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A generalization of Huckaba-Marley’s theorem
and its application to the theory of initial
ideals

Mitsuhiro MIYAZAKI

Kyoto University of Education
E-mail: g53448@kyokyo-u.ac.jp

1 Introduction

Let K be a field and S = K[X3,...,X,] a polynomial ring with monomial
order. Suppose that S is graded by some positive weight vector and J is
a graded ideal. It is known that there is a flat family whose general fiber
is S/J and a special fiber is S/in(J). In particular, depthg (S/in(J))n <
depthg_(S/J)m, where m = (X,,. ..,X ).

The validity of equality is hopeless and there are many examples with
strict inequality. Indeed, there are examples such that S/J are Cohen-
Macaulay of dimension n and depthS/in(J) = 0 for any integer n > 0.

But in the case where in(J) is a radical ideal, there may be some hope for
handling this phenomenon and the present author have proved the following

Theorem 1.1 ([Miy]) Let A be a graded Hodge algebra over a field K gen-
erated by H and governed by X. Suppose that A is Cohen-Macaulay, ¥ is
square-free and the discrete counterpart Ags of A is Buchsbaum. Then Ags
1s Cohen-Macaulay.

The result of Huckaba-Marley [HM, Theorem 3.10] played an important role
in the proof of Theorem 1.1.

In this paper, we recall the generalized form of Huckaba-Marley’s theorem
and as an application, prove the generalization of Theorem 1.1.

2 Generalized Huckaba-Marley’s theorem

First we settle the following notation which is used throughout this paper.



Notation (1) We denote by IV the set of non-negative integers and by Z
the set of integers.

(2) For a Noetherian IN*-graded ring B with B, . o) a local ring, we set
depthB := depthBy,
where N is the unique N*“-graded maximal ideal of B.

Now we recall the theorem of Huckaba-Marley.

Theorem 2.1 ([HM, Theorem 3.10]) Let A be a local ring, I a proper
ideal of A, R = A[IT] the Rees algebra with respect to I and G =
@D,.cn I"/I™t! the associated graded ring. Suppose depthG < depthA. Then
depthR = depthG + 1.

Theorem 2.1 is generalized as the following form.

Theorem 2.2 Let A be a local ring, F = {I,}nen a filtration of proper
ideals of A, R = A[I,T" | n € N] the Rees algebra with respect to F and
G = @ne N In/Ins1 the associated graded ring. Suppose that R is Noetherian
and depthG < depthA. Then depthR = depthG + 1.

This result is known early by Goto-Nishida using the method of [GN] and
later published in [CZ]. As a corollary, we see the following result.

Corollary 2.3 Let A = P, .y An be a Noetherian graded ring with Ay a lo-
cal ring, F = {In}nen a filtration of proper graded ideals of A, R = A[I,T" |
n € N] the Rees algebra with respect to F, and G = @, . In/Int1 the as-
sociated graded ring. Assume that R is Noetherian and depthG < depthA.
Then depthR = depthG + 1.

Proof Let M (resp. N) be the unique graded (resp. bigraded) maximal ideal
of A (resp. R). Then Ry = (Rum)n, Gy = (Gas)n and

Ry = AullnAuT™ [n € N1, Gy = @ LnAu/InirAn.
neN

So the result follows from Theorem 2.2. 1



3 Depth of the ring of quotients modulo the
initial ideal

Let K be a field and S = K[X;,...,X,] a polynomial ring with monomial

order <. We assume that S is graded by a weight vector w = (wy,...,w,) €

(N \ {0})", that is deg X; = w; for i =1,...,7. And let J be a graded ideal

of S. .
The main result of this paper is the following

Theorem 3.1 Assume that S/in(J) is reduced and Buchsbaum. Then
depthS/in(J) = depthS/J. In particular, if S/J is Cohen-Macaulay, then
s0 1s S/in(J).

The most part of the rest of this paper is devoted to the proof of this theorem.
In order to prove Theorem 3.1, we first state the following

Notation (1) A:=S/J.
(2) z;:=X;+ J.
(3) For a = (ay,...,a,) € Z", we set

X=X Xp and 2% :=a -zl

(4) For a = (aq,...,a,) and b= (by,...,b,) € Z", we set
(a,b) :=Zaibi.

Let g1, ..., gs be the reduced Grobner basis of J and M the set of
monomials which appear in at least one of g1, ..., gs. Note that each g; is a
homogeneous polynomial.

We define a binary relation < on the set of monomials in S as follows.

Definition 3.2
X< X' ¥ deg X < deg X?
or

deg X = deg X* and X°® > X°.

It is easy to see the following



Lemma 3.3 < is a monomial order.
Since < is another monomial order on S, we see the following
Fact 3.4 There exists A = (M,...,\) € (N \ {0})" such that
X*< X< (\a) < (\b)
for any X*, Xb e M.
It is well known that
B={z*| X*¢in(J)}

is a K-vector space basis of A. And if o € A, one can obtain the expression
of o as a linear combination of the elements of B by repeated application
of rewriting with respect to g;’s. Since each g; is homogeneous, we have the
following

Lemma 3.5 If X° € in(J), then there is a unique expression
% = z™ + ™ + - - 4 cuz™
such that c; € K, a; € Z7, X% ¢ in(J) and (X, a;) > (A, a) for any 1.

Set Jp := (X | (N\a) >n), I, = (Jo+J)/J, F = {L}nen, R =
A[I,T" |n € N] and G := @,,cny In/In+1. Then we see the following lemma
which is a direct consequence of Lemma 3.5.

Lemma 3.6 {z®| X &in(J), (\,a) > n} is a K-vector space basis of I,.
By Lemmas 3.5 and 3.6, we see the following

Lemma 3.7 (1) R=K[z;T™|1<:<r0<m<)\]. Inparticular, R
1s Noetherian.

(2) {z* + Iy | X* € in(J), (X\,a) = n} is a K-vector space basis of
I/ It

(8) If X* €in(J), then 2° € I q41.

(4) K-algebra homomorphism ®: S — G, (X; — z;+ I 11 € Iy, /15.41) is
surjective and ker ® = in(J). In particular, G ~ S/in(J).



Note that R and G are bigraded rings. We denote the degree inherited
from S as the first entry and the degree defined by the Rees algebra structure
as the second entry.

Let N be the unique bigraded maximal ideal of R, M the irrelevant
maximal ideal of A, L := [T®LT?*®I;T*®--- and L' := O LTOLT?®- - -.
Then

Remark 3.8 (1) L and L' are bigraded ideals of R.

(2) L' = L(0,1).
(3) A=R/L.
(4) G=R/L.

By the short exact sequence
0—L—R-—>A—0
we get the following long exact sequence of local cohomology.
. - HP()
— Hy(L) — Hy(R) —  Hy(4)

N
Since [H};(A)]um) = 0 for n # 0,
[Hy (D)) wm = [Hy(R)]um for n# 0.
By the short exact sequence
0—L—R—G—0
we get the following long exact sequence of local cohomology.

. o HYG)
- Hy(L) - Hy(R) — Hy(G)

—

Here we recall the following result of Hochster.



Theorem 3.9 (Hochster) Let A be a simplicial complex with vertex set
{X1, ..., X+}. Then the Z"-graded Hilbert series of Hi,(K[A]) is

Z (dimg fIi'|”|'1(linkA(o);K)) H I ]

— ¢t
c€EA XjEU J

where N is the unique graded mazimal ideal. In particular, if K[X1,...,X,]
is equiped with IN?-grading such that deg X; = (aj,b;) with (a;,b;) € N \
{(0,0)} for any j, then the Z*-graded Hilbert series of Hi(K[A]) is

t]_ —a; t—b_-,

Z (dimK I?Ii"""l(linkA(a); K)) H

—aj
cEA Xj€o 1t t2

Since in(J) is a square-free monomial ideal, G ~ S/in(J) ~ K[A] for some
simplicial complex A. Therefore,

Corollary 3.10 [Hy(G)|wn =0 forn > 0.
So we see that
[Hy (L)l @y = [Hy(R)]wm for n>0.
Summing up,
o [Hy(L)]wny = [Hy(R)](un) for n # 0.
(] [H L, ](u n) =~ [H (R)](u n) for n > 0.
i [HN(L/)] (un) = [HN ](un+1)'
[HN(G)](un) =0 forn > 0.

Therefore [Hy (R)](un+1) = [Hy(R)]wn) for n > 0. Since [Hy(R))wn) =
0 for n>> 0, we see that [Hy(L)]wn) = [Hy(R)]@wn) = 0 for n > 0.

Now assume that e = depthG < depthA. Then depthR = e + 1 by
generalized Huckaba-Marley’s theorem. By the exact sequence

[H{ (R))(wo) = [Hi () wo) = [HF (L)) .y

and the fact
[H{ (R)]wo) = [Hi (L)) w1y =0,



we see that
[H(G)]wo) = 0.
Since [H§(G)] # 0, we see that [H§(G)|wn # 0 for some u, n with
n < 0. But then, by Theorem 3.9 we see that

Jo e Ao # 0, A1 (linka (0); K) # 0.

This contradicts to the assumption that G ~ K[A] is Buchsbaum and the
proof of Theorem 3.1 is completed.

