On the limit of Frobenius in the Grothendieck group^{*}

Kazuhiko Kurano ^{†‡}

Meiji University

A part is a joint work with Kosuke Ohta (Meiji University). Another part is a joint work with C-Y. Jean Chan (Central Michigan University) [1].

1 Introduction

We define the Cohen-Macaulay cone $C_{CM}(R)$, the strictly nef cone SN(R), and the fundamental class $\overline{\mu}_R$ for a Noetherian local domain R. They satisfy

$$\overline{G_0(R)}_{\mathbb{R}} \supset SN(R) \supset C_{CM}(R) - \{0\}$$
$$\bigcup_{\overline{G_0(R)}_{\mathbb{Q}}} \ni \overline{\mu_R}$$

where $G_0(R)$ is the Grothendick group of finitely generated <u>R</u>-modules, $\overline{G_0(R)}$ is the Grothendick group modulo numerical equivalence, and $\overline{G_0(R)}_K = \overline{G_0(R)} \otimes_{\mathbb{Z}} K$.

The fundamental class is deeply related to the homological conjectures as in Fact 8.

We are mainly interested in the problem whether $\overline{\mu_R}$ is in such cones or not. Theorem 11 is the main theorem, which states that if R is FFRT or F-rational, then $\overline{\mu_R}$ is in $C_{CM}(R)$. We shall give a corollary (Corollary 14).

2 Cohen-Macaulay cone

In this note, let R be a d-dimensional Noetherian local domain such that one of the following conditions are satisfied:

- (a) R is a homomorphic image of an excellent regular local ring containing \mathbb{Q} .
- (b) R is essentially of finite type over a field, \mathbb{Z} or a complete DVR.

If either (a) or (b) is satisfied, there exists a regular alteration of $\operatorname{Spec} R$ by de Jong's theorem [4].

We always assume that modules are finitely generated.

*This paper is an announcement of our result and the detailed version will be submitted to somewhere.

[†]The author is partially supported by JSPS KAKENHI Grant 21540050.

[‡]E-mail: kurano@isc.meiji.ac.jp

Let $G_0(R)$ be the Grothendieck group of finitely generated *R*-modules, that is,

$$G_0(R) := \frac{\bigoplus M : \text{ f.g.} R\text{-module } \mathbb{Z}[M]}{< [M] - [L] - [N] \mid 0 \to L \to M \to N \to 0 \text{ is exact} >}$$

Let C(R) be the category of bounded complexes of finitely generated *R*-free modules such that every homologies are of finite length. Let $C_d(R)$ be the subcategory of C(R) consisting of complexes of length *d* with $H^0(\mathbb{F}) \neq 0$. A complex \mathbb{F} . in $C_d(R)$ is of the form

$$0 \to F_d \to F_{d-1} \to \cdots \to F_1 \to F_0 \to 0.$$

For example, the Koszul complex of a parameter ideal belongs to $C_d(R)$.

For $\mathbb{F} \in C(R)$, we have a well-defined map

$$\chi_{\mathbb{F}_{\cdot}}: G_0(R) \longrightarrow \mathbb{Z}$$

by $\chi_{\mathbb{F}.}([M]) = \sum_i (-1)^i \ell_R(H_i(\mathbb{F}.\otimes_R M))$. We have the induced maps $\chi_{\mathbb{F}.} : G_0(R)_{\mathbb{Q}} \longrightarrow \mathbb{Q}$ and $\chi_{\mathbb{F}.} : G_0(R)_{\mathbb{R}} \longrightarrow \mathbb{R}$. We say that $\alpha \in G_0(R)$ ($\alpha \in G_0(R)_{\mathbb{Q}}$ or $\alpha \in G_0(R)_{\mathbb{R}}$) is numerically equivalent to 0 if $\chi_{\mathbb{F}.}(\alpha) = 0$ for any $\mathbb{F}. \in C(R)$. We define the Grothendieck group modulo numerical equivalence as follows:

$$G_0(R) = G_0(R) / \{ \alpha \in G_0(R) \mid \chi_{\mathbb{F}}(\alpha) = 0 \text{ for any } \mathbb{F} \in C(R) \}.$$

Then, by Theorem 3.1 and Remark 3.5 in [6], we know that $\overline{G_0(R)}$ is a non-zero finitely generated \mathbb{Z} -free module.¹

Example 1 1) If $d \leq 2$, then $\overline{G_0(R)} = \mathbb{Z}$ (Proposition 3.7 in [6]).

