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1 Homological conjectures

The homological conjectures are a string of statements that describe certain phe-

nomena of (local) Noetherian rings and modules over them (see [5] for details and

its history). These questions were suggested and studied extensively in the 1970’s

by many researchers. Those pioneers include Serre, Bass, Peskine, Szpiro, Hochster,

Roberts and others. Among them, M. Hochster was leading this area and published

many interesting results that stemmed from the conjectures. One of the simplest

forms of the homological conjectures is the direct summand conjecture. It is formu-

lated as follows.

Conjecture 1 (Direct Summand Conjecture). Assume that R is a Noetherian reg-

ular domain and R → S is a torsion free module-finite extension. Then R → S

splits as an R-module.

Since the splitting question is local, we may localize R → S at a prime ideal

of R so that we have a module-finite map R → S, where R is a regular local ring.

Furthermore, we may assume that R→ S is module-finite and S is a domain. The

direct summand conjecture is easy to prove, if R contains a field of characteristic

zero. We sketch its proof. Let Tr : Frac(S) → Frac(R) be the trace map in

the field theory. Then since R is regular, it induces a map Tr : S → R. Let

d = [Frac(S) : Frac(R)]. Then 1
d

Tr : S → R gives a splitting to the R-module

map R → S. If we analyze this proof carefully, the proof works even when R is

an integrally closed domain. In positive characteristic, Hochster gave a proof in

[4] using the Frobenius map which is a ring homomorphism sending an element

to its p-th power. Peskine and Szpiro also made an effective use of the Frobenius

map. In [4], he formulated the monomial conjecture which is equivalent to the

direct summand conjecture. The direct summand conjecture is still open when the
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local ring has mixed characteristic and the dimension at least 4. Hochster realized

that the homological conjectures follow from the existence of big Cohen-Macaulay

modules (algebras).

Definition 2. Let (R,m) be a local Noetherian ring and let B be an R-module

(algebra). Then B is a balanced big Cohen-Macaulay R-module (algebra), if every

system of parameters of R is a B-regular sequence and B 6= mB.

We should emphasize that the point of this definition is to allow B to be non-

Noetherian or non-finitely generated over R. When B is taken to be a finitely

generated R-module, then B is said to be a small Cohen-Macaulay R-module. It

looks a bit suspicious that every complete local ring has a small Cohen-Macaulay

module. Moreover, it is unknown if every local ring of mixed characteristic has a

big Cohen-Macaulay algebra. The study of the mixed characteristic case will be

our main theme in this article, and we address some topics and techniques that are

related to problems in mixed characteristic case. At the current status, the following

theorem is known ([8] for details).

Theorem 3. Let R be a regular local ring of mixed characteristic p > 0 and let S

be a torsion free module-finite R-algebra such that the localization R[1
p
] → S[1

p
] is

finite étale. Then S has a balanced big Cohen-Macaulay algebra.

The proof of this theorem is based on the almost purity theorem. We have the

following corollary.

Corollary 4. Let R be a Noetherian regular domain and let S be a torsion free

module-finite R-algebra. Assume that R is p-torsion free and the localization R[1
p
]→

S[1
p
] is finite étale for some prime integer p > 0. Then R ↪→ S splits as an R-module

homomorphism.

2 Almost ring theory

The idea of almost ring theory first appeared in Faltings’ proof of the p-adic com-

parison theorem between the p-adic étale cohomology and the de Rham cohomology

for a smooth proper scheme X over a p-adic field K via Fontaine’s functor. More

precisely, there is a canonical isomorphism of GK-representations:

CK ⊗Qp H
n
ét(XK ,Qp) ∼=

⊕
q

(CK(−q)⊗K Hn−q(X,Ωq
X/K)).

Faltings deduced this isomorphism from the almost purity theorem. At the same

time, Heitmann [3] proved the direct summand conjecture in dimension 3 in a sim-

ilar spirit to the almost purity theorem. To state the almost purity theorem, we
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introduce notation. Let (V, pV, k) be an unramified complete discrete valuation ring

of mixed characteristic with perfect residue field k. Let R := V [[x2, . . . , xd]]. Then

we may form an increasing chain of regular local rings:

R0 := R→ R1 → R2 → · · · → Rn · · ·

such that Rn = V [p
1
pn ][[x

1
pn

2 , . . . , x
1
pn

d ]]. Now we put

R∞ :=
⋃
n>0

Rn.