Remark 3.11 There is a counterexample if one drops the assumption that
S/in(J) is reduced as the following example shows.

Example 3.12 Let B = K[Y1,Y,,Y3] be the polynomial ring over K with
3 variables and A’ the second Veronese subring of B. Then A’ is a Cohen-
Macaulay domain of dimension 3. Set A = A’/(Y?,Y2). Then A is a Cohen-
Macaulay ring of dimension 1.

Let {Xij}1<i<j<s be a family of indeterminates and set S = K[X;; |1 <
i < j < 3] and deg X;; = 1 for any ¢ and j. Define the monomial order on
S’ as the degree reverse lexicographic order induced by Xi; > X5 > X3 >
Xog > Xo3 > X33. Then A~ SI/IQ(X), where X = (Xij) is the 3 x 3
symmetric matrix with Xj; := Xj; for ¢ > j and I5(X) is the ideal of S’
generated by 2-minors of X.

Set J' = I2(X)7 S = K[Xij l 1<i<5<3, (Z,]) # (1’1)1 (7‘).7) # (3>3)]
and J = (J' + (X11,X33)) N S. Then it is easily seen that A ~ S/J. In
particular, S/J is Cohen-Macaulay of dimension 1. On the other hand, it is
verified that

ll'l(J) = (X]?Z’ X12X13, X123, X13X22, X13X23, X§3)
Since

in(J) = (Xua, X3, X22, X23)? N (X5, X13, XZ)
and

in(J): (X2, X13, Xo2, X23) = (Xlzz,X13,X223)
is the primary component corresponding to the unique minimal prime ideal
(X12, X13, Xa3) of in(J), it is easily verified that
in(']): f = (X122)X137X223)

for any f € (X12, X13, Xa2, X23) \ (X12, X13, X23). So S/ in(J) is Buchsbaum.

Since the irrelevant maximal ideal of S is an associated prime ideal of in(J),
we see that depthS/in(J) = 0.
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F-purity of homomorphisms, strong
F-regularity, and F-injectivity
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1. Introduction

These notes are a summary of the results in [5].
In [6], a generalization of Matijevic-Roberts theorem was proved, and as a
corollary, we have the following [6, Corollary 7.10].

1.1 Theorem. Let p be a prime number, and A a Z™-graded noetherian ring.
Let P be a prime ideal of A, and P* be the prime ideal of A generated by
the homogeneous elements of P. If Ap« is excellent of characteristic p and
is weakly F-regular (resp. F-regular, F-rational), then Ap is weakly F-regular
(resp. F-regular, F-rational). If Ap is excellent of characteristic p and is weakly
F-regular, then Ap~ is weakly F'-regular.

The proof relies on the smooth base change and the flat descent of (weak)
F-regularity and F-rationality. ‘

It is natural to ask the same problem for F-purity, strong F-regularity, and
Cohen—Macaulay F-injectivity. This question was posed by Ken-ichi Yoshida.
The purpose of these short notes is to give an answer to this question. On
the way, we also consider the problem of the openness of the loci of strong F-
regularity and CMFI (Cohen-Macaulay F-injective) property. The openness of
the F-rational locus is discussed in [12]. Related to the smooth base change of
F-purity, we define F-purity of a homomorphism between noetherian rings of
characteristic p. It is not characterized by the F-purity of (geometric) fibers.
We discuss when an F-pure homomorphism is flat.

Strong F'-regularity was defined for an F-finite noetherian ring of character-
istic p by Hochster and Huneke [8]. This notion was generalized to those for a



general noetherian ring of characteristic p in different ways by Hochster [7] and
Hochster-Huneke [10]. The author does not know if the two definitions agree.
So we name Hochster’s definition “strongly F-regular” and Hochster—-Huneke’s
“very strongly F-regular.” As the name shows, very strongly F-regular im-
plies strongly F-regular in general. For local rings, F-finite rings, and algebras
essentially of finite type over excellent local rings, these two notions coincide.
We prove “F-pure base change” of strong F-regularity, generalizing the smooth
base change.

2. F-purity of homomorphisms

It is sometimes useful to promote a property of a ring to that of a homomor-
phism of rings. This idea is due to Grothendieck.

2.1 Definition (Grothendieck). Let P be one of the properties: Cohen—
Macaulay, Gorenstein, l.c.i., reduced, normal, and regular. We say that a
homomorphism f : A — B of noetherian rings is P, if f is flat, and the fiber
ring B®4 k(P) is geometrically P for any P € Spec A, that is, B®4 K satisfies
PP for any finite extension field K of k(P).

Weakening the flatness condition, Avramov and Foxby generalized this def-
inition, see [2], [3], [4].
2.2 Remark. Let P be as in Definition 2.1. A composite of P morphisms is
again P. If f: A > BisPand AisP,then BisP. If f: A — B is P and
A’ is an A-algebra, then the base change f' : A’ — B’ is P, provided both A’
and B’ are noetherian. If f : A — B is a homomorphism, A’ is a faithfully flat
A-algebra, and if the base change f': A’ — B’ is P, then f is P.

It is natural to ask if Grothendieck’s idea applies to F-singularities.
2.1 Theorem (Aberbach—Enescu [1]). Let f : (A,m) — (B,n) be a flat
local homomorphism of noetherian local rings of characteristic p. If A is Cohen~—

Macaulay F'-injective and B/mB is geometrically Cohen-Macaulay F-injective,
then B is Cohen—Macaulay F-injective.

Thus we may define a Cohen-Macaulay F-injective homomorphism to be a
flat homomorphism with CMFI geometric fibers.

2.3 Example (Singh [11]). There is a flat local homomorphism f : A — B
with A a DVR, f has geometrically F-regular fibers, but B is not F-pure.

Because of the example, probably it is not appropriate to define an F-pure
homomorphism to be a flat homomorphism with geometrically F-pure fibers.



(2.4) To define an F-pure homomorphism, we uitilize Radu~André homo-
morphisms.

Let R be a ring of characteristic p. Let Fg : R — °R be the eth Frobenius
map given by Fg(z) = z?°, where the ring R, considered as an R-algebra via
the structure map FF, is denoted by *R. An element a € R, viewed as an
element of *R = R, is denoted by ®a.

2.5 Definition. For a homomorphism f : A — B of commutative rings of
characteristic p, we define

U.(f) = Ue(A,B) : B®4°A —°B

by U.(f)(b®®a) = ¢(b*°a), and call it the eth Radu-André homomorphism (or
the eth relative Frobenius map).

2.2 Theorem (Radu—André). Let f : A — B be a homomorphism of noethe-
rian rings of characteristic p. Then the following are equivalent: 1) f is regular,
2) U (f) is flat for some e >1; 8) U (f) is flat for every e > 1.

The absolute case (i.e., the case that A = F,) is due to Kunz.
Using Radu—André homomorphism, we define the F-purity of homomor-
phisms.

2.6 Definition. A homomorphism f : A — B of rings of characteristic p is
said to be F-pure if the Radu—André homomorphism ¥;(f) : B®4'A — 'B
is pure.

Thus a homomorphism f : A — B of rings of characteristic p is F-pure if
it is regular. We list some consequences of the definition.

2.7 Lemma. Let f : A —» B and g : B — C be homomorphisms between
F,-algebras.

1) If f and g are F-pure, then so is gf. 2) A is F-pure if and only if the
unique map F, — A is F-pure. 8) If gf is F-pure and g is pure, then f is F'-
pure. 4) If A is F-pure and f is F-pure, then B is F-pure. 5) A pure subring
of an F-pure ring is F-pure. 6) Let A’ be an A-algebra, and B' = B4 A'. If
f is F-pure, then the base change A — B’ is also F-pure. 7) If A — A’ is a
pure homomorphism and A' — B' = B®a A’ is F-pure, then f is F-pure.

F-purity over a field can be described as follows.

2.3 Theorem. Let K be a field of characteristic p, and A a K-algebra. Then
the following are equivalent.



1. B 1is noetherian, and K — B is F-pure.

2. For anye > 1, B®k °K is noetherian and F-pure.

3. For somee > 1, BQg ¢K is noetherian and F-pure.

4. B is noetherian, and B 1is geometrically F-pure over K.

2.8 Corollary. If f : A— B is an F-pure homomorphism between noetherian
rings of characteristic p, then the fiber B ® 4 k(P) is geometrically F-pure for
each P € Spec A.

The converse of the corollary is false, see (2.3).

2.9 Definition. A homomorphism f : A — B of rings of characteristic p is
said to be Dumitrescu if ¥1(f) : B®4'A — 'B is ! A-pure.

2.4 Theorem (Dumitrescu). For a flat homomorphism f : A — B of noethe-
rian rings of characteristic p, the following are equivalent.

1. f is Dumitrescu.
2. f is reduced.

It is natural to ask, is a Dumitrescu homomorphism flat? The author does
not know the answer. Some partial results follows.

2.5 Theorem. Let f : A — B be a homomorphism of noetherian rings of
characteristic p. If f is Dumitrescu and the image of Spec B — Spec A contains
all mazimal ideals of A, then f is pure.

2.10 Corollary. A Dumitrescu local homomorphism between noetherian local
rings of characteristic p is pure.

2.11 Definition. Let f : A — B be a homomorphism of noetherian rings. We
say that f is almost quasi-finite if each fiber B ®4 £(P) is finite over x(P).
This is equivalent to say that for each @ € Spec B, x(Q) is a finite extension
of k(P), where P = QN A.

