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1 Introduction

This paper is a survey of what is known about the use of regularity in invariant theory
and the cohomology of finite groups over a field of finite characteristic.

The Castelnuovo-Mumford regularity of a graded ring is an invariant that carries a lot
of information about that ring, although here we will mostly be concerned with bounds
on the degrees of the generators and relations.

For simplicity, we will always work with rings R that are finitely generated over a field
k and are graded by the non-negative integers. We also require them to have just k in
degree 0, so the unique maximal ideal is m = R+. All modules are graded too.

Given a finitely generated R-module M , let ai(M) denote the maximum degree of a
non-zero element of the local cohomology H i

m(M) (possibly ∞ if unbounded or −∞ if
H i

m(M) = 0). The Castelnuovo-Mumford regularity (or just regularity) of M over R is,
by definition,

regM = max
i
{ai(M) + i}.

The regularity of the ring R is just its regularity as a module over itself.
Note that if we have a module finite homomorphism of rings, S → R, the regularity

remains the same if we calculate it regarding M as an S-module.
We will also want to be able to consider regularity for cohomology rings, which are only

graded commutative. In this case we consider R as a module over the commutative subring
Rev = ⊕iR2i. The previous remark shows that this would not change the regularity for a
commutative ring.

Now suppose that R = k[x1, . . . , xn] is a polynomial ring in which the generators have
arbitrary positive degrees. We set σ(R) =

∑n
i=1(deg xi − 1).

Now consider the minimal projective resolution of M over R.

· · · → P1 → P0 →M → 0

Let ρi(M) be the maximum degree of a non-zero element of (R/m)⊗R Pi (possibly ∞
or −∞), which is equal to the maximum degree of a generator of Pi. It can be shown as
a consequence of local duality or directly that

regM = max
i
{ρi(M)− i} − σ(R).
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The usual formulation does not contain a σ-term, because all the di are supposed to
be in degree 1, so σ(R) = 0.

Such a characterization of regularity easily leads to bounds on the degrees of the
generators and relations, as follows.

Given a finitely generated graded k-algebra S, either commutative or graded commu-
tative, and an integer N , let τNS be the k-algebra (commutative or graded commutative,
the same as S) determined by the generators and relations of S that occur in degrees at
most N . There is a canonical map τNS → S, which is an isomorphism in degrees up to
and including N .

Let S be a commutative or graded commutative ring. Let R = k[x1, . . . , xm] and
suppose that there is a map R → S such that S is finitely generated over R (e.g. if R is
a Noether normalization of S). Then:

1. if N ≥ max{reg(S) + σ(R), deg(xi)}, then τNS → S is a surjection;

2. if N ≥ max{2(reg(S) + σ(R)), reg(S) + σ(R) + 1, deg(xi)}, then τNS → S is an
isomorphism;

3. if N ≥ max{reg(S) + σ(R) + 1, deg(xi)} and if τNS, considered an R-module, is
generated in degrees at most N , then τNS → S is an isomorphism.

2 Rings of Invariants

Given a standard graded polynomial ring S = k[x1, . . . , xn] and an action of a finite group
by homogeneous linear transformations, it is natural to ask for bounds on the degrees of
the generators and relations.

That just |G| is a bound on the degrees of the generators when k has characteristic
0 is a result of Noether. This was generalized to the case of coprime characteristic by
Fleischmann [6, 7] and Fogarty [8], with a much simplified proof by Benson. However, in
general, no bound depending only on |G| is possible, as was shown by Richman [13, 14].

We have shown that reg SG ≤ 0, see [15]. By Dade’s Lemma, there is always a set
of parameters (elements that generate a subring over which SG is finitely generated as
a module) in degree at most |G| (take a set of basis elements in degree 1 in general
position and then form their orbit products). It follows from the formulas in the previous
section that SG is generated as a k-algebra in degrees at most n(|G| − 1) (provided that
n > 1, |G| > 1). The relations between the generators are generated in degrees at most
2n(|G| − 1).

The proof that regSG ≤ 0 in [15] employs relative homological algebra in order to
utilize the structure theorem of Karagueuzian and the author [10]. The latter is a partial
description of S as a kG-module, and has a long and complicated proof.

An alternative proof, based on the Cech complex over S with respect to a system of
parameters for SG, is given in [17]. The homology of this complex is the local cohomology
of the polynomial ring S, so the complex is exact in degrees greater than −n. The idea of
the proof is to regard this Cech complex as a complex of kG-modules and then to show
that it is split exact in degrees greater than −n. This way, the complex is still exact in
these degrees after taking fixed points. But the fixed points compute the local cohomology
of SG, so ai(S

G) ≤ −n.
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In fact, both of the proofs that reg(SG) ≤ 0 yield the slightly stronger result that
hreg(SG) := maxi{ai(SG)} ≤ −n.

3 Cohomology of Groups

D.J. Benson conjectured that any finite group G satisfies regH∗(G,Fp) = 0, [1, 2, 3]; he
also showed that regH∗(G,Fp) ≥ 0. We proved equality in [16]. In this case, a system
of parameters can be obtained as the Chern classes of a faithful complex representation.
Considering these representations leads to the result that the degrees of the generators
are bounded by |G| − 1 and those of the relations by 2(|G| − 1).

In fact, the method shows that if G is not cyclic and ⊕iVi is a sum of irreducible
complex representations for G that forms a faithful representation, then

∑
i(dimVi)

2 is a
bound on the degrees of the generators (twice this for the relations).

The regularity result generalizes to the case of a compact Lie group acting on a smooth
manifold with finite mod-p homology, where we find that, for the equivariant cohomol-
ogy, regH∗

G(M,Fp) ≤ dimM − dimG. In particular, for a compact Lie group we have
regH∗(BG,Fp) ≤ − dimG.

Benson also conjectured that orientable virtual Poincaré duality groups of dimension
d satisfy regH∗(G,Fp) = d. A slight variant of this was proved in [15]. He also had an
analogous conjecture for p-adic Lie groups; this remains open.

In invariant theory, the bounds on the degrees are not particularly important for
calculation, because there are various means, such as integral closure, for knowing when
all the invariants have been found. But, in machine computations of the cohomology of a
group, the beginning of a projective resolution of k over kG has to be computed and this
can grow very quickly. It is, therefore, essential to have a good bound on the degrees of
the generators and relations, because this tells you how much of the resolution you need
to compute.

Better estimates than the one given above can be obtained by using different systems
of parameters and some tricks. It is possible to determine whether a given set of elements
is a system of parameters by considering the restrictions to elementary abelian subgroups,
so this is a feasible method, but there is no obvious way of obtaining a best system. Part
of the problem seems to be that regularity only sees generators and relations as a module,
not as a ring.

Using these methods it has proved possible to compute the cohomology rings of all
groups of order 128 (all 2,328 of them) as well as those of many other groups of interest.
For more information, see the work of Carlson [4, 5] and that of Green and King [9, 11, 12].

A different approach to some of these results, along with a generalization to Chow
rings of classifying spaces of finite groups can be found in the forthcoming book of Totaro
[18].

Finally, let us point out that it would be natural to combine the invariant theory and
the cohomology and bound the regularity of the ring H∗(G, k[x1, . . . , xn]).
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