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1. INTRODUCTION

Let (R, m) be a Noetherian local ring with the maximal ideal m of dimension d > 0 and
let C be a nonzero R-module of finite length. Let ¢ : R™ — R" be an R-linear map of free
modules with C' = Coker ¢ as the cokernel of ¢, and put M := Imp C F := R". Then
one can consider the function

A(p) := Lr([Coker Symg(©)]p+1) = Lr(Spr1/MPT),

where S}, (resp. MP) is a homogeneous component of degree p of S = Symp(F) (resp.
R[M] = Im Symp(y)). Buchsbaum-Rim [2] first introduced and studied the function of
this type and proved that A(p) is eventually a polynomial of degree d + r — 1, which we
call the Buchsbaum-Rim polynomial. Then they defined a multiplicity of C' as

e(C) := (The coefficient of p®™™~1 in the polynomial) x (d + 7 — 1)!,

which we now call the Buchsbaum-Rim multiplicity of C. They also proved that the
multiplicity is independent of the choice of ¢. The multiplicity e(C') coincides with the
ordinary Hilbert-Samuel multiplicity when C' is a cyclic module R/I.

Buchsbaum and Rim also introduced the notion of a parameter matrix, which general-
izes the notion of a system of parameters. A matrix (a linear map of free modules) ¢ over
R of size r X n is said to be a parameter matriz for R, if the following three conditions
are satisfied: (i) Coker ¢ has finite length, (ii) d =n —r + 1, (iii) Imp C mR". Then it is
known ([2, 4]) that there exists a formula

e(C) = r(C) = r(R/ Fitto(C))

for the Buchsbaum-Rim multiplicity, if R is Cohen-Macaulay and ¢ is a parameter matrix.
Brennan, Ulrich and Vasconcelos observed in [1] that if R is Cohen-Macaulay and ¢ is a
parameter matrix, then in fact

) = ()
for all p > 0. In general, for any p > 0 the inequality

D) >e(c)<p+d+r—1>

d+r—1
always holds true even if R is not Cohen-Macaulay, and moreover the equality for some
p > 0 characterizes the Cohen-Macaulay property of the ring R ([3]).

p+d+r—1
d+r—1
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Kleiman-Thorup [7, 8] and Kirby-Rees [5, 6] introduced another kind of multiplicities
associated to C, which is related to the Buchsbaum-Rim multiplicity. They consider the
function of two variables

A(Z% Q> = ER(Serq/MpHSq—l)a

and proved that A(p,q) is eventually a polynomial of total degree d + r — 1. Then they
defined a sequence of multiplicities, for j =0,1,...,d+r — 1,

e/ (C) := (The coefficient of p?*"~17J¢/ in the polynomial) x (d 4 r — 1 — j)!5!
and proved that e/(C) is independent of the choice of . Moreover they proved that
e(C)=elC)>e(C)>--- > O)>e"(C)=--- = ed+T_1(C) =0,

where 7 = pug(C). Thus we call €/(C) j-th Buchsbaum-Rim multiplicity of C. Then it is
natural to ask the following.

Problem 1.1. Let ¢ : R — R" be a parameter matrixz with C = Coker p. Suppose that
R is Cohen-Macaulay. Then

(1) does there exist a simple formula for the Buchsbaum-Rim multiplicities €/ (C) for
j=1,2,...,r—17

(2) Does the function A(p,q) coincide with a polynomial function for all p > 0 and all
q>0%

In this note, we will try to calculate the function A(p,q) and multiplicities e/(C) in a
special case where C is a direct sum of cyclic modules R/Q); where @); is a parameter ideal in
a one-dimensional Cohen-Macaulay local ring R. Especially, in the case C' = R/Q1®R/Qo,
we will determine when A(p, q) is polynomial for all p > 0 and ¢ > 0. As a consequence,
we have that there exists the case where the function A(p,q) does not coincide with
the polynomial function. This should be contrasted with a result of Brennan-Ulrich-
Vasconcelos [1] as stated above: the ordinary Buchsbaum-Rim function A(p) = A(p,1)
coincides with the Buchsbaum-Rim polynomial for all p > 0 in the case where R is Cohen-
Macaulay and ¢ is a parameter matrix.