A quasi-finite homomorphism (finite-type homomorphism with zero dimen-
sional fibers) is almost quasi-finite. A localization is almost quasi-finite. A
composite of almost quasi-finite homomorphisms is almost quasi-finite. A base
change of an almost quasi-finite homomorphism is again almost quasi-finite,
provided it is a homomorphism between noetherian rings.



2.6 Theorem (Watanabe, H-). Let f : A — B be an almost quasi-finite
homomorphism between noetherian rings of characteristic p. Then the following
are equivalent: 1) f is F-pure; 2) f is Dumitrescu; 8) f is regular.

The case that both A and B are domains and f is finite is due to K.-
i. Watanabe.

2.7 Theorem. Let f : (A,m) — (B,n) be a Dumitrescu local homomorphism
between noetherian local Tings of characteristic p. Ift € m, A is normally flat
along tA, and A/tA — B/tB is flat, then f is flat.

2.12 Corollary. Let f : (A,m) — (B,n) be a Dumitrescu local homomorphism
between noetherian local Tings of characteristic p. If t € m is a nonzerodivisor

of A and AJ/tA — B/tB is flat, then f is flat.

2.13 Corollary. Let f : (A,m) — (B, n) be a Dumitrescu local homomorphism
between noetherian local rings of characteristic p. If A is regular, then f is flat.

3. Strong F-regularity and Cohen—Macaulay F-injectivity

3.1 Definition. Let R be a noetherian ring of characteristic p. We say that R
is

1. (Hochster, [7]) strongly F-regular if any R-submodule of any R-module
is tightly closed.

2. (Hochster-Huneke, [10]) very strongly F-regular if for any ¢ € R°, there
exists some e > 1 such that °cF®: R — R (z — ¢(czP")) is R-pure.

The name “very strongly F-regular” was new in [5]. This was introduced to
distinguish the notion from the strong F-regularity by Hochster. The author
does not know if these two definitions agree. They agree with the original
definition of Hochster—Huneke [8], if the ring is F-finite.

3.2 Lemma. Let R be a noetherian ring of characteristic p. Then the following
are equivalent.

1. R is strongly F-regular.
2. For any multiplicatively closed subset S of R, Rg is strongly F-regular.

3. For any mazimal ideal m of R, Ry, s strongly F'-regular.



4. For any mazimal ideal m of R, the R-submodule 0 of Eg(R/m) is tightly
closed.

9. For any mazimal ideal m of R, the Ry-submodule 0 of Eg(R/m) is tightly
closed.

6. For any mazimal ideal m of R, Ry, is very strongly F-regular.
3.3 Remark. Let R be a noetherian ring of characteristic p.

1. If R is very strongly F-regular and S is a multiplicatively closed subset
of R, then Rg is very strongly F-regular.

2. If R is very strongly F-regular, then it is strongly F-regular.
3. If R is strongly F-regular, then it is F-regular.
4. If R is F-rational Gorenstein, then it is strongly F-regular.

3.4 Lemma. Let S be a noetherian normal ring, and R its cyclically pure
subring. Then R is noetherian normal, and R 1s a pure subring of S.

The following is a generalization of [9, (4.12)] (the assumption R° C S° is
dropped). For the proof, we use the lemma above.

3.5 Proposition. Let S be a noetherian ring of characteristic p, and R its
cyclically pure subring. If S is very strongly F-regular (resp. strongly F-regular,
F-regular, weakly F-regular), then so is R.

The following is proved using the I-construction developed in [10]. A similar
result for F-rationality is proved by Vélez [12].

3.1 Theorem. Let R be an excellent local ring of characteristic p, and A an
R-algebra essentially of finite type. Then the strongly F-reqular locus and the
Cohen-Macaulay F-injective locus of A are Zariski open in Spec A.

Using a similar technique, Hoshi proved the following.

3.2 Theorem (Hoshi). Let R be an ezcellent local ring of characteristic p,
and A an R-algebra essentially of finite type. Then the F-pure locus of A is
Zariski open in Spec A.

The following is an “F-pure base change” of strong F-regularity, which is
stronger than the smooth base change.



3.3 Theorem. Let ¢ : A — B be a homomorphism of noetherian rings of
characteristic p. Assume that A is a strongly F-regular domain. Assume that
the generic fiber Q(A) ®a B is strongly F-regular, where Q(A) is the field of
fractions of A. If ¢ is F-pure and B is locally excellent, then B is strongly
F-regular.

4. Matijevic—Roberts type theorem

M. Miyazaki and the author proved the following form of Matijevic-Roberts
type theorem.

4.1 Theorem. Let S be a scheme, G a smooth S-group scheme of finite type,
X a noetherian G-scheme, y € X, Y = {y}, Y* the smallest G-stable closed
subscheme of X containing Y. Let n be the generic point of an irreducible
component of Y*. Let C and D be classes of noetherian local rings. Assume:

1. (Smooth base change) If A — B is a regular (i.e., flat with geometrically
regular fibers) local homomorphism essentially of finite type and A € C,
then B € D.

2. (Flat descent) If A — B is a regular local homomorphism essentially of
finite type and B € D, then A € D.
If OX,.,, € C, then Ox,y eD.

4.1 Corollary. Let R be a Z™-graded noetherian ring, and P € Spec R. Let C
and D be classes of noetherian local rings which satisfy 1 and 2 in the theorem.
If Rp- € C, then Rp € D, where P* is the prime ideal of R generated by the
all homogeneous elements in P.

The smooth base change holds for F-purity (Lemma 2.7), strong F-regularity
(Theorem 3.3), and Cohen-Macaulay F-injectivity (Theorem 2.1). Flat descent
also holds, and we have the following.

4.2 Corollary. Let R be a Z™-graded noetherian ring of characteristicp. Let P
be a prime ideal of R, and P* the prime ideal generated by the all homogeneous
elements of P.

1. If Rp+ is F-pure, then Rp s F-pure.
2. If Rp« is excellent and strongly F-regular, then Rp is strongly F-regular.

3. If Rp+ is Cohen-Macaulay F-injective, then Rp is Cohen-Macaulay F'-
injective. .

For applications, see [5].
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Regularity of the symbolic powers of
space monomial curves

Kazuhiko Kurano (kurano@math.meiji.ac.jp)

Meiji University

1 Introduction

This is a joint work [5] with S. D. Cutkosky (University of Missouri).

Suppose that K is an algebraically closed field. Let S = K|[z1,...,z,) be a poly-
nomial ring, graded by a weighting wt(z;) > 0for 0 <4 <m. Set N = (z1,...,Zm).
For a finitely generated graded S-module M # 0, we define the regularity of M by

reg(M) = max{j +i | Hy(M); # 0}.
For a homogeneous ideal J of S, we define

Jr sat
s(J) = lim reg((J")*) ) ),
T—00 n
where (J™)%2* = Uy(J™ :5 N*) is the saturation of J™.
It has very interesting properties as in

Theorem 1 (Cutkosky, Ein and Lazarsfeld [3]) 1. The limit s(J) exists.

2. The reciprical, 455, coincides with the Seshadri constant of the blow up along
J.

The Seshadri constant is a very important invariant both in algebraic geometry
and in commutative ring theory as in Remark 3.
In this note, we deal with the following two kinds of ideals.

Definition 2 e [(H) denotes the defining ideal of H, where H is a set consisting
of 7 closed points in P%.

e I(a,b,c) denotes the defining ideal of the space monomial curve (t, tb,t),
where a, b, ¢ are pairwise coprime positive integers.



Remark 3 e We have s(I(H)) > 4/r in general.

Assume that 7 > 10 and d < y/rn. Let H be a set consisting of indepen-
dent generic 7 points in P%. In [12], Nagata conjectured that [I(H)™]; = 0.
Nagata’s conjecture is true if and only if s(I(H)) = /T

Nagata proved this conjecture [12] if r is a square. Using this result, he
constructed the first counterexample to Hilbert’s fourteenth problem.

e We have s(I(a,b,c)) > +abc. There is no negative curve if and only if
s(I(a,b,c)) = Vabe.

Assume that vabc € Q. If the symbolic Rees ring R;(I(a,b, c)) is Noetherian,
then there exists a negative curve [1]. The converse is also true when the
characteristic of K is positive [1].

Goto-Nishida-Watanabe [8] proved that there exists infinitely generated sym-
bolic Rees ring Rs(I(a,b,¢)) in the case where the characteristic of K is zero.
In their example, there exists a negative curve.

There is no example of (a,b,c) such that there is no negative curve except
for (a,b,c) = (1,1,1). We refer the reader to [11] for some observations for
existence of negative curves.

By Huneke’s criterion [9], the symbolic Rees ring R,(I(a,b,c)) is Noetherian
if and only if there exist f € [I(a,b,c)™)]y, and g € [I(a,b,c)™)],, such that

2(S/(z, f,9)) = ninal (S/(z) + I(a,b,c)).

In this case, s(I(a,b,c)) = max{d;/ni,ds/nys}. If di/n1 > da/ny, then g is the
equation of the image of the negative curve.

As in Remark 3, the Seshadri constant is deeply related to finite generation of
symbolic Rees rings.