2) Let X be a smooth projective variety with embedding $X \hookrightarrow \mathbb{P}^n$. Let R (resp. D) be the affine cone (resp. the very ample divisor) of this embedding. Then, we have the following commutative diagram:

(a) By the commutativity of this diagram, ϕ is a surjection. Therefore, we have

$$\operatorname{rank}\overline{G_0(R)} \le \dim_{\mathbb{Q}} CH_{num}^{\cdot}(X)_{\mathbb{Q}}/D \cdot CH_{num}^{\cdot}(X)_{\mathbb{Q}}.$$
(1)

There are examples that the equality does not hold in (1) (see [11]). If some conjectures are true, the equality holds in (1) for a smooth projective variety X defined over $\overline{\mathbb{Q}}$ (see [11]).

(b) If $CH^{\cdot}(X)_{\mathbb{Q}} \simeq CH^{\cdot}_{num}(X)_{\mathbb{Q}}$, then ϕ is an isomorphism ([6], [11]). In this case, the equality holds in (1). Using it, we can show the following. If X is a blow-up at n points of \mathbb{P}^k $(k \ge 2)$, then rank $\overline{G_0(R)} = n + 1$. If $X = \mathbb{P}^m \times \mathbb{P}^n$, then rank $\overline{G_0(R)} = min\{m, n\}$.

¹We need the existence of a regular alteration in the proof of this result.

Consider groups $\overline{G_0(R)} \subset \overline{G_0(R)}_{\mathbb{Q}} \subset \overline{G_0(R)}_{\mathbb{R}}$. We shall define some cones in $\overline{G_0(R)}_{\mathbb{R}}$.

Definition 2 Let $C_{CM}(R)$ be the Cohen-Macaulay cone, i.e.,

$$C_{CM}(R) = \sum_{M:MCM} \mathbb{R}_{\geq 0}[M] \subset \overline{G_0(R)}_{\mathbb{R}}.$$

Let $C_{CM}(R)^-$ be the closure of $C_{CM}(R)$ with respect to the classical topology on $\overline{G_0(R)}_{\mathbb{R}}$. We define the *strictly nef cone* by

$$SN(R) = \{ \alpha \mid \chi_{\mathbb{F}}(\alpha) > 0 \text{ for any } \mathbb{F} \in C_d(R) \}.$$

By the depth sensitivity, $\chi_{\mathbb{F}.}([M]) = \ell_R(H_0(\mathbb{F}. \otimes M)) > 0$ for any maximal Cohen-Macaulay module $M \neq 0$ and $\mathbb{F}. \in C_d(R)$. Therefore,

$$SN(R) \supset C_{CM}(R) - \{0\}.$$

Remark 3 Assume that R is a Cohen-Macaulay ring.

Let M be a torsion R-module. Taking a sufficiently high syzygies of M, we know

$$\pm [M] + n[R] \in C_{CM}(R) \text{ for } n \gg 0.$$

Therefore, we have rank $\overline{G_0(R)} = \dim C_{CM}(R)$ and

$$C_{CM}(R)^{-} \supset C_{CM}(R) \supset Int(C_{CM}(R)^{-}) = Int(C_{CM}(R)) \ni [R].$$

Example 4 The following examples are given in [2]. Assume that k is an algebraically closed field of characteristic zero.

1) Put $R = k[x, y, z, w]_{(x,y,z,w)}/(xy - f_1 f_2 \cdots f_t)$. Here, we assume that f_1, f_2, \ldots, f_t are pairwise coprime linear forms in k[z, w]. In this case, we have rank $\overline{G_0(R)} = t$.

We can prove that the Cohen-Macaulay cone is minimally spanned by the following $2^t - 2$ maximal Cohen-Macaulay modules of rank one:

$$\{(x, f_{i_1} f_{i_2} \cdots f_{i_s}) \mid 1 \le s < t, \ 1 \le i_1 < i_2 < \cdots < i_s \le t\}$$

Here, remark that this ring is of finite representation type if and only if $t \leq 3$.

2) The Cohen-Macaulay cone of $R = k[x_1, x_2, ..., x_6]_{(x_1, x_2, ..., x_6)}/(x_1x_2 + x_3x_4 + x_5x_6)$ is not spanned by maximal Cohen-Macaulay modules of rank one. It is of finite representation type since it has a simple singularity.

