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Introduction

　We discuss the Lefschetz property for Artinian Gorenstein algebras constructed from
combinatorial data. As a consequence, we obtain the Sperner property for the geometric
modular lattice. This article is a résumé of the results from [6], [7], [8].

The Lefschetz property for a commutative graded algebra is a ring-theoretic abstrac-
tion of the Hard Lefschetz Theorem for compact Kähler manifolds, which is defined as
follows.

Definition 1 Let A =
⊕c

i=0Ai, Ac ̸= 0, be a commutative graded algebra.
(1) If there exists an element L ∈ A1 such that the maps ×L : Ai → Ai+1 are of full rank
for 0 ≤ i ≤ c − 1, then A is said to have the weak Lefschetz property. The element L
satisfying the above condition is called a weak Lefschetz element．
(2) If there exists an element L ∈ A1 such that the maps ×Lj : Ai → Ai+j are of full rank
for 0 ≤ i ≤ c− 1 and 1 ≤ j < c− i, then A is said to have the weak Lefschetz property.
In this case, the element L is called a strong Lefschetz element．
(3) If there exists an element L ∈ A1 such that the maps ×Lc−2i : Ai → Ac−i are bijective
for 0 ≤ i ≤ [c/2], then A is said to have the strong Lefschetz property in the narrow
sense.

In the present article, our main interest is the strong Lefschetz property for Gorenstein
algebras over a field k. For a graded Gorenstein k-algebraA =

⊕c
i=0Ai, we have dimk Ai =

dimk Ac−i, so the strong Lefschetz property is equivalent to the one in the narrow sense.
In the following, we just say that A has the Lefschetz property when A has the strong
Lefschetz property in the narrow sense. The strong Lefschetz element will be called the
Lefschetz element for short.

The Lefschetz property for Artinian algebras has interesting combinatorial implica-
tions. As an example, we discuss the Sperner property for finite ranked posets. The
maximal cardinality of antichains of a poset P is called the Dilworth number of P, which
is denoted by d(P ). For a finite ranked poset P =

∪
i Pi with level sets Pi, each level

set Pi is an antichain of P. So we have the inequality d(P ) ≥ maxi(#Pi). If the equality
holds, the poset P is said to have the Sperner property. Sperner [10] proved that the
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Dilworth number of the Boolean lattice 2{1,...,n} is equal to
(

n
[n/2]

)
. The Sperner property

was named after his work. See e.g. [4], [11] for applications of the Lefschetz property to
the Sperner property.

1 Lefschetz property for Artinian Gorenstein alge-

bras

　 Let A =
⊕c

i=0Ai be a graded Artinian Gorenstein commutative algebra over a field
k of characteristic 0. We assume that A0 = k and Ac ̸= 0. Let P = Pn = k[x1, . . . , xn]
and Q = Qn = k[X1, . . . , Xn] be polynomial rings over k. We consider P as a Q-module
by identifying each variable Xi with the operator ∂/∂xi on P. For a polynomial f ∈ P,
define the ideal Ann f of Q by Ann f := {α ∈ Q | α(X)f(x) = 0}.

Proposition 1 ([2])　Let A = ⊕c
i=0Ai be a finite-dimensional k-algebra with dimk A1 =

n. The algebra A is Gorenstein if and only if there exists a polynomial f ∈ Pn such that
A ∼= Qn/Ann f.

Now we give a characterization of a Lefschetz element of a Gorenstein algebra Q/Ann f
in terms of a polynomial f ∈ P. For a polynomial g ∈ P, fix a family of polynomials
Bi = {β(i)

µ (X)}dimk Ai
µ=1 ⊂ Q affording a linear basis of degree i part of Q/Ann g. We define

the i-th Hessian of g as follows:

Hess
(i)
Bi
(g) := det

(
β(i)
µ (X)β(i)

ν (X)g(x)
)dimk Ai

µ,ν=1
.

Proposition 2 ([9], [12])　 An element L = a1X1 + · · · + anXn ∈ Q gives a Lefschetz
element of Q/Ann f if and only if

f(a1, . . . , an) ̸= 0 and Hess
(i)
Bi
(f)(a1, . . . , an) ̸= 0, 1 ≤ i ≤ [deg f/2].

Corollary 1 For a polynomial f ∈ P, the algebra Q/Ann f has the strong Lefschetz

property if and only if Hess
(i)
Bi
(f) ̸= 0 as a function on degree one part of Q/Ann f for

1 ≤ i ≤ [deg f/2].