Motivation. We want to know s(I(H)) (or s(I(a, b, c))) using regularity. In order to
do so, we investigate the asymptotic behavior of reg((1(H)™)**) (or reg((I(a, b, c)*)**)).

The following is the main theorem in this note.

Theorem 4 Let I be an ideal of the form I(H) or I(a,b,c). Seto(n) = reg((I™)%*)—
[n - s(I)].

1. o;(n) is a bounded function on n.

2. Assume that K D Q or K = F,. If s(I) > /7, then a;(n) is an eventually
periodic function on n. (Here, r = #H when I = I(H), r = abc when
I=1I(a,b,c).)



If the Rees ring ®,>0(I™)** is Noetherian, this theorem is easy to prove.

We do not know any homogeneous ideal J such that the function o;(n) is not
bounded.

In the rest, we assume that S = K{z1,..., %] is a standard graded polynomial
ring, that is, each variable has degree 1. We refer the reader to [5] for regularity
over weighted polynomial rings.

2 a;~-invariant of powers of ideals

For a finitely generated graded S-module M # 0, we define
a(M) = max{j € Z| Hy(M); #0} or oo,
bi(M) = max{j € Z | Tor{(M,S/N); # 0} or —co.
Then it is well-known that
reg(M) = max{a;(M) +i|0 <4 < dim M} = max{b;(M) —i|0<: < dimS}.

Let J be a homogeneous ideal of S. Then, Cutkosky, Herzog and Trung [4],
Kodiyalam [10] proved the following:

Theorem 5 For each i, b;(J™) is an eventually linear function on n. In particular,
reg(J™) is also eventually linear on n.

By this theorem, we know that b;(J™) is always eventually linear, but a;(J") is
not always so as in Example 6 below. In the rest, we assume that m > 2.

Since 0 (i =
““”W”={MW)02

we obtain

reg((J")**) = max{a;(J") +1 | i > 2} < max{a;(J") +1i|i> 1} = reg(J").

If J is generated by homogeneous elements fi, ..., f;, then
: : . reg(J") :
min{deg(f;) | 1} < lim "B < max{deg(fy) | i} W

by a proof of a theorem -of Cutkosky, Herzog and Trung [4].

Example 6 Recall reg((J")**) = max{a;(J™)+1 | i > 2}. If a;(J™) were eventually
linear for all ¢, then there would be 4 such that reg((J")**) = a;(J™) +i for n > 0
and, therefore, the limit lim,_, reg((/")*) would be an integer. However, there are
examples that the limits are not integers as follows. (Therefore we know that a;(J")

is not always eventually linear on n.)



(1) Consider the ring homomorphism ¢ : B = K[y, ys,y3] — S = K|z, 29, 23]

(2) There exists some example that lim,,_,

such that w(y1) = 2%, ¢(y2) = 23, ¢(ys) = 25. Weset deg(y1) = a, deg(yp) = b,
deg(ys) = c and deg(z1) = deg(z>) = deg(zs) = 1.
We think I(a,b,c) as an ideal of B. Set J = I(a,b,c)S. As in [5], we have
s(J) = s(I(a,b,c)).
For example, suppose that (a,b,c) = (10,11,13). Then, there exist f €
[I(a,b,c)]ss and g € [I(a,b,c)®] 3 satisfying Huneke’s criterion. Since 33/1 <
130/3, we know
n\sat
tim P ) sr(ab, o)) = 1—39 ¢z

n—00 n

w is irrational [2].

Remark that, if Nagata’s conjecture is true, then s(I(H)) = /7. When r is not a
square, /7 is irrational.

Here, we consider the ideal I(H). Remark that

as(I(H)") +3 =a3(S)+3=0 and reg((I(H)")**) > 0.

Therefore, in this case, we have

reg((I(H)")™) = ax(I(H)") +2,
reg(I1(H)") = max{a,(I(H)") + 1,as(I(H)"™) + 2}.

Example 7 (1) Let H be a set of independent generic 16 points in P4. Since

(2)

Nagata’s conjecture is true in this case [12], we have

tim S oy = ViB =4

However, it is easy to see [/(H)]s = 0 and [I(H)]5 # 0 since dim S, = (*}*) =
15 and dim Ss = (°}?) = 21. So, we have

i TeEUCH))

n—oo n

>5
by the inequality (1). Hence, lim,_,o ﬂgfiﬂz does not satisfy the inequal-
ities like (1).

We consider H with multiplicity at each point. Then, there exists some exam-
ple that reg((I(H)™)**) is not an eventually quasi-linear polynomial function
on n (Cutkosky-Herzog-Trung [4]). In this example, ay(I(H)") is not an even-
tually quasi-linear polynomial function on n. In this example, K is a field of
positive characteristic that is transcendental over the prime field F,.

By this example, we guess that (2) of Theorem 4 would be false if we remove
the assumption on K.



3 Proof of Theorem 4 (1) in the case I(H)

Set H = {p1,...,pr}. Let I, be the defining ideal of p; in S = K{zg, 1, z2]. Put
N = (zo, x1,z2). Then, I, is generated by a regular sequence of length 2 and

I(H)=1,n---N1I,.

For the simplicity of notation, we denote I(H) by I.
For each n > 0,
(In)sat =5L,"Nn---Nh"

Since reg((I™)%®*) > 0 = a3(S) + 3 = a3(I™) + 3, we have
reg((I™)®*) = ap(I™) + 2.

Let m: X — P% be the blow-up at H. Set E; =77 (p;) and E = E; +-- -+ E,.
Let A be a Weil divisor on X such that Ox(A) = 7*(Op(1)). Then,

A*=1, E.E;=-6;, AE =0
is satisfied. Since H%(I")y = H(X, Ox(dA — nE)), we have
reg((I™)*®) = max{d | H'(X, Ox(dA — nE)) # 0} + 2.
In order to prove Theorem 4 (1), it is enough to show the following:

(I) 3t € N, Ing € N such that Vn > ng, Vd > s(I)-n+to, H(X,O0x(dA—nE)) =
0.

(II) 3t, € N, 3n; € Nsuch that Vn > ny, 3d > s(I)-n—t; such that H*(X, Ox(dA—
nE)) # 0.

Assume that both (I) and (II) are true. Then
s(I) - n—1t <ay(I") <s(I)-n+tp

for n > max{ng,n;}. Therefore, (az(I™) +2) — |s(I) - n| is bounded.
First, we shall prove (I). The following Lemma is very important in this proof.

Lemma 8 (Fujita [7]) Let Y be a projective variety over K and M be an ample
line bundle on' Y. Let F be a coherent sheaf on'Y. Then, there ezists u € N such
that, for all i > 0 and for any nef line bundle L,

H(Y,F®L®M®)=0
is satisfied.
1

Since ) coincides with the Seshadri constant,



e dA —nFE is ample iff d > s(I) - n,

o dA—nE isnefiff d > s(I)-n.

Using Lemma 8, it is easy to show (I).

Next, we shall prove (II). Consider the following two cases:

Case 1. Assume that s(I) = /7.
In this case, we put a(n) = n./r — [ny/7] + 2. Then,

x(Ox((nvr — a(n))A - nE))
| = 2¥0(3~ vF — 2a(n)) + £ (a(n)? — 3a(n) + 2).
Since 3 — /7 — 2a(n) < 0, we have
K (/7 — a(m))A = nE) < x((nv/7 — a(n))A - nE) < 0
for n > 0. In particular, A! 0.

Case 2. Assume s(I) > +/T.
We need the following lemma. We omit a proof.

Lemma 9 There erists a curve C on X such that (s(I)A — E).C = 0.
Corollary 10 s(I) € Q

Here, we set

a(n) = max {0, [1—.(_617)‘;4(_)02]} +s(I)-n—|s(I) nl.

Then, we can prove h'((s() - n — a(n))A —nE) # 0.

Q.E.D.

Remark 11 In order to prove (2) of Theorem 4, we need the assumption that

K>Qor K =F,.

The key point is the following: Let C be a 1-dimensional projective scheme over

K. Let L be an invertible sheaf on C with deg(L) = 0.
e If K =F,, then 3u > 0 such that L ~ O¢.

o If K O Q, then h°(F ® L&) is eventually periodic on n for any coherent sheaf

F (Cutkosky-Srinivas [6]).

e If K is transcendental over IF,, then the eventual periodicity of h°(F ® L®")

is false as in [6].
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ARITHMETICAL RANK OF COHEN-MACAULAY
SQUAREFREE MONOMIAL IDEALS OF HEIGHT TWO

KYOUKO KIMURA (OSAKA UNIVERSITY/JST CREST)

1. INTRODUCTION

Let S be a polynomial ring over a field K and I a squarefree monomial ideal
of S. The arithmetical rank of I is defined by

ara ] := min {r . there exist ai,...,a, € S such that v/(ay,...,a,) = \/7}

By the result of Lyubeznik [9], we have the following inequalities:
height I < pdg S/I < aral,

where pdg S/I denotes the projective dimension of S/I over S. We are in-
terested in the problem when ara/ = pdg S/l holds. Some classes of ideals
those satisfy this equality are found in e.g., [1], [2], [4], [6], [7], [8], [10], [11]. If
ara ] = height I holds, then [ is said to be set-theoretic complete intersection.
When this is the case, S/I is Cohen—-Macaulay.