3 Fundamental class

Definition 5 We put

$$\mu_R = \tau_R^{-1}([\operatorname{Spec} R]) \in G_0(R)_{\mathbb{Q}}$$

where $\tau_R : G_0(R)_{\mathbb{Q}} \xrightarrow{\sim} A_*(R)_{\mathbb{Q}}$ is the singular Riemann-Roch map.

$$\begin{array}{cccc} G_0(R)_{\mathbb{Q}} & \longrightarrow & G_0(R)_{\mathbb{Q}} \\ \mu_R & \mapsto & \overline{\mu_R} \end{array}$$

We call the image $\overline{\mu_R}$ in $\overline{G_0(R)}_{\mathbb{O}}$ the fundamental class of R.

Remark that $\overline{\mu_R} \neq 0$ since rank_R $\mu_R = 1$.

Put R = T/I, where T is a regular local ring. The map τ_R is defined using not only R but also T. Therefore, $\mu_R \in G_0(R)_{\mathbb{Q}}$ may depend on the choice of T.² However, we can prove that $\overline{\mu_R} \in \overline{G_0(R)}_{\mathbb{Q}}$ is independent of T (Theorem 5.1 in [6]).

We shall explain why we call $\overline{\mu_R}$ the fundamental class of R.

Remark 6 1) If $X = \operatorname{Spec} R$ is a *d*-dimensional affine variety over \mathbb{C} , we have the cycle map cl

$$\begin{array}{cccc} G_0(R)_{\mathbb{Q}} & \xrightarrow{\tau_R} & A_*(R)_{\mathbb{Q}} & \xrightarrow{cl} & H_*(X,\mathbb{Q}) \\ \mu_R & \mapsto & [\operatorname{Spec} R] & \mapsto & \mu_X \end{array}$$

such that $cl([\operatorname{Spec} R])$ is the fundamental class μ_X in $H_{2d}(X, \mathbb{Q})$ in the usual sense, where $H_*(X, \mathbb{Q})$ is the Borel-Moore homology. Here μ_X is the generator of $H_{2d}(X, \mathbb{Q}) \simeq \mathbb{Z}$.

Hence, we call $\overline{\mu_R}$ the fundamental class of R.

2) Let R have a subring S such that S is a regular local ring and R is a localization of a finite extension of S. Let L be a finite-dimensional normal extension of Q(S)containing Q(R). Let B be the integral closure of R in L. Then, we have

$$\mu_R = \frac{1}{\operatorname{rank}_R B}[B] \text{ in } G_0(R)_{\mathbb{Q}}.$$

In particular, $\overline{\mu_R} = \frac{[B]}{\operatorname{rank}_R B}$ in $\overline{G_0(R)}_{\mathbb{Q}}$.

3) Assume that R is of characteristic p > 0 and F-finite. Assume that the residue class field is algebraically closed. By the singular Riemann-Roch theorem, we have

$$\overline{\mu_R} = \lim_{e \to \infty} \frac{[^e R]}{p^{de}} \text{ in } \overline{G_0(R)}_{\mathbb{R}},$$

where ${}^{e}R$ is the *e*th Frobenius direct image.

Example 7 1) If R is a complete intersection, then μ_R is equal to [R] in $G_0(R)_{\mathbb{Q}}$, therefore $\overline{\mu_R} = [R]$ in $\overline{G_0(R)}_{\mathbb{Q}}$. There exists a Gorenstein ring such that $\overline{\mu_R} \neq [R]$. However there exist many examples of rings satisfying $\overline{\mu_R} = [R]$. Roberts ([8], [9]) proved the vanishing property of intersection multiplicity for rings satisfying $\overline{\mu_R} = [R]$.

²There is no example that the map τ_R actually depend on the choice of T. For some excellent rings, it had been proved that τ_R is independent of the choice of T (Proposition 1.2 in [5]).

2) Let R be a normal domain. Then, we have

$$\begin{array}{rccc} G_0(R)_{\mathbb{Q}} & \xrightarrow{\tau_R} & A_*(R)_{\mathbb{Q}} = A_d(R)_{\mathbb{Q}} \oplus A_{d-1}(R)_{\mathbb{Q}} \oplus \cdots \\ [R] & \mapsto & [\operatorname{Spec} R] - \frac{K_R}{2} + \cdots \\ [\omega_R] & \mapsto & [\operatorname{Spec} R] + \frac{K_R}{2} + \cdots \end{array}$$

If $\tau_R^{-1}(K_R) \neq 0$ in $\overline{G_0(R)}_{\mathbb{Q}}$, then $[R] \neq \overline{\mu_R}$. Sometimes $\overline{\mu_R} = \frac{1}{2}([R] + [\omega_R])$ is satisfied. But it is not true in general.