From the construction, the Frobenius endomorphism on R∞/pR∞ is surjective with

kernel equal to p
1
pR∞/pR∞, and R → R∞ is a faithfully flat integral extension.

Finally, R∞ is a coherent domain. The following is a weak version of the almost

purity theorem [1].

Theorem 5 (Faltings). Assume that B is an integral extension domain of R∞ such

that B is normal and R∞[1
p
] → B[1

p
] is finite étale. Then the Frobenius endomor-

phism on B/pB is surjective and R∞ → B is an almost flat extension.

We will later explain almost flat extensions. Let B be an integral domain that

comes equipped with a function v : B → R ∪ {∞} such that

1. v(ab) = v(a) + v(b) for a, b ∈ B.

2. v(a+ b) ≥ max{v(a), v(b)} for a, b ∈ B.

3. v(b) ≥ 0 for all b ∈ B.

4. v(b) =∞ ⇐⇒ b = 0.

Definition 6. Let the notation be as above. Then a B-module M is called almost

zero, if for any m ∈ M and ε > 0, there exists an element b ∈ B such that v(b) < ε

and b ·m = 0.

Notice that the above definition of almost zero modules is slightly weaker than

the one given in the book of Gabber and Ramero [2], in which one starts with a

valuation ring (V,m) such that m2 = m and say that a V -module M is almost zero

(in the sense of Gabber-Ramero) if mM = 0. There are another possible definitions

of almost zero modules and it depends on the situation, but we will employ the

above definition for the applications to the homological conjectures. It is easy to

prove the following properties.

1. If 0 → L → M → N → 0 is a short exact sequence of B-modules, then M is

almost zero if and only if both L and N are almost zero.
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2. The direct limit of almost zero modules is almost zero.

Definition 7. We say that a B-module M is almost flat, if TorBi (M,N) is almost

zero for any B-module N and i > 0.

Let (R,m) be a complete local domain. Then we propose the following conjec-

ture.

Conjecture 8. Let R+ be the integral closure of R in a fixed algebraic closure of

the field of fractions of R. Then the local cohomology module H i
m(R+) is an almost

zero R+-module for all 0 ≤ i ≤ dimR− 1.

Heitmann’s proof of the direct summand conjecture in dimension 3 shows that, if

Conjecture 8 is true, then the direct summand conjecture follows in mixed character-

istic and we refer the reader to [6] for the proof. One might wonder that H i
m(R+) = 0

for 0 ≤ i ≤ dimR−1. However, this is not true. If R is a local domain of dimension

3 and contains the field of rationals Q, then it is shown that H2
m(R+) 6= 0. Indeed,

it is easy to construct an example of a 3-dimensional local domain that is normal,

but not Cohen-Macaulay. Call such a ring R. Then by the trace map argument,

it is shown that the natural inclusion R ↪→ R+ splits. Hence R+ cannot be a big

Cohen-Macaulay R-algebra.

3 Fontaine rings and the purity theorem

We introduce the Fontaine rings and prove the purity theorem in mixed character-

istic. This is the easiest version of the almost purity theorem and does not require

almost ring theory at all. Its proof is to reduce the problem in mixed characteris-

tic to the problem in positive characteristic via Fontaine rings and then study the

Frobenius action on the differential modules for perfect rings. This proof is a simple

exercise using the Fontaine rings and the author believes that this is a good place

to demonstrate its usefulness to make readers acquainted with the philosophy of

almost ring theory.

Definition 9 (Fontaine ring). Let A be a ring and let p > 0 be a prime integer.

Then we define

E(A) := lim←−
n∈N

An,

where An := A/pA for all n and the map An+1 → An is the Frobenius map. The

ring structure of E(A) is induced by the ring structure of A.

An element of E(A) is of the form a = (an | an ∈ A/pA) with apn+1 = an. We

denote by 〈p〉 the element (p, p
1
p , p

1
p2 , . . .) ∈ E(A). It is easy to see that E(A) is a
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perfect ring of characteristic p and there is a natural map:

ΦA : E(A)→ A/pA

defined by ΦA(a0, a1, a2, . . .) = a0. This is a ring homomorphism. The following

lemma is immediate.