The main result of this report is the following theorem.

Theorem 1.1. Let I C S be a squarefree monomial ideal of height 2. Suppose
that S/I is Cohen-Macaulay. Then

aral =pdg S/l = 2.
In particular, I is set-theoretic complete intersection.

Note that there exist Cohen—-Macaulay squarefree monomial ideals I of
height 3, founded by Yan [12], Kimura, Terai and Yoshida [7], which do not
satisfy ara ] = pdgS/I when char K # 2.

In this report, after recalling some definitions and properties of Stanley-
Reisner ideals (Section 2), we state the motivation and pose questions (Section
3; Problem 3.5). In Section 4, we give answers for these questions (Propositions
4.1 and 4.2). In particular, Proposition 4.2 is the key lemma on the proof of
Theorem 1.1, though we do not state the detailed proof of Theorem 1.1 in this
report; see [5].

2. PRELIMINARIES.

In this section, we recall some definitions and properties of Stanley—Reisner
ideals, especially Alexander duality.

Let A be a simplicial complex on the vertex set X = {z1,...,z,}. That is,
A is a collection of subsets of X satisfying the conditions (i) {z;} € A for all
i=1,...,n; (i) If F € Aand G C F, then G € A. If A consists of all subsets
of X, then A is called a simplez. An elements of A is called a face of A,



and it is called a facet of A if it is maximal among faces of A with respect to
inclusion. The dimension of A is defined by dim A := max{|F|—-1: F € A},
where |F| denotes the cardinality of F. The Alezander dual complez of A is a
simplicial complex defined by A* :={F C X : X\ F ¢ A}. f dimA <n -2,
then the vertex set of A* is also X.

For a simplicial complex A on the vertex set X = {z1,...,2,}, we can
associate a squarefree monomial ideal of K[X]| = K|[z1,...,x,) by

s . 1S21<<15Sn, {xili""mis}¢A)7

which is called the Stanley-Reisner ideal of A. The quotient ring K[A] :=
K[X]/Ia is called the Stanley-Reisner ring of A. Conversely, for a squarefree
monomial ideal I of S = K[X] with indeg [ := min{q : [, # 0} > 2, there
exists a simplicial complex A on X such that I = Io. In fact, this complex is
given by A = {F C X : mp ¢ I}, where mp = [[, cp2i- Then the minimal
prime decomposition of [ is

I=Ia= (] Pr
F € A: facet
where Pr = (z; : z; € X \ F'). Moreover we assume that height I > 2. The
ideal I* := Ia- is called the Alezander dual ideal of I. Since A*™* = A, we have
I** = I. The minimal set of monomial generators of /™ is
G(I") = {mx\r : F is a facet of A}.

Then it is easy to see that indeg I* = height I. Moreover, Eagon—Reiner [3]
proved that I* has a linear resolution if and only if S/I is Cohen-Macaulay.

In= (i, x

3. MOTIVATION

In this section, we state our motivation. First, we survey results due to
Barile and Terai [2], which are our starting point.

Let T" be a simplicial complex on the vertex set X = {z1,...,z,}. Take an
arbitrary face F' € I' and a new vertex zo. The cone from zo over F'is a simplex
on the vertex set F'U {zo}. We denote it by coz, F. Then I' =T'Uco,, F is a
simplicial complex on the vertex set X' := X U {zo}.

Barile and Terai [2] investigated the relations between arithmetical ranks of
Ir and I+, and proved the following theorem.

Theorem 3.1 (Barile and Terai [2, Theorem 1, Theorem 2]). We use notations
as above.

(1) ara It < max{aralpr +1,n —|F|}.
(2) If ara Ir = pd K[I] holds, then araIr = pd K[I'] also holds.

As an application of Theorem 3.1 (2), they proved the following result, which
was first proved by Morales on the different way.

Theorem 3.2 (Morales [10]). Let I be a squarefree monomial ideal of S. If I
has a 2-linear resolution, then

aral = pdg S/I.



Remark 3.3. In fact, Barile and Terai [2] (resp. Morales [10]) proved Theorems
3.1 and 3.2 (resp. Theorem 3.2) with the assumption that the base field K
is algebraically closed. But the author proved these theorems without this
assumption by improving the proof due to Barile and Terai; see [5, Section 5].

For simplicial complexes, the notion of the generalized tree is defined by
inductively: (i) a simplex is a generalized tree; (ii) if " is a generalized tree
on the vertex set X, then for any face F' € I" and for any new vertex z,, the
simplicial complex I" U co,, F' on the vertex set X U {zy} is a generalized tree.
Then we have the following lemma.

Lemma 3.4 (Barile and Terai [2, Lemma 2]). Let T be a simplicial complex
which 1s not a simplex. Then Ir has a 2-linear resolution if and only if ' is a
generalized tree.

By virtue of Lemma 3.4, one can proceed the proof of Theorem 3.2 by
indiction on |X]|.

The assumption of Theorem 3.2, that is, [ has a 2-linear resolution, is equiv-
alent to that height I* = 2 and S/I* is Cohen-Macaulay, those are the assump-
tion of Theorem 1.1. Then it is natural to think that if the Alexander dual
of Theorem 3.1 holds, then Theorem 1.1 holds. Therefore we consider the
Alexander dual of the above argument.

Let A be a simplicial complex on the vertex set X = {:cl, .., Tn} With
dimA < n—2. Set I' = A* and take a face F' € " and a new vertex ;. We set
I" =T Uco,, F as above, and A’ = (I')*. We consider the following problem.

Problem 3.5. We use the notations as above.
(1) Are there any relations between arithmetical ranks In and In ?

(2) If araln = pd K[A] holds, then does ara In = pd K[A] hold?
4. ANSWERS FOR PROBLEM 3.5

In this section, we give answers for Problem 3.5.
For Problem 3.5 (1), we obtain the following proposition.

Proposition 4.1. We use the notations in the previous section. Then
aralpn < aralp +1.

Proof. Set S = K[X] and S' = K[X']. Let G(Ia) = {ma,...,m,} be the

minimal set of monomial generators of /o. Then the prime decomposition of

Ip = [A* is

(4.1) Ip = Ipe = ﬂP c S,

where P; = (z; € X : z; divides m;) C S . Hence I can be written as

(42) | Ir=FnN (h(PJS, + (l‘o))) C S,,

j=1



where Py = Pru(ge} = (@i : z; € X \ F)) C §'. Therefore
IA/ = I(I"’)* = (mo,xoml, e ,xom#) (- Sl,

where mo = [ [, cx\r Zi-

Suppose that ¢, . . ., qn generate Ia up to radical. Then zoqy, ..., Togy gener-
ate £ola up to radical. Therefore mg, oq, - . . , Togn generate Ia: up to radical.
This implies the desired inequality. O

Next, we provide a partial answer for Problem 3.5 (2).

Proposition 4.2. We use the notations as above. If araln = pd K[A] = 2
hold, then ara Inr = pd K[A'] =2 also hold.

Proof. Set I = Ia, I' = In, S = K[X], and &' = K[X']. Let G(I) =
{ma,...,m,} be the minimal set of monomial generators of I. Then
I' = (mg, xoma, . .., Tomy,).
Let G be a facet of I" containing F'. Since the prime decomposition of Iy = I'*
is (4.1), we may assume Pg = P;. Then my is divisible by m; since PgS’ C B,.
It is easy to see that height I’ > 2. Therefore inequalities
2 < height I' < pdg §'/I' < aral

hold. Hence it is sufficient to prove that ara I’ < 2.

Let g1,92 € S be elements which generate I up to radical. Then ¢;,¢; € I.
Since my € I = 1/(q1,¢2), there exist an integer £ > 0 and elements a;,a; € S
such that

m{ = a1q1 + aas.
We prove that
91 = Tog1 — G2, gy = Toga + a1y

generate I’ up to radical.

Set J = (¢}, ¢4)- It is clear that J C I'. We prove the opposite inclusion.

Since

a1q; + a2y = To(a1q1 + a2q2) = Tomy,

we have xomf € J. Thus zom; € v J. Since zomy is divisible by zom,, we
have

wf‘;ql = Zoq) + aaTomg € \/j, 17342 = Zogy — M TeMNo € V.

Thus Zogy, Toga € v/ J. Therefore 2ol = \/(zoq1, Tog2) C V/J.

It remains to prove my € V. By zoq1, zog2 € V/J, we also have ai1My, AaMyg €
v/J. Note that

memé = mo(arq + azg:) = q1(a1me) + ga(agme) € VJ.
Since m; divides my, this implies mq € v/ J as required. O

Although Proposition 4.2 is a partial answer for Problem 3.5 (2), it is suffi-
cient to prove Theorem 1.1. The proof of Theorem 1.1 is done as an application
of Proposition 4.2 by induction on |X| using Lemma 3.4; see [5, Section 4].



Example 4.3. Let I' be the simplicial complex on the vertex set X = {z,..., 5}
whose facets are {z1, z2, 23}, {%2, 23,24}, {24, 25}. Then the prime decompo-
sition of It is
It = (z4,25) N (z1,25) N (21, 22, Z3).
Let A be the Alexander dual complex of I". Then
IA = (11741'5, ZT1Zs5, 1‘11’21’3).