3) Let $R = k[x_{ij}]/I_2(x_{ij})$, where (x_{ij}) is the generic $(m+1) \times (n+1)$ -matrix, and k is a field. Suppose $0 < m \le n$.

Then, we have

$$G_{0}(R)_{\mathbb{Q}} \simeq \overline{G_{0}(R)}_{\mathbb{Q}} \simeq \mathbb{Q}[a]/(a^{m+1})$$

$$[R] \mapsto \left(\frac{a}{1-e^{-a}}\right)^{m} \left(\frac{-a}{1-e^{-a}}\right)^{n}$$

$$= 1 + \frac{1}{2}(m-n)a + \frac{1}{24}(\cdots)a^{2} + \cdots$$

$$[\omega_{R}] \mapsto \left(\frac{-a}{1-e^{-a}}\right)^{m} \left(\frac{a}{1-e^{-a}}\right)^{n}$$

$$\overline{\mu_{R}} \mapsto 1$$

$$\tau_{R}^{-1}(K_{R}) \mapsto (n-m)a$$

Here, we shall explain the relationship between the fundamental class $\overline{\mu_R}$ and homological conjectures.

Fact 8 1) The small Mac conjecture is true if and only if $\overline{\mu_R} \in C_{CM}(R)$ for any R. We give an outline of the proof here.

"If" part is trivial. We shall show "only if" part. Suppose that S is a regular local ring such that R is a localization of a finite extension over S. Let L be a finite-dimensional normal extension of Q(S) containing Q(R). Let B be the integral closure of R in L. Here, assume that there exists an maximal Cohen-Macaulay B-module M. Put $\operatorname{Aut}_{Q(S)}(L) = \{g_1, \ldots, g_t\}$ and $N = \bigoplus_i (g_i M)$, where $g_i M$ denotes M with R-module structure given by $a \times m = g_i(a)m$. Then N is an maximal Cohen-Macaulay R-module such that $[N] = \operatorname{rank}_R N \cdot \mu_R$ in $G_0(R)_{\mathbb{Q}}$. Therefore, $\overline{\mu_R} = \frac{[N]}{\operatorname{rank}_R N} \in C_{CM}(R)$.

Even if R is an equi-characteristic Gorenstein ring, it is not known whether $\overline{\mu_R}$ is in $C_{CM}(R)$ or not. If R is a complete intersection, then $\overline{\mu_R} = [R] \in C_{CM}(R)$ as in 1) in Example 7.

- 2) If $\overline{\mu_R} = [R]$ in $\overline{G_0(R)}_{\mathbb{Q}}$, then the vanishing property of intersection multiplicity holds (Roberts [8], [9]).
- 3) Roberts [10] proved $\overline{\mu_R} \in SN(R)$ if ch(R) = p > 0. Using it, he proved the new intersection theorem in the mixed characteristic case.
- 4) $\overline{\mu_R} \in SN(R)$ if R contains a field (Kurano-Roberts [7]). Even if R is a Gorenstein ring (of mixed characteristic), we do not know whether $\overline{\mu_R} \in SN(R)$ or not.

- 5) If μ_R ∈ SN(R) for any R, then Serre's positivity conjecture is true in the case where one of two modules is (not necessary maximal) Cohen-Macaulay.
 If C_{CM}(R) ≠ {0} for any R, then the small Mac conjecture is true. Therefore, if μ_R ∈ C_{CM}(R) for any R, then Serre's positivity conjecture is true.
- **Remark 9** 1) If R is Cohen-Macaulay of characteristic p > 0, then ${}^{e}R$ is a maximal Cohen-Macaulay module. Since $\overline{\mu_R}$ is the limit of $[{}^{e}R]/p^{de}$ in $\overline{G_0(R)}_{\mathbb{R}}, \overline{\mu_R}$ is contained in $C_{CM}(R)^-$. In the case where R is not of characteristic p > 0, we do not know whether $\overline{\mu_R}$ is contained in $C_{CM}(R)^-$ even if R is Gorenstein.
 - 2) As we have already seen, if R is Cohen-Macaulay, then $[R] \in Int(C_{CM}(R)) \subset C_{CM}(R)$.