2. A COMPUTATION IN A SPECIAL CASE

In what follows, let (R,m) be a one-dimensional Cohen-Macaulay local ring with the

maximal ideal m. Let » > 0 be a fixed positive integer and let 1, @2, ..., Q, be parameter
ideals in R with @; = (z;) for i = 1,2,...,7. We put a; = (r(R/Qi) = e(R/Q;) for
1=1,2,...,r. Let p: R" — R" be an R-linear map represented by a parameter matrix
zy, 0 -+ 0
0 T2 ’ :
: . 0
0 -~ 0 =z

Then we consider the module C' = Cokerp = R/Q1 ® R/Q2 ® --- ® R/Q, and compute
the following:
e the multiplicities e/(C) for j =1,2,...,7 —1
e the polynomial A(p, q) = (r(Sptq/NPTLS,—1) for p,q >0
e the function A(p, q) = ¢gr(Sptq/NPT1S,-1) for p > 0,4 >0
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where S = Symp(R") and N = Imp = Q1 & Q2® --- & Q,. If we fix a free basis
{t1,t2,...,t,} for R", then S = Rlty,to,...,t,] is a polynomial ring and N = Qit; +
Qoto+ -+ Qt. CS1 =Rt + Rtag+ -+ + Rt,.. Then for any p > 0,q > 0,

NPHS, | = Z Qi Z Rt*
|7|=p+1 |k|=q—1
j>0 k>0

_ Z Z Qb k| ¢

|€|=p+q \ |k|=¢—1
L

>0 0<k<e
C Sp+q = Z Rte
|€|=p+q
£>0
Here we use the multi-index notation: for a vector ¢ = (i1,...,4,) € Z%,, we denote

Qi =Q" - -Qir,t* =t ---tir and |i| = iy +- - - +i,. For any vector £ = ({1,...,0,) € Z
such that |€| = p + ¢, we define the ideal in R as follows:

Jpa(l) = Z:Q“@

|k|=¢—1
0<k<t

Then for any p > 0,q > 0,

AP ) = La(Spra/ NPT Sp1) = 30 Cr(R/ Tpg(8)).
|€|=p+q
£>0
To compute the function A(p, q), it is enough to compute the colength ¢r(R/Jy, 4(£)) of

the ideal Jp4(£). In the special case where the ideals Q1,Q2,...,Q, becomes ascending
chain, we can easily compute it as follows.

Proposition 2.1. Suppose that Q1 C Qs C --- C Q... Then

A(PaQ)I(G1+~~-+ar)<p+r) +§§(az’+1+---+ar)(p+r_i) (q—2+z‘>

T r—1 )
KA

for all p > 0 and all ¢ > 0, where (7:) =0 if m < n. In particular, the function A(p,q)
coincides with a polynomial function and

; aj1+--+a (j=0,1,...,7r—1)

el (C) = gt :
©) {0 G=r

Proof. Let us fix any p > 0 and ¢ > 0. We may assume that » > 2 and ¢ > 2. Suppose

Q1 € Q2C - C Q. Then the ideal J, ,(€) coincides with the ideal of the product of last
(p + 1)-ideals of a sequence of ideals

01 lo Ly
- —
Qla“'7Q17Q27"‘7Q27‘"7Q7’7"'7QT'
p+q
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Hence its colength {r(R/Jp 4(£)) is the sum of last (p+1)-integers of a sequence of integers
01 {2 yzs
—N—
(1) T N T2 S T

p+q
To compute the sum

Z ER(R/Jp,q(E))v

|€|=p+q
£>0

we divide the sequence (1) at the (p 4 2)th integer from the end. If the (p + 2)th integer

from the end is a;, then the sum of all last (p+1)-integers of such sequences can be counted
by

i+(g—2)—-1
< (z o 1) ) Z (Uiai + Ui+-1 041 4+ o4 ur‘ar)
ur+-tur=p+1
Uly-u,UrZO

Therefore

Alp,q) = Z Cr(R/Jpq(£))

|€|=p+q
£>0

T .
14+(g—2)—1

=1 up+-Fup=p+1
ULy Ur 20
s . .
-2)—-1 — 1 1)—-1 1
= (U T g (DU P
1—1 T—1 r—i+1

i=1

T . .
B ‘ it+q—3\(r—i+p+1\ p+1
- ;<a’+ +“T>< i—1 )( r—i )r—z‘+1
r—i+p+1\ [ i+tq—3
i:1(al+ —HLT)( r—i+l >< i—1

-1 . .
_ p+r s prr—i\(qg—2+i
= mrF“+ﬂH(r >+£fwﬂ+~v+wm T_é)( . )

