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Let A C B be a ring extension (of commutative rings).

This extension is an elementary subintegral extension if B = A[b] with b?,0® € A.
The extension A C B is subintegral or B is subintegral over A if B is a union of subrings
which are obtainable from A by a finite succession of elementary subintegral extensions.
The subintegral closure of A in B, usually denoted by g4, is the largest subintegral
extension of A in B. This is simply the union of all intermediary subrings which are
subintegral over A. The ring g4 is integral over A. Further, if 54 is an integral domain
then A and A have the same field of fractions. We say that A is subintegrally closed
in B if A = A. This is equivalent to saying that whenever b € B and b%,b® € A then
b € A. Without reference to B, the ring A is seminormal if the following condition
holds: b,c € A and b® = ¢? imply that there exists a € A with b = a? and ¢ = a?.
A seminormal ring is necessarily reduced and is subintegrally closed in every reduced
overring.

The multiplicative group of those A-submodules of B which are invertible is denoted
by Z(A, B). The Picard group of A is denoted, of course, by Pic A, while the group of
units of A is denoted by A*. A relationship between these groups is given by the natural
exact sequence

1— A" - B* —-ZI(A, B) — PicA — PicB.

We prove the following two theorems motivated by a well known result of Traverso
and Swan which says that for a commutative ring A, A,eq is seminormal if and only if
the canonical map Pic A — Pic A[X] is an isomorphism. In the special case when A is
reduced and Noetherian, the first of the two theorems yields Traverso-Swan’s result as
a corollary.

Theorem 1. Let A C B be a ring extension. Then A is subintegrally closed in B if and
only if the canonical map I(A, B) — Z(A[X], B[X]) is an isomorphism.

Theorem 2. Let A C B be a ring extension, and let A denote the subintegral closure
of A in B. Then:
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(1) There exists a commutative diagram

lwAiﬂ lG@&B) %l0C&B)
1 — I(A[X], A[X]) — Z(A[X], B[X]) — Z(A[X], B[X))
of canonical maps with exact rows and with 9(?1, B) an isomorphism.

(2) If B is an integral domain and dim A < 1 then the above diagram extends to the

commutative diagram

| — T(A[X], A[X]) — T(AIX], BIX]) — T(A[X], B[X]) — 1

with exact rows.
(3) If Q C A then T(A[X], A[X]) = Z[X]®z My = @, M, with My = im §(A,"A) =
T(A,’A) and each M, also isomorphic to Z(A, A).
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