We choose the face F' = {z,} € I'. Let o be a new vertex. Then co,, F =
{zo,z:} and facets of IV = T'U co,, F are {z1,z0}, {z1, 22,23}, {2, 3,24},
{z4,z5}. Thus the prime decomposition of I is

IF’ = ($2: x3, T4, 1;5) N (x0,$4,.’L'5) N (.’L’O,Z’],.'Es) n (1;0) xl:x2,$3)-

Hence
In = (552173504305, ToT4Ts5, ToX1T5, xowlxzxs)-

In this case, G = {z1,%2,23}, M1 = z4xs5, and My = T73T4Ts with the
notations in the proof of Proposition 4.2.
It is easy to see that I is generated by

Q1 = T1T5, (2 = T4T5 + T122T3
up to radical; see Schmitt and Vogel [11, Lemma, p. 249]. Since
m3 = (2425)° = —TaT3Taqy + TaT502,
Ins is generated by following 2 elements up to radical:

r_ _ 2, 2
{ q1 = Toq1 — T4TsMg = ToT1T5 — T2XL3TyTs,

o _ 2,22
Q2 = ToG2 — T2T3T4Mp = TeT4T5 + ToT1T2T3 — ToT3TyTs.
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H-VECTORS OF SIMPLICIAL COMPLEXES
WITH SERRE’S CONDITIONS

SATOSHI MURAI AND NAOKI TERAI

ABSTRACT. The study of h-vectors of simplicial complexes is an interesting re-
search area in combinatorics as well as in combinatorial commutative algebra.
On h-vectors of simplicial complexes, one of fundamental problems is their non-
negativity. For example, a classical result of Stanley guarantees that h-vectors
of Cohen-Macaulay complexes are non-negative. We study the non-negativity of
h-vectors in terms of Serre’s condition (S,.).

1. INTRODUCTION

Let S = Klz1,...,z,] be a standard graded polynomial ring over an infinite
field K. Let I C S be a graded ideal and R = S/I. The Hilbert series of R
is the formal power series F(R,\) = 3 72 (dimg Ry)\?, where R, is the graded
component of degree g of R. It is known that F'(R, \) is a rational function of the
form (ho + i+ -+ + hyA®) /(1 — A)?, where each h; is an integer with A, # 0 and
where d = dim R. The vector (ho(R), h1(R),...,hs(R)) = (ho,h1,...,hs) is called
the h-vector of R. We say that R = S/I satisfies Serre’s condition (S,) if

depth Rp > min{r,dim Rp}

for all graded prime ideals P D I of S.

Let A be a simplicial complex on [n] = {1,2,...,n}. Thus A is a collection of
subsets of [n] satisfying that (i) {i} € A for all i € [n] and (ii) if F € A and
G C F then G € A. The squarefree monomial ideal Io C S generated by all
squarefree monomials zr = [[,.pz; € S with F € A is called the Stanley-Reisner
ideal of A. The ring K[A] = S/IA is the Stanley-Reisner ring of A. The vector
h(A) = h(K[A]) is called the h-vector of A.

We say that A satisfies Serre’s condition (S,) if K[A] satisfies Serre’s condition
(Sr). It is not hard to see that A satisfies (S,) if and only if, for every F € A,
H;(ka(F); K) = 0 for i < min{r —1,dimlka(F)}, where H;(A; K) is the reduced
homology groups of A over a field K and where lka(F) = {G C [n]\F : GUF € A}
is the link of A with respect to a face F' € A (see [Te, p. 454]). A homological
characterization of (S, ) is also known. It is know that a (d—1)-dimensional simplicial
complex A satisfies (S,) with r > 2 if and only if dim(Ext2™(K[A],ws)) < i —r for
i=0,1,...,d — 1, where wg is the canonical module of S (see [Scl, Lemma 3.2.1]).

We remark some basic facts. Every simplicial complex satisfies (S;). On the
other hand, for 7 > 2, simplicial complexes satisfying (S,) are pure and strongly
connected. (S2) states that A is pure and lka(F') is connected for all faces F € A
with [F| < dimA. (S,) is equivalent to the famous Cohen-Macaulay property of
simplicial complexes.



A classical result of Stanley [St1] guarantees that if A is Cohen-Macaulay (that is,
if it satisfies (Sg)) then hi(A) is non-negative for all k. We generalize this classical
result in the following way.

Theorem 1.1. If a simplicial complex A satisfies (S,) then hg(A) > 0 for k =
0,1,...,r.

We also study what happens if hy = 0 for some 1 < k < r. We get the next result.

Theorem 1.2. Let A be a simplicial complex which satisfies (S;). If hy(A) =0 for
some 1 <t <r then hp(A) =0 for all k >t and A is Cohen-Macaulay.

It is known that, for all integers 2 < r < d, there exists a (d — 1)-dimensional
simplicial complex A which satisfies Serre’s condition (S,) but h,;(A) < 0 ([TY,
Example 3.5]). Thus we cannot expect that all the hy are non-negative. However,
we proved the following weak non-negative property for hy(A) with k > r.

Theorem 1.3. If a simplicial complez A satisfies (S;) then 37, hx(A) > 0.

To prove the above theorems, we prove the following algebraic result which might
be itself of interest. For a finitely generated graded S-module M, let

reg M = max{j : Tor;(M, K);y; # 0 for some 3}
be the (Castelnuovo-Mumford) regularity of M.

Theorem 1.4. Letr > 1 be an integer. Let I C S be a graded ideal and d the Krull
dimension of R = S/1. Suppose that reg(Exts " (R,ws)) < i—r fori=0,1,...,d—1.
There exists a linear system of parameters © = 6,,...,04 of R such that

hx(R) = dimg (R/OR), fork <r.

In this paper, we will give proofs of Theorems 1.1 and 1.4. The whole proofs of
the results can be found in [MT].

2. PROOF OF THEOREMS
We first introduce some lemmas. The next result is well-known (see [St2]).

Lemma 2.1. Let I C S be a homogeneous ideal, d the Krull dimension of R = S/I
and © = 61,...,04 a linear system of parameters of R. If the multiplication map

x0; : (R/(Gl,...,(h_l)R)j — (R/(@l,...,Gi_l)R)
1s injective for alli=1,2,...,d and for all j <r —1 then
h;(R) = dimg(R/OR); for j <.

Let H;(y; M) (respectively, H(y; M)) be the i-th Koszul homology (respectively,

Koszul cohomology) of M with respect to a sequence y = y1,...,y. A key lemma
is the next result due to Aramova and Herzog [AH, Theorem 1.1].

Jj+1

Lemma 2.2 (Aramova-Herzog). Let M be a finitely generated graded S-module of
Krull dimension d andy = y1,. ..,y a generic linear form. Then H;(y1,. .., yx; M)
has finite length and H;(yy, ..., yx; M)iy; = 0 for j > reg M in the following cases:
Bi>1andk=1,2,...,¢
(i) i=0and k > d.



Let H:(M) be the i-th local cohomology module of M. Another key lemma is
the next result due to Schenzel [Sc2, Sc3].

Lemma 2.3 (Schenzel). Let M be a finitely generated graded S-module of Krull

dimension d andy = y1,...,Yy, generic linear forms. Then, for all j € Z,
V4
dimg HS(M/ (v, .., yp)M Z imy H,(y; H (M))J..
£=0

Proof. (Sketch) Let C* be the Cech complex and K, (y; M) the Koszul complex of M
with respect to y. Define the double complex D*® such that D** = C* Qg Kp—4+(y; M).
There are two spectral sequences (we follow the notation of [Ei, Section A3])

SEY = H(Hp(y; M) = H** (tot(D**))

vert

hoo Bt = Hy_i(y; Hy(M)) = H**'(tot(D*)).

By Lemma 1.4(i), H,—;(y; M) has finite length if ¢ # p. Thus, by the basic properties
of local cohomology,

VGI‘%ESt = 0 if (S’t) g {(0’0)7 (0’1)" : '7(O7p)’(17p)’(2’p)7' . ’(d’p)}

and
*E® = H, ,(y; M) fort=0,1,...,p—1.

vert
Then this spectral sequence degenerates at > and H?(tot(D**)) = HO(Hy(y; M)) =
Hy(M/(y1, -, yp)M). Since dimg H?(tot(D"")); < dimg (€D, 4, neeb*"); for all

j € Z, we get the desired inequality. O

Proof of Theorem 1.4. Let y = y1,...,yq be generic linear forms. By Lemma 2.1, it
is enough to prove that the multiplication map

Xy (R/(v1,. . :yi—l)R)j - (R/(y1,- .. ,yi—l)R)jH
is injective for all 4 = 1,2,...,d and j < r — 1. To prove this, it is enough to prove
that
H3(R/(y1,...,4:)R); =0
foralli=1,2,...,d and j <r—1. Then, by Lemma 2.3, it is enough to prove that

He(yl) e Yi Hﬁ\(R))J =0

forall /<i<dand j<r—1.
Fix £ <i < dand j <r—1 By the local duality and the self duality of the
Koszul complex,

H[(yl, ey Y Hﬁ.‘(R)) .= Hg(yl, Y He (R))

J =J

o~ He(yl, oo Y Exte Z(R,ws))_j
= H’i—ﬂ (3/1; - Ui Eth_e(Ra wS))(q;_g)+[-j'

Since £ — j > £ — r, Lemma 2.2(i) and the assumption reg(Ext% *(R,ws)) < £—r
show that the above vector space vanishes when ¢ > £. Similarly, the above vector
space also vanishes when 7 = £ by Lemma 2.2(ii). O



Now, we prove Theorem 1.1.

