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1 Introduction

Throughout this paper let N and Z denote the set of nonnegative integers and
integers, respectively. A numerical semigroup is a subset of N which is closed under
addition, contains the zero element and whose complement in N is finite. Every
numerical semigroup H is finitely generated and has the unique minimal system of
generators a1, ..., ar ∈ N; that is

H = 〈a1, ..., ar〉 := {λ1a1 + · · · + λrar | λ1, ..., λr ∈ N},

where gcd(a1, ..., ar) = 1. The Frobenius number of H, denoted by F(H), is the
maximal integer which is not belonging to H. A numerical semigroup H is symmetric
if for any integers x ∈ Z, either x ∈ H or F(H) − x ∈ H. Let k be a field and t be
an indeterminate over k. The ring

k[[H]] := k[[ta1 , ..., tar ]] ⊂ k[[t]]

is called the numerical semigroup ring associated to H = 〈a1, ..., ar〉. A numerical
semigroup ring k[[H]] is a one-dimensional Cohen-Macaulay local ring with maximal
ideal m = (ta1 , ..., tar). It is well known that k[[H]] is Gorenstein if and only if H is
symmetric.

Our purpose in this paper is to investigate Ulrich ideals of Gorenstein numerical
semigroup rings which generated by monomials. The notion of Ulrich ideals was
introduced recently by S. Goto, K. Ozeki, R. Takahashi, K-.i. Watanabe and K.
Yoshida in [GOTWY].

Definition 1.1. [GOTWY] Let (R, m) be a Cohen-Macaulay local ring with d =
dim R ≥ 0 and I be an m-primary ideal of R. Suppose that I contains a parameter
ideal Q = (a1, ..., ad) of R as a minimal reduction. Then I is called an Ulrich ideal
of R if the following two conditions hold true:
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(1) I2 = QI.

(2) R/I-module I/I2 is free.

By definition, any parameter ideal of R is Ulrich. For convenience, in this paper,
we except parameter ideals whenever we refer to Ulrich ideals. We put R = k[[H]]
and let χg

R denotes the set of Ulrich ideals of R which generated by monomials in t.
When H is a numerical semigroup generated by 2-elements, the set χg

R is completely
described in [GOTWY]. So, in Section 3, we consider the case where H is generated
by 3-elements, that is H = 〈a, b, c〉. In this case, we completely determine when
χg

k[[H]] is empty or not so. In section 4, we consider the case where H is a numerical

semigroup generated by an arithmetic sequence, that is H = 〈a, a + d, ..., a + nd〉,
where a, d > 0, n ≥ 2 and gcd(a, d) = 1. Then we state that χg

k[[H]] 6= ∅ if and only
if n = 2.

2 Preliminaries

We start this section by recalling some results on Ulrich ideals from [GOTWY]. The
following theorem is very important to achieve our goal.

Theorem 2.1. [GOTWY] Suppose that R = k[[H]] is a Gorenstein numerical
semigroup ring (equivalently, H is a symmetric numerical semigroup) and let I be
an ideal of R. Then the following conditions are equivalent.

(1) I ∈ χg
R.

(2) I = (tα, tβ) (α, β ∈ H,α < β) and if we put x = β−α, the following conditions
hold.

(i) x /∈ H, 2x ∈ H.

(ii) the numerical semigroup H1 = H + 〈x〉 is symmetric, and

(iii) α = min{h ∈ H | h + x ∈ H}.

In particular, we note that χg
R 6= ∅ if and only if there is an integer x ∈ Z which

satisfies that conditions (i) and (ii) above.

Example 2.2. (1) Let H = 〈4, 5〉 = {0, 4, 5, 8, 9, 10, 12 →}. We can find the integers
which satisfy the condition (i):

x = 2, 6, 7, 11.

In these integers, 2 and 6 just satisfy the condition (ii). Therefore we have

χg
k[[H]] = {(t8, t10), (t4, t10)}

by the condition (iii).
(2) If H = 〈3, 5〉, then χg

k[[H]] = ∅ since we can check that there are no integers

which satisfy the conditions (i) and (ii).
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Actually, when H is generated by 2-elements, the set χg
R is completely described

in [GOTWY]. In particular, the following assertion holds true.

Theorem 2.3. [GOTWY] Let H = 〈a, b〉 be a numerical semigroup. Then the
following conditions are equivalent.

(1) χg
k[[H]] 6= ∅.

(2) a or b is even.

3 The case of H = 〈a, b, c〉
In this section, we consider the case where H = 〈a, b, c〉. There is a characterization
for H to be symmetric.

Lemma 3.1. [He], [Wa] Let H = 〈a, b, c〉 be a numerical semigroup generated by
3-elements. Then following assertions are equivalent.

(1) H is symmetric.

(2) Changing order of a, b and c if necessary, we can write a = a′d, b = b′d, where
gcd(a, b) = d > 1 and c ∈ 〈a′, b′〉, c 6= a′, b′.

If this case occurs, we denote by H = 〈d 〈a′, b′〉 , c〉.