Lemma 10. If the Frobenius endomorphism on A/pA is surjective, then ΦA is also

surjective.

If d is a derivation on a ring A of characteristic p > 0, then we have dxp =

pxp−1dx = 0. Using this fact, we have the following fact.

Lemma 11. Assume that R→ S is a ring homomorphism of perfect rings of char-

acteristic p > 0. Then we have

Ω1
S/R = 0.

Proof. By assumption, the relative Frobenius map: S ⊗R R
(1) → S(1) defined by

s ⊗ r 7→ spr is an isomorphism. Then this induces an isomorphism on differential

modules:

Ω1
S/R ⊗R R

(1) ∼= Ω1
S(1)/R(1)

Then the relative Frobenius map maps dx to dxp = 0. Hence we have Ω1
S/R = 0, as

required.

We have constructed a big ring R∞ in the previous section. The Fontaine ring

E(R∞) maps onto R∞/pR∞, because the Frobenius endomorphism on R∞/pR∞
is surjective. Let R∞ → S∞ be a torsion free module-finite extension of normal

domains.

Proposition 12. Assume further that the Frobenius endomorphism on S∞/pS∞ is

surjective. Then

Ω1
S∞/R∞ = 0.

Proof. We put R∞ := R∞/pR∞ and S∞ := S∞/pS∞. Then there is a commutative

diagram whose rows are short exact:

0 −−−→ E(R∞)
〈p〉−−−→ E(R∞)

ΦR∞−−−→ R∞/pR∞ −−−→ 0y y y
0 −−−→ E(S∞)

〈p〉−−−→ E(S∞)
ΦS∞−−−→ S∞/pS∞ −−−→ 0

Indeed, both ΦR∞ and ΦS∞ are surjective by assumption ([7] for the exactness at

other spots). By this diagram and Lemma 11, we have Ω1
S∞/R∞

= 0, because the

Fontaine rings are perfect. On the other hand,

Ω1
S∞/R∞ ⊗R∞ R∞/pR∞ ∼= Ω1

S∞/R∞
.
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Since R∞ → S∞ is a torsion free module-finite extension and R∞ is coherent, it is a

finitely presented extension. So Ω1
S∞/R∞

is a finitely generated R∞-module. Hence

we have Ω1
S∞/R∞

= 0 by Nakayama’s lemma.

Now assume that R∞ → S∞ is a generically finite, torsion free integral extension

of normal domains. Then we have Frac(S∞) = Frac(R∞)[α] for some α ∈ Frac(S∞).

Let Kn denote the field of fractions of Rn, let Ln := Kn[α] and let Sn be the integral

closure of R in Ln. Then since Rn is a complete local domain, Sn is also a complete

local domain that is module-finite over Rn. However, R∞ → S∞ is not necessarily

module-finite.

Theorem 13 (Purity theorem). Let the notation be as above. Then the following

statements are equivalent:

1. The extension Rn → Sn is finite étale for n� 0.

2. The extension R∞ → S∞ is finite étale.

3. R∞ → S∞ is module-finite and the Frobenius endomorphism on S∞/pS∞ is

surjective.

Proof. 1 ⇒ 2 We have that Sn ⊗Rn R∞ is an integral normal domain for n� 0 by

linearly disjoint property. Hence we have S∞ ∼= Sn ⊗Rn R∞ and thus, R∞ → S∞ is

finite étale by base change.

2 ⇒ 3 This is immediate from the fact that the relative Frobenius map induced

on the ring extension R∞ → S∞ is an isomorphism and the Frobenius endomorphism

on R∞/pR∞ is surjective ([2], Theorem 3.5.13).

3 ⇒ 1 By Proposition 12, we have Ω1
S∞/R∞

= 0. Note that S∞ ∼= Sn ⊗Rn R∞
for n� 0. Then since R∞ is faithfully flat over Rn, it follows that

Ω1
S∞/R∞

∼= Ω1
Sn⊗RnR∞/R∞

∼= Ω1
Sn/Rn

⊗Rn R∞

and thus, Ω1
Sn/Rn

= 0 for n� 0. This implies that Rn → Sn is an unramified local

map of local rings. Then since Rn is regular, Sn is also regular, form which the

flatness of Rn → Sn is clear. Therefore, Rn → Sn is finite étale.
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