Proof. We may assume r > 2 since h;(A) is always non-negative. Fix an integer
1<i<d-1. Let N'=Ext?*(K[A],ws). By Theorem 1.4, it is enough to prove
that reg N* < i — r. It follows from the result of Yanagawa [Ya] and Mustatd [Mu],
each N is a squarefree S-module. Then we have reg N* < dim N*. On the other
hand, Serre’s condition (S,) implies dim N* < ¢ —r. Then the statement follows. [

Remark 2.4. The key observation in the above proof is that K[A] is a squarefree
S-module. Indeed, the proof of Theorem 1.1 works if we replace K[A] with any
squarefree S-module M.
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0. INTRODUCTION

This is a joint work with Giancarlo Rinaldo.

Throughout this report, let G = (V(G), E(G)) be a graph, that is, G is a simple
graph without loops and multiple edges, and V (G) is the vertex set of G and E(G)
is the edge set of G. We put V(G) = {z1,...,z,} unless otherwise specified, and
put S = K{[z,,%,,...,%,], a polynomial ring over a field K. Then the edge ideal of
G, denoted by I(G), is defined by

I(G) = (zz; : {zi,z;} € E(Q))S.

Since I(G) is a squarefree monomial ideal, it can be regarded as a Stanley—Reisner
ideal. In particular, there exists a simplicial complex A(G) on V(G) such that
I(G) = Ip). Then A(G) is called the complementary simplicial complez of G.

A subset C' C V(G) is called a vertez cover of G if CN{z;, z;} # 0 holds whenever
{zi,2;} € E(G). Then the irredundant primary (prime) decomposition of I(G) is
given by

I(G) =ﬂPC'a
o}

where C' moves through all vertex covers which is minimal with respect to inclusion,
and P¢ is a prime ideal defined by Pc = (z; : ¢ € C). In pariticular, for each £ > 1,
the £th symbolic power ideal of I(G) is given by

(@) =1(G)Swn 8 =[P,
C

where W = S\ Upeming(s/n) -

The aim of this report is to discuss Cohen-Macaulayness (and (FLC) properties)
for symbolic or ordinary powers of edge ideals.

!This is an extended abstract. The final version will be published elsewhere.



1. COHEN—MACAULAYNESS FOR SYMBOLIC POWER, IDEALS
The following theorem is known as a special case of Cowsik—Nori Theorem.

Theorem 1.1 (Cowsik—Nori [1]). Let S be a polynomial ring over a field K,
and let I be a homogeneous radical ideal of S. Then the following conditions are
equivalent:

(1) I is complete intersection.

(2) S/I* is Cohen-Macaulay for every integer £ > 1.

(3) S/I* is Cohen-Macaulay for infinitely many integers £ > 1.

In [3], we gave a refinement of Cowsik-Nori Theorem as follows:

Theorem 1.2 (See [3, Theorem 2.1] with M.Crupi and G.Rinaldo). Let I(G)
denote the edge ideal of a graph G. If S/I(G)* is Cohen-Macaulay for some £ >
height I, then I(G) is complete intersection.

The main purpose of this report is to give more detailed version of Cowsik—Nori
theorem. In order to do that, we consider the following questions:

Question 1.3. Let £ > 1 be an integer. Let I(G) be the edge ideal of a graph G.
Then:

(1) When is S/I(G)¥ Cohen-Macaulay?

(2) When does I(G)® = I(G)* hold?

1.1. When is S/I(G)® Cohen-Macaulay? Let G be a graph on the vertex set
V = [n] such that dim S/I(G) = 1. Such a graph G is isomorphic to the complete
graph K, and its edge ideal of G is
IG)=(zizj : 1<i<j<n)= ﬂ(xl,...,a’:},...,xn).
i=1

Then S/I(G)® is Cohen—Macaulay for every integer £ > 1 because the symbolic
power ideal has no embedded primes.

Now let us consider a disjoint union of two complete graphs K,,, and K,,. Put S; =
Klzy,...,Zm], So = Kly1,...,yn) and S = S1 ®k So = K[z1, ..., Tm, Y1, - -, Yn)-
Then the edge ideal of G = K, [[ K., is given by

IG)=(zizj : 1<i<j<m)+(yy; : 1 <i<j<n).

Moreover, we have
16)9= [ P+,
i€[1,m],j€[1,n]
where P, = (z1,..., %, ...,Zm)S and Q; = (1,..-, %, - - -, ¥n)S. Then one can show
that z, + - -+ + z,, and y; + - - - + y,, form a regular sequence on S/I(G)®, that is,
S/I(G)® is Cohen—Macaulay for every £ > 1. This fact can be generalized as the
following main theorem in this report.



Theorem 1.4 (Cohen—Macaulayness for symbolic powers). Let I(G) denote
the edge ideal of a graph G. Then the following conditions are equivalent:

(1) S/I(@)¥ is Cohen—Macaulay for every integer £ > 1.

(2) S/I(G)® is Cohen-Macaulay for some integer £ > 3.

(3) G is a disjoint union of finitely many complete graphs.

We can replace Cohen-Macaulayness with Serre’s condition (S;) in (1) or (2) of
the theorem. On the other hand, in (2), we cannot replace “/ > 3” with 4 > 2” as
the next example shows.

Example 1.5. For the pentagon G, I(G) = (z1%2, 2223, T3%4, TaZs,T5T1). Put
S = K[z1,%q,23,24,25). Then S/I(G) and S/I(G)® are Cohen-Macaulay but
S/1(G)® is not.

Remark 1.6. Recently, we found many examples of graph G for which S/I(G)?
S/1(G)® is Cohen-Macaulay. Moreover, Nakamura told us that he proved S/I(G)
is Buchsbaum for the pentagon G.

w

1.2. When I(G)® = I(G)* hold? In what follows, we suppose that I(G) is un-
mixed. Then I(G)® = I(G)* if and only if S/I(G)* is unmixed.

For this question, we can give a complete answer. The following proposition can
be proved by a similar method as in the proof of Simis—Vasconcelos—Villarreal [10,
Lemma 5.8, Theorem 5.9].

Proposition 1.7. Let I(G) denote the edge ideal of a graph G. Let £ > 2 be an
integer. Then I(G)® = I(G)* holds if and only if G contains no odd cycles of length
28 =1 forany 1 <s < /.

In particular, if G contains a triangle (i.e., a 3-cycle), then I(G)® # I(G)2.

As an application of Theorem 1.4, we can obtain some result for Cohen—Macaulayness
of ordinary powers, which gives an improvement of the main theorem in [3].

Theorem 1.8 (Cohen—Macaulayness of ordinary powers). Let I(G) be the
edge ideal of a graph G. Then the following conditions are equivalent:
(1) S/I(G)* is Cohen—Macaulay for every integer £ > 1.
(2) S/I(G)*¢ is Cohen—Macaulay for some integer £ > 3.
(3) I(G) is complete intersection, that is, G is a disjoint union of finitely many
complete 2-graphs and points.

Proof. 1t suffices to show (2) = (3). Now suppose that S/I(G)* is Cohen-Macaulay
for some £ > 3. Then S/I(G)® is Cohen-Macaulay and thus G is a disjoint union
of finitely many complete graphs (say, Kn,, ..., K,,). Hence, S/I(G)™ is Cohen-
Macaulay for all m > 1 by Theorem 1.4. In particular, [(G)? = I(G)2.

On the other hand, if max{ni,...,ns} > 3, then G contains a triangle. This
contradicts Proposition 1.7. Hence max{ni,...,nqs} < 2. In other words, I(G) is
complete intersection, as required. a



The Cohen-Macaulayness for S/I(G)® does not imply the Cohen-Macaulayness
for S/I1(G)*.

Example 1.9. Let I(G) denote the edge ideal of a graph G. If G is the disjoint
union of the d complete 3-graphs, then for every £ > 2, S/I1(G)® is Cohen-Macaulay
but S/I1(G)¢ is not. Moreover, dim S/I(G) = d.

2. FLC PROPERTIES OF SYMBOLIC POWERS

Let R = S/I be a homogeneous K-algebra, and let m be the unique homogeneous
maximal ideal of R. The ring R is said to have (FLC) if the local cohomology
modules H{ (R) has finite length for all ¢ < dim R. Note that R has (FLC) if and
only if R is equidimensional and Rp is Cohen-Macaulay for every prime P C m in
this situation.

We recall the notion of locally complete intersection complex which was introduced
in [11]. A simplicial complex A on the vertex set V' is locally complete intersection
if K[linka{v}] is complete intersection for every v € V, where linka{v} = {F € A :
v ¢ F,FU{v} € A}. Note that a simplicial complex A is a generalized complete
intersection complex, which was introduced by Goto and Takayama in [4], if and
only if it is pure and a locally complete intersection complex.

Goto and Takayama [4] proved an analogous result of Cowsik-Nori theorem for
Stanley—Reisner ideals.