Example 3.2. (1) H = 〈8, 12, 15〉 is symmetric since we can write as H = 〈4 〈2, 3〉 , 15〉.
(2) H = 〈7, 11, 13〉 is not symmetric since any two pairs of minimal generators

of H are pairwise coprime.

Using Lemma 3.1, we state our main theorem.

Theorem 3.3. Let H = 〈a, b, c〉 be a symmetric numerical semigroup and assume
that H = 〈d 〈a′, b′〉 , c〉. We set R = k[[H]], H1 = 〈a′, b′〉 and R1 = k[[H1]]. Then
the following assertions hold true.

(1) If d and c are odd, then

χg
R = {(tdα, tdβ) | α, β ∈ H1 such that (tα, tβ) ∈ χg

R1
}.

In particular, #χg
R = #χg

R1
.

(2) If a, b and c are odd, then χg
R = ∅.

In the following, we assume that a′ and b′ are odd.

(3) If d is odd and c is even, then

(i) χg
R 6= ∅ if and only if H + 〈c/2〉 is symmetric.
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(ii) if χg
R 6= ∅, then

χg
R = {(t

c
2
l, t

c
2
d) | l is even with 1 < l < d}.

In particular, #χg
R = (d − 1)/2.

(4) If d is even and c is odd, then χg
R 6= ∅.

We provide some lemmas to prove this.

Definition 3.4. [RG] For two numerical semigroups H1 = 〈a1, ..., am〉 and H2 =
〈b1, ..., bn〉, we define a gluing of H1 and H2 as follows:

〈d1H1, d2H2〉 := 〈d1a1, ..., d1am, d2b1, ..., d2bn〉 ,

where d1 ∈ H2\{b1, ..., bn}, d2 ∈ H1\{a1, ..., am} and gcd(d1, d2) = 1.

By the constructions of gluings, we have the following result.

Proposition 3.5. Let H = 〈d1H1, d2H2〉 be a gluing of two numerical semigroups
H1 and H2. Then the ring k[[H]] is a k[[H1]] (resp. k[[H2]]) - free module of rank
d1 (resp. d2).

We say that a numerical semigroup H is a complete intersection if its semigroup
ring k[[H]] is a complete intersection.

Theorem 3.6. [De], [RG] The following assertions hold true.

(1) Let H = 〈d1H1, d2H2〉 be a gluing of two numerical semigroups H1 and H2.
Then H is symmetric (resp. a complete intersection) if and only if H1 and H2

are symmetric (resp. complete intersections).

(2) A numerical semigroup other than N is a complete intersection if and only if
it is a gluing of two complete intersection numerical semigroups.

Remark 3.7. When a numerical semigroup H is generated by 3-elements, H is sym-
metric if and only if H is a complete intersection. Therefore Lemma 3.1 is a special
case of Theorem 3.6 (2) since H = 〈a, b, c〉 = 〈d 〈a′, b′〉 , c〉 is a gluing of 〈a′, b′〉 and
〈1〉 = N.

Lemma 3.8. Let H = 〈d1H1, d2H2〉 be a gluing of two symmetric numerical semi-
groups H1 = 〈a1, ..., am〉 and H2 = 〈b1, ..., bm〉. We put R = k[[H]] and Ri = k[[Hi]]
for i = 1, 2. The following assertions hold true for i = 1, 2.

(1) If (tα, tβ) ∈ χg
R1

, then (tdiα, tdiβ) ∈ χg
Ri

.

(2) If (tγ, tδ) ∈ χg
R and di divides x := δ − γ > 0, then there exists two integers

α, β ∈ Hi with c/di = β − α > 0 such that (tα, tβ) ∈ χg
Ri

.

(3) #χg
Ri

≤ #χg
R.
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Proof. (1) There is an natural injection from R1 to R:

φ : R1 ↪→ R
taj 7−→ td1aj

We note that R ∼= R⊕d1
1 by Proposition 3.5. If I ⊂ R1 is an Ulrich ideal, then

e(IR) = d1e(I) = d1µR1(I)`R1(R1/I) = µR(IR)`R(R/IR),

where IR is the extension of I from R1 to R (see [GOTWY, Lemma 2.3.]).
(2) This easily follows form Theorem 2.1.
(3) This is clear by (1) and (2).

Example 3.9. (1) Let H1 = 〈4, 5〉 and H2 = N. We know that

χg
R1

= {(t8, t10), (t4, t10)}

and χg
R2

= ∅ (see Example 2.2). Let H = 〈3H1, 13H2〉 = 〈12, 13, 15〉 be a gluing of
H1 and H2. By Theorem 2.1, we can check that

χg
R = {(t24, t30), (t12, t30)}.

In this case, there is a one-to-one correspondence between the sets χg
R1

and χg
R. In

other word, all Ulrich ideals of R are extensions from those of R1. This example
illustrate Theorem (1) since 3 and 13 are odd.

(2) Let H1 and H2 be as above and let H = 〈3H1, 16H2〉 be a gluing of H1 and
H2. Then we see that

χg
R = {(t24, t30), (t12, t30), (t16, t24), (t16, t30)}.

In this case, the ideals (t16, t24) and (t16, t30) are not extensions from those of R1.