2 Gorenstein algebras associated with matroids

The matroid M = (E,F) is a pair of a finite set E and a family F of subsets of E
satisfying the following conditions (i) - (iii):
(i) ∅ ∈ F ,
(ii) X ∈ F , Y ⊂ X ⇒ Y ∈ F ,
(iii) X, Y ∈ F , #X < #Y ⇒ ∃y ∈ Y \X, X ∪ {y} ∈ F .

For a matroid M = (E,F), a maximal element of F with respect to the inclusion
is called a basis of M. Denote by BM the set of the bases of M. For S ⊂ E, define
r(S) := max{#F |F ⊂ S, F ∈ F}. The closure σ(S) of a subset S ⊂ E is defined as
σ(S) := {x ∈ E | r(S ∪ {x}) = r(S)}. A subset S ⊂ E is called a flat of M if σ(S) = S.
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We construct a Gorenstein algebra AM for a given matroid M = (E,F). Consider
the polynomial rings PM = k[xe | e ∈ E] and QM = k[Xe | e ∈ E]. We regard PM as a
QM -module as in the previous section. For a subset S of E, we set xS :=

∏
e∈S xe. For a

matroid M, take a polynomial ΦM :=
∑

S∈BM
xS ∈ PM and define the Gorenstein algebra

AM by AM := QM/AnnΦM . It is easy to see that the set

ΛM = {X2
e | e ∈ E} ∪ {XS | S ⊂ E, S ̸∈ F} ∪ {XA −XA′ | A,A′ ⊂ E, σ(A) = σ(A′)}

is contained in the ideal AnnΦM . Denote by JM the ideal of QM generated by ΛM . It
can be shown that the set ΛM is a universal Gröbner basis of JM . For a general matroid
M, the ideal JM does not necessarily coincide with AnnΦM . The equality JM = AnnΦM

can be shown for a special class of matroids. The projective space Pn−1(Fq) over a finite
field Fq forms a matroid under the linear independence in usual sense, which we denote
by M(q, n).

Theorem 1 ([7])　 For the matroid M = M(q, n), we have AM = QM/JM . Moreover,
the algebra AM has the strong Lefschetz property.

The idea of the proof is based on Corollary 1. We can show that Hess
(i)
Bi
(ΦM(q,n)) is a

nonzero polynomial for 1 ≤ i ≤ [n/2].

Corollary 2 The lattice of the linear subspaces of Pn−1(Fq) has the Sperner property.

The Sperner property of the vector space lattice was proved by Kantor [5]. We have given
another proof based on the Lefschetz property of AM(q,n).

3 Geometric modular lattice

For a matroid M, the set of the flats of M forms a lattice L(M). A characterization of a
matroid M such that JM = AnnΦM is given as follows.

Theorem 2 ([7])　The algebra QM/JM is Gorenstein if and only if L(M) is a geometric
modular lattice. Moreover, for a geometric modular lattice M, the algebra AM has the
strong Lefschetz property.

The above theorem is proved by using Greene’s theorem [3] on the characterization of
the geometric modular lattice.

Corollary 3 The geometric modular lattice has the Sperner property.

The result in the above Corollary was proved by Baker [1]. It can be obtained also as a
consequence of the above theorem.
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4 Block design and Gorenstein algebra

It is known that the geometric modular lattice decomposes into a product of Boolean
lattices, lattices of rank 2, finite projective spaces and (non-Desarguesian) finite projective
planes. The finite projective planes play an important role in the proof of Theorem 2.
In this section, we introduce Gorenstein algebras for block designs as an analogue of the
construction of the previous section.

The pair D = (E,B) of a finite set E and a family B of subsets of E is called a
t-(v, k, λ) design if the following conditions are satisfied:
(i) #E = v,
(ii) each element of ∈ B is a k-element subset of E,
(iii) For any t distinct elements a1, . . . , at ∈ E, there exist exactly λ elements of B
containing a1, . . . , at.

An element of B is called a block of D. We construct an algebra AD for a t-(v, k, λ)
design D. Define a set ∆ of subsets of E as follows:

∆ := {S ∈ 2E | #S = t+ 1, S ̸⊂ B, ∀B ∈ B}.

Consider the polynomial rings PD = k[xe | e ∈ E] and QD = k[Xe | e ∈ E]. We take a
polynomial ΨD :=

∑
S∈∆ xS to define the algebra AD := QD/AnnΨD. We can show the

following in a similar manner to the case of AM(q,n).

Theorem 3 ([6])　Let D = (E,B) be a t-(v, k, λ) design. For a t-element subset T ⊂ E,
define Z(T ) :=

∪
B∈B, T⊂B B. If #Z(T ) is independent of the choice of T, then AD has

the strong Lefschetz property.

The assumption t ≤ 5 in the statement of [6, Theorem 4] is not necessary．
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