There is an example of non-Cohen-Macaulay ring R such that $[R] \notin SN(R)$.³ On the other hand, it is expected that $\overline{\mu_R} \in SN(R)$ for any R. Therefore, for the non-Cohen-Macaulay local ring R, $\overline{\mu_R}$ behaves better than [R] in a sence.

4 Main theorem

The fundamental class $\overline{\mu_R}$ is deeply related to homological conjectures. Therefore, we propose the following question.

Question 10 Assume that R is a "good" Cohen-Macaulay local domain (for example, equicharacteristic, Gorenstein, etc). Is $\overline{\mu_R}$ in $C_{CM}(R)$?

The main theorem is the following:

Theorem 11 Assume that R is an F-finite Cohen-Macaulay local domain of characteristic p > 0 with residue class field algebraically closed.

- 1) If R is FFRT, then $\overline{\mu_R}$ is contained in $C_{CM}(R)$.
- 2) If R is F-rational, then $\overline{\mu_R}$ is contained in $Int(C_{CM}(R))$.

Here, we give an outline of the proof in the case where R is F-rational.

Proof. First, we shall prove that $[\omega_R] \in Int(C_{CM}(R))$ if R is Cohen-Macaulay. We have an isomorphism $\xi : G_0(R)_{\mathbb{R}} \to G_0(R)_{\mathbb{R}}$ given by $\xi([M]) = \sum_i (-1)^i [Ext^i_R(M, \omega_R)]$. Let \mathbb{D}^{\cdot} be the dualizing complex of R. For $\mathbb{F} \in C(R)$ and an R-module M, consider the double complex

$$Hom_R(\mathbb{F}.\otimes M, \mathbb{D}^{\cdot}),$$

we can show $(-1)^d \chi_{\mathbb{F}} = \chi_{(\mathbb{F},*)} \xi$. Thus, we know that ξ preserves the numerical equivalence. Therefore we have the induced map

$$\overline{\xi}:\overline{G_0(R)}_{\mathbb{R}}\to\overline{G_0(R)}_{\mathbb{R}}$$

The map $\overline{\xi}$ satisfies $\overline{\xi}([R]) = [\omega_R]$ and $\overline{\xi}(C_{CM}(R)) = C_{CM}(R)$. Since $[R] \in Int(C_{CM}(R))$, we obtain $[\omega_R] \in Int(C_{CM}(R))$.

³Peskine-Szpiro had conjectured $[R] \in SN(R)$.

Assume that M is a maximal Cohen-Macaulay module. For e > 0, consider the following exact sequence

$$0 \longrightarrow L_e \longrightarrow F^e_*(M) \longrightarrow M^{\oplus b_e} \longrightarrow 0$$

where $F_*^e(M)$ is the *e*th Frobenius direct image of M. Take b_e as large as possible. Recall that L_e is a maximal Cohen-Macaulay module. Put $r = \operatorname{rank}_R M$.

Here we define the dual F-signature following Sannai [12]

$$s(M) := \limsup_{e \to \infty} \frac{b_e}{rp^{de}}$$

Then, taking a subsequence of $\{\frac{b_e}{rp^{de}}\}_e$, we may assume that $s(M) = \lim_{e \to \infty} \frac{b_e}{rp^{de}}$. Then, $\frac{[L_e]}{rp^{de}}$ converges to some element in $\overline{G_0(R)}_{\mathbb{R}}$, say $\alpha(M)$.

$$\begin{array}{rcl} \frac{[F_*^e(M)]}{rp^{de}} & = & \frac{b_e[M]}{rp^{de}} & + & \frac{[L_e]}{rp^{de}} & \in \overline{G_0(R)}_{\mathbb{R}} \\ \downarrow & & \downarrow & \downarrow & (e \to \infty) \\ \hline \overline{\mu_R} & = & s(M)[M] & + & \alpha(M) \end{array}$$

Since L_e is a maximal Cohen-Macaulay module, we know $\alpha(M) \in C_{CM}(R)^-$.

Here put $M = \omega_R$. Then

$$\overline{\mu_R} = s(\omega_R)[\omega_R] + \alpha(\omega_R) \in \overline{G_0(R)}_{\mathbb{R}}.$$
(2)

Here

$$\alpha(\omega_R) \in C_{CM}(R)^-. \tag{3}$$

and

$$\omega_R] \in Int(C_{CM}(R)) = Int(C_{CM}(R)^-).$$
(4)

The most important point in this proof is the fact that

R is F-rational iff $s(\omega_R) > 0$

due to Sannai [12].