By using Bresinsky’s results in [Br], we have the following.

Lemma 3.10. Let H = 〈a, b, c〉 be a symmetric numerical semigroup. If H + 〈x〉
is symmetric for an integer x ∈ Z such that x /∈ H and 2x ∈ H, then H + 〈x〉 is a
complete intersection.

Using Lemma 3.10, we can prove the following lemma.

Lemma 3.11. Let H = 〈a, b, c〉 = 〈d 〈a′, b′〉 , c〉 be a symmetric numerical semigroup.
Suppose that S = H + 〈x〉 is symmetric for an integer x ∈ Z such that x /∈ H and
2x ∈ H. We write as 2x = λ1a + λ2b + λ3c, where λ1, λ2, λ3 ≥ 0. If λ3 > 0, and
λ1 > 0 or λ2 > 0, then the following statements hold.

(1) emb(S) > 2.

(2) a or b is even, and c is even.
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Now we give the proof of Theorem 3.9.

Proof of Theorem 3.9. (1) We assume that H + 〈x〉 is symmetric for an integer x
such that x /∈ H and 2x ∈ H. Then it suffices to prove that d divides x by Lemma
3.8. Since 2x ∈ H, we can write as 2x = λ1a + λ2b + λ3c, where λ1, λ2, λ3 ≥ 0. If
λ3 = 0, then d divides x since d is odd, and so we are done. Therefore we assume
that λ3 > 0. Then it must be λ1 > 0 or λ2 > 0 since otherwise we see that x is a
multiple of c, which is a contradiction. By Lemma 3.11, c is even, which contradict
to our assumption. Hence we obtain λ3 = 0.

(2) This follows from (1) and Theorem 2.1.
(3) First, we claim that if H + 〈x〉 is symmetric for an integer x ∈ Z such that

x /∈ H and 2x ∈ H, then x = λc/2, where λ is an odd positive integer. We write
as 2x = λ1a + λ2b + λ3c, where λ1, λ2, λ3 ≥ 0. If λ3 = 0, then d divides x, which
is a contradiction. Hence we have λ3 > 0. And if λ1 > 0 or λ2 > 0, then we see
that either a or b is even by Lemma 3.11. This is contradict to our assumption, and
hence λ1 = λ2 = 0. Therefore we have x = λ3c/2, where λ3 is odd.

Now we prove the first assertion (i). We assume that H + 〈c/2〉 is not symmetric
and χg

k[[H]] 6= ∅. Then
c

2
/∈ 〈a′, b′〉 . (3.1)

since otherwise H + 〈c/2〉 = 〈d 〈a′, b′〉 , c/2〉 which is symmetric. By our assumption,
there is an integer x ∈ Z such that x /∈ H, 2x ∈ H and H + 〈x〉 is symmetric.
We can write as x = λc/2 for some odd integer λ > 0 by the claim in previous
paragraph. If λ = 1, then H + 〈x〉 never be symmetric. Hence we have λ ≥ 3.
Then it is easily seen that H + 〈x〉 = 〈a, b, c, λc/2〉 is generated by 4-elements, and
which is symmetric. Therefore this numerical semigroup is a complete intersection
by Lemma 3.10. Hence we can write as

H + 〈x〉 =
〈
d 〈a′, b′〉 ,

c

2
〈2, λ〉

〉
since we know that both 〈a′, b′〉 and 〈2, λ〉 are complete intersections. This contradict
to the condition (3.1). This complete the proof of (i). The second assertion (ii) easily
follows from the previous arguments.

(4) By using Lemma 3.1, we can check that H + 〈da′/2〉 or H + 〈db′/2〉 is sym-
metric. Hence χg

k[[H]] 6= ∅ by Theorem 2.1.

4 The case of H = 〈a, a + d, ..., a + nd〉
We say that a numerical semigroup H is generated by an arithmetic sequence if
H = 〈a, a + d, ..., a + nd〉, where a, d > 0, n ≥ 2 and gcd(a, d) = 1. The following is
the main result about this.

Theorem 4.1. [Nu] Let H = 〈a, a + d, ..., a + nd〉 be a symmetric numerical semi-
group generated by an arithmetic sequence. Then χg

k[[H]] 6= ∅ if and only if n = 2.
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When H = 〈a, a + d, ..., a + nd〉 is a symmetric numerical semigroup generated
by an arithmetic sequence, H is a complete intersection if and only if n = 2 (for
example, see [GSS]). So we had expected that if k[[H]] is a Gorenstein numerical
semigroup ring which is not a complete intersection, then χg

k[[H]] = ∅. But, unfortu-
nately, there are counter examples.

Example 4.2. A numerical semigroup H = 〈10, 12, 13, 14, 15〉 is symmetric but
not a complete intersection. However H + 〈5〉 = 〈5, 12, 13, 14〉 is symmetric, and
hence the ideal (t10, t15) ∈ χg

k[[H]]. In general, Hm = 〈2m, 2m + 2, 2m + 3, ..., 3m〉
is symmetric but not a complete intersection if m ≥ 5. Then we can check that
(t2m, t3m) ∈ χg

k[[Hm]].
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