + z^7)$ is of F-nilpotent type, but $\mathbb{C}[x, y, z]/(x^4 + y^4 + z^4)$ is not.

As the name suggests, F-rational rings correspond to rational singularities.

Theorem 8 ([3], [5], [6]). Let (R, \mathfrak{m}) be a normal local ring essentially of finite type over an field of characteristic zero. R is of F-rational type if and only if $\text{Spec } R$ has only rational singularities, that is, for every (some) resolution of singularities $\pi : Y \to X = \text{Spec } R$, $R^i \pi_* \mathcal{O}_Y = 0$ for all $i \geq 1$.

We obtain a characterization of two-dimensional rings of F-nilpotent type in terms of dual graphs of resolutions of singularities.

Theorem 9. Let (R, \mathfrak{m}) be a two-dimensional normal local ring essentially of finite type over an algebraically closed field of characteristic zero. Let $\pi : Y \to X = \text{Spec } R$ be a resolution of singularities such that the exceptional locus E of π is a simple normal crossing divisor and $\pi|_{Y \setminus E} : Y \setminus E \to X \setminus \{\mathfrak{m}\}$ is an isomorphism. Then R is of F-nilpotent type if and only if E is a tree of smooth rational curves.

A combination of a result of Lipman [4] with Theorem 8 gives a characterization of two-dimensional local rings of F-rational type in terms of divisor class groups.

Theorem 10 (cf. [4, Theorem 17.4]). Let (R, \mathfrak{m}) be a two-dimensional normal local ring essentially of finite type over an algebraically closed field of characteristic zero. Let \hat{R} be the \mathfrak{m}-adic completion of R. Then R is of F-rational type if and only if the divisor class group $\text{Cl}(\hat{R})$ is finite.
As a corollary of Theorem 9, we give a similar characterization of two-dimensional local rings of \(F \)-nilpotent type.

Theorem 11. Let \((R, \mathfrak{m})\) be a two-dimensional normal local ring essentially of finite type over an algebraically closed field of characteristic zero. Let \(\widehat{R}\) be the \(\mathfrak{m}\)-adic completion of \(R\). Then \(R\) is of \(F\)-nilpotent type if and only if the divisor class group \(\text{Cl}(\widehat{R})\) does not contain the torsion group \(\mathbb{Q}/\mathbb{Z}\).

For example, the divisor class group of \(\mathbb{C}[x, y, z]/(x^2 + y^3 + z^7)\) does not contain \(\mathbb{Q}/\mathbb{Z}\), whereas that of \(\mathbb{C}[x, y, z]/(x^2 + y^3 + z^7 + xyz)\) contain \(\mathbb{Q}/\mathbb{Z}\).

References

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India

E-mail address: Srinivas@math.tifr.res.in

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

E-mail address: stakagi@ms.u-tokyo.ac.jp