Therefore, if R is F-rational, then $\overline{\mu_R} \in Int(C_{CM}(R)^-)$ by (2), (3), (4) and Remark 3. q.e.d.

Remark 12 If the rank of $\overline{G_0(R)}$ is one for a Cohen-Macaulay local domain R, then $\overline{\mu_R} \in C_{CM}(R)$.

If R is a toric ring (a normal semi-group ring over a field k), then we can prove $\overline{\mu_R} \in C_{CM}(R)$ as in the case of FFRT without assuming that ch(k) is positive.

Problem 13 1) As in the above proof, if there exists a maximal Cohen-Macaulay module in $Int(C_{CM}(R))$ such that its generalized F-signature or its dual F-signature is positive, then $\overline{\mu_R}$ is in $Int(C_{CM}(R)^-)$.

Without assuming that R is F-rational, do there exist such a maximal Cohen-Macaulay module?

- 2) How do we make mod p reduction? (the case of rational singularity)
- 3) If R is Cohen-Macaulay, is $\overline{\mu_R}$ in $C_{CM}(R)^-$? If R is a Cohen-Macaulay ring containing a field of positive characteristic, then $\overline{\mu_R}$ in $C_{CM}(R)^-$ as in 1) in Remark 9.
- 4) If R is of finite representation type, is $\overline{\mu_R}$ in $C_{CM}(R)$?
- 5) Find more examples of $C_{CM}(R)$ and SN(R).

In order to prove the following corollary, we use a fact $\overline{\mu_R} \in Int(C_{CM}(R))$ for some F-rational ring R.

Corollary 14 ([1]) Let d be a positive integer and p a prime number. Let $\epsilon_0, \epsilon_1, \ldots, \epsilon_d$ be integers such that

$$\epsilon_i = \begin{cases} 1 & i = d, \\ -1, \ 0 \ or \ 1 \ d/2 < i < d, \\ 0 & i \le d/2. \end{cases}$$

Then, there exists a d-dimensional Cohen-Macaulay local ring R of characteristic p, a maximal primary ideal I of R of finite projective dimension, and positive rational numbers α , β_{d-1} , β_{d-2} ,..., β_0 such that

$$\ell_R(R/I^{[p^n]}) = \epsilon_d \alpha p^{dn} + \sum_{i=0}^{d-1} \epsilon_i \beta_i p^{in}$$

for any n > 0.

References

- [1] C.-Y. CHAN AND K. KURANO, The cone spanned by maximal Cohen-Macaulay modules and an application, arXiv:1211.4016, preprint.
- [2] H. DAO AND K. KURANO, Boundary of Cohen-Macaulay cone, in preparation.
- [3] W. FULTON, Intersection Theory, second edition, Springer, Berlin (1998).
- [4] A. J. DE JONG, Smoothness, semi-stability and alterations, Publ. Math. IHES 83 (1996), 51–93.
- [5] K. KURANO, On Roberts rings, J. Math. Soc. Japan 53 (2001), 333–355.
- [6] K. KURANO, Numerical equivalence defined on Chow groups of Noetherian local rings, Invent. Math., 157 (2004), 575–619.
- [7] K. KURANO AND P. C. ROBERTS, Adams operations, localized Chern characters, and the positivity of Dutta multiplicity in characteristic 0, Trans. Amer. Math. Soc. 352 (2000), 3103–3116.
- [8] P. ROBERTS, The vanishing of intersection multiplicities and perfect complexes, Bull. Amer. Math. Soc. 13 (1985), 127–130.

- P. ROBERTS, Local Chern characters and intersection multiplicities, Algebraic geometry, Bowdoin, 1985, 389–400, Proc. Sympos. Math. 46, Amer. Math. Soc., Providence, RI, 1987.
- [10] P. ROBERTS, Intersection theorems, Commutative algebra, 417–436, Math. Sci. Res. Inst. Publ., 15, Springer, New York, Berlin, 1989.
- [11] P. C. ROBERTS AND V. SRINIVAS, Modules of finite length and finite projective dimension, Invent. Math., 151 (2003), 1–27
- [12] A. SANNAI, *Dual F-signature*, to appear in International Mathematical Research Notices.