Theorem 2.1 (Goto—Takayama [4]). Let A be a simplicial complex. Then the
following conditions are equivalent:

(1) S/I& has (FLC) for all integers £ > 1.

(2) S/I4 has (FLC) for infinitely many integers £ > 1.

(3) A is pure and a locally complete intersection complez.

In this section, we will give a refinement of this theorem in case of edge ideals.
When dim S/I(G) < 2, if S/I(G) is unmixed, then S/I(G)® is unmixed, and thus
it has (FLC) for every integer £ > 1. But when dim S/I(G) > 3, we can classify all
graphs for which S/I(G)¢ has (FLC) for some (every) £ > 3.

For complete graphs K,,, ..., Kn,, we set Ap, o, = AK,, IT. . [T An,).

Theorem 2.2 (FLC for symbolic powers). Let I(G) denote the edge ideal of G,
and A = A(G) the complementary simplicial complex of G. Let p denote the number
of connected components of A. Suppose that A is pure and d = dim S/I(G) > 3.
Then the following conditions are equivalent:

(1) S/1(G)¥ has (FLC) for every £ > 1.

(2) S/I(G)® has (FLC) for some £ > 3.

(3) There exists (n,...,niq) € N? for every i = 1,...,d such that A can be

written as

A= An11,~~~.n1d H Anzly-«-,nzd H s H Anp1,~~~,npd'



The next corollary immediately follows from Theorems 1.4 and 2.2, which remains
still open in case of Stanley—Reisner ideals.

Corollary 2.3. Suppose that £ > 3 and d = dim S/I(G) > 3. Then the following
conditions are equivalent:

(1) S/1(G)® is Cohen-Macaulay.

(2) S/I(G)® has (FLC) and A(G) is connected.

The following theorem gives a refinement of Goto—Takayama theorem in case of
edge ideals.

Theorem 2.4 (FLC for ordinary powers). Let I(G) denote the edge ideal of a
graph G. Suppose that A(G) is pure. Put d = dim S/I(G) > 2. Then the following
conditions are equivalent:

(1) S/I(G)* has (FLC) for every £ > 1.

(2) S/I(G)* has (FLC) for some £ > 3.

(3) A(G) is locally complete intersection complet.

(4) A(G) is a disjoint union of complete intersection complezes if d > 3; A(G)
is a disjoint union of finitely many m-gons (m > 4) and m'-pointed paths
(m'>3) if d = 2.

Proof. (1) = (2) < (3) is clear. The equivalence of (1) and (4) follows from [4]. On
the other hand, (2) = (4) follows from Theorem 1.8 by a similar argument as in
[4]. O
Example 2.5. Let I(G) be the edge ideal and A(G) the complementary simplicial
complex of a graph G.

(1) If G is the pentagon, then S/I(G)? is not Cohen-Macaulay but it has (FLC).

(2) If G = K4 is the complete bipartite d-graph, then

I(Kag) = (ziyj : 1 <4,5 < d)
and S/I(G)¢ has (FLC) but not Cohen-Macaulay if d > 2.

(3) If A(G) = Az33][As33, then S/I(G)® has (FLC) for every £ > 1 but
S/1(G)* does not have (FLC). In particular, A(G) is not a locally complete
intersection complex.

S/I*: CM| = |S/I*: (FLC)| — |I : pure, LCI
4 ¢ 4
S/I® : CM| = |S/I® : (FLC)| = |S/I : Buchsbaum
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Grobner bases of contraction ideals

B%H (5 (Takafumi Shibuta) (YEK - #/ JST, CREST)

We investigate Grobner bases of contractions of ideals under some monomial ho-
momorphisms. Our theorem provides many examples that have square-free initial
ideals or quadratic Grébner bases. As a consequence of our theorem, we obtain a
generalization of the theorem of Aoki~Hibi-Ohsugi-Takemura and Hibi-Ohsugi ([1],
[7])-

Let R = Klz1,...,z.) and S = K]y1,...,ys] be polynomial rings over a field K,
I an ideal of S, and ¢ : R — S a ring homomorphism. We call the ideal ¢$*(I) the
contraction ideal of I under ¢. The one of the most important ring homomorphisms
in combinatorics and algebraic statistics are monomial homomorphisms: Let A =
(a®,...,aM) be a d x r integral matrix with column vectors a® = t(a®, ... a{) €
72, and consider the ring homomorphism

ba: S=Kly, . ..ow] — K2, 22

o

d
(i)
z, — z? :sz’.
=1

We call ¢4 a monomial homomorphism. Using abusive notation, we sometime con-
found the matrix A = (a®,...,a®) and the set {a®,...,aM} if a®) % a® for all
i # j. We denote by NA = {}", n;a®” | n; € N} the semigroup generated by column
vectors of A, and by K|[A] the monomial K-algebra K [za(l), . ,za(r)]. The ideal
P,y =Ker ¢, is called a toric ideal. It is known that the toric ideal P4 is generated
by binomials u — v where u and v are monomials of S with ¢4(u) = ¢p4(v). We call
A a configuration if there exists a vector 0 # X = (Ar,..., ;) € Homg(Q¢,Q) = Q¢
such that A\-a® = 1 for all i. If A is a configuration, then P4 is a homogeneous ideal
in the usual sense and some algebraic properties of K[A] = S/P, can be derived
from Grébner bases of Py: If in((Py4) is generated by square-free monomials, then
K[A] is normal. For a homogeneous ideal I C S, if I has a quadratic Grébner basis
with respect to some term order, then S/I is a Koszul algebra, that is, the residue
field K has a linear minimal graded free resolution. In this paper, we consider the
next problem.

Problem 1. Let ¢4 : R — S be a monomial homomorphism and I C S a homoge-
neous ideal. Then is it possible to find properties of Grébner bases of ¢3'(I) from
these of I and P4 = Ker¢ 47

In some cases if both of I and Ker ¢ 4 admit square-free or quadratic initial ideals,
then so does the contraction ideal ¢;'([).

Thorem 1. Let d > 0 and ); € N for i € [d] be integers, Z¢ = 69?:1 Ze; a free
Z-module of rank d with a basis ey, ...,eq, and S = K[y]@ lield, je\]a



polynomial ring. We regard S as a Z%-graded ring with deg y](.i) =e; fori € [d],
jE€N). Let ACNi= @Ll Ne; be a configuration. We set

d
A={ac @Z’\i | degzay® € A},
i=1

R=Klz,|a € /i], and ¢5: R — S, ., — y*. Let I C S be a Z%-graded ideal.
Then the following hold.

(1) If both of I and P4 admit Grébner bases of degree at most m, then so is

o7 (D). |
(2) If both of I and P4 admit square-free initial ideals, then so is qb;il(l ).

Note that A is a nested configuration defined in [1]. This theorem is a gener-
alization of the theorem of Aoki—-Hibi-Ohsugi-Takemura [1] and Hibi-Ohsugi [7],
and contains the result of Sullivant [9] (toric fiber products). This theorem also
contain classical results: If d = 1 and A = {r}, then ¢;{1(I ) is the defining ideals

of r-th Veronese subring of S/I. If d =2 and I; C S; := K[y](-l) | 7 €[\]] and
I CS = K[yj(.z) | 7€ [/\2]] are homogeneous ideals, then ¢;11(IIS + I,S) is the
defining ideal of the Segre product of S;/I; and Sy/I>.

Our interest is primarily in the case where [ is a toric ideal. In this case, qﬁ;l(l )
is also a toric ideal. Let A = (a®,...,a(”) be an s x r matrix with a® € N¢,

and B = (b®,...,b®) a d x s matrix with b") € Z¢. Then we obtain monomial
homomorphisms
R4 5 %8 K2 2

Note that the composition of monomial homomorphism is also monomial homomor-
phism defined by the product of the matrices; ¢pop4 = ¢p.4. In this case, Theorem
1 can be rephrased as follow.

Thorem 2. Let the notation be as in Theorem 1. Let p be a positive integer,
B; = {bg-’) | j € [M]} a configuration of Z* fori € [d], and B = B,U---UB;. We set

; @)
¢ : S — K[z, ... 250, y](.z) — 2% . Assume that there erists an d X u rational

matriz M € Homg(Q¥, Q%) such that M - bg.i) =¢; for alli € [d] and j € [\i]. We
set
c={ > a’bfa=(e" i€ d],jeN])eA}.
ie[dlyjep"']

Then the following hold.

(1) If both of Pg and P4 admit Grobner bases of degree at most m, then so is

Pe.
(2) If both of Pg and P4 admit square-free initial ideals, then so is Fe.

Suppose that there exists pi,...,p4q € N such that p = py + -+ + pg, N¥ =
NHt x ... x N# and B; C 0 x --- x Nt x ... x 0 for all 7. Then the existence of
a matrix M in Theorem 2 is trivial, and the Gbobner basis of Pg is the union of



Grobner bases of Pg,’s. In this case, Theorem 2 is equivalent to the theorems of
Aoki-Hibi-Ohsugi-Takemura [1] and Hibi-Ohsugi [7].

Suppose that A = (a®,...,a() is a matrix with a® = a0, and < is a term
order on R such that z; < z;. Let A' = (a®,... alt=D al+) al)). Then
the union of {z; — z;} and a