I
] -

g

Corollary 2.2. Let (R,m) be a DVR and let C be a module of finite length. Then the
function A(p, q) associated to the module C' coincides with a polynomial function. Moreover
we have the formula

e/ (C) = Lr(R/ Fitt;(C)) = e(R/ Fitt;(C))
foranyj=0,1,...,r—1.
Remark 2.3. In [5], Kirby and Rees computed the multiplicities ¢/(C) in the case where
C' is a module of finite length and R is a DVR. Proposition 2.1 and Corollary 2.2 gives

more detailed information about the function A(p, q).
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The case where the ideals Q1,Qo, ..., Q, does not become an ascending chain is more
complicated. However the case where r = 2 can be computed as follows.

Theorem 2.4. Assumer =2 and put I := Q1 + Q2. Then
(1) The Buchsbaum-Rim polynomial is

M) = (@ +a) (U5 2) e (T (1] - a4

for all p,q > 0, where e1(I) denotes the 1st Hilbert coefficient of I and c is a
constant. In particular, we have that

EO(C) = KR(R/ Fitto(C)) = ER(R/QlQQ)
et(C) = e(R/ Fitt1(C)) = e(R/I)
e2(C) = 0.
(2) The function A(p,q) coincides with a polynomial function if and only if the equality
lr(R/I)=e(R/I) —ei(I) holds true. When this is the case,

M) = (o) ("5 2) e (T (171 - a0+ e

for all p >0 and all g > 0.
(3) The function A(p,q) coincides with the following simple polynomial function

o3 () (17)

if and only if there exits an inclusion between Q1 and Q2.

Proof. Let p >0, ¢ > 0 and let £ = (£1,03) € Z2, such that || = p+q. Let § = 6(€) be
the number of elements of the set A = A(€) = {{; | {; > ¢ — 1}. Then the ideal J, 4(£)
can be computed as follows directly.
Claim 1
Pl if § =0
Jpa®) = QUG (i#4) ifd=1and A= {4}
Q{l—q-‘rlng—q—qu—l lf (5 =92

Let hy, = {r(R/I"™) be the Hilbert-Samuel function of the ideal I. Then, by Claim 1,
the function A(p,q) can be computed as follows.

Claim 2 - '
Alp,q) = { (a1 + az2)( %2) + 2+t hyp) +(g—p—Dhpy ifp+1<g-1
(a1 +a2)("57°) +2(h1 + -+ + hg2) + (P — g +3)hg—1 ifp+1>g—1
Let po be the postulation number of I, that is, h, = e(R/I)p — e1(I) for all p > py. To
compute the Buchsbaum-Rim polynomial, we may assume that p > pgand ¢ —1 > p+ 1.
Then, by Claim 2, we can compute the function A(p, q) explicitly as follows.

M) = (@ +a) (U5 2) e (T (1] ) — e o+

where ¢ = 2(h1+- -+ hpy—1) —e(R/I)po(po—1)+e1()(2po — 1) is a constant. This proves
the assertion (1).

Suppose that the function A(p,q) coincides with the polynomial function. Then, by
substituting p = 0 in the polynomial, A(0,q) = (e(R/I) —ei1(I))q+ (a1 + a2 —e(R/I) +c)
for any ¢ > 0. On the other hand, by Claim 2, A(0,q) = hiq + (a1 + a2 — h1). By
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comparing the coefficient of g, we have hy = e(R/I) — e1(I). Conversely, suppose that
hi1 =e(R/I)—ei(I). Then it is known that the Hilbert-Samuel function h,, coincides with
the polynomial function for all n > 0 ([9]). Hence the function A(p, q) also coincides with
the polynomial function with the following form

M) = (e (P52 ) e (T (17— 0+ el

by Claim 2. Thus we have the assertion (2).
For the assertion (3), if the function A(p, q) coincides with the following simple polyno-

mial function
Alp,q) = (a1 +a2)<p‘;2> +€(R/I)(pJ1r 1) (q; 1)7

then e;(I) = 0 and h; = e(R/I). This implies that I is a parameter ideal for R and hence
Q1 C Q2 or Q2 C Q1. The other implication follows from Proposition 2.1. O

Consequently, there exists the case where the Buchsbaum-Rim function A(p,q) does
not coincides with a polynomial function even if the ring R is Cohen-Macaulay and the
module has a parameter matrix. This should be contrasted with a result on the classical
Buchsbaum-Rim function of a parameter module due to Brennan-Ulrich-Vasconcelos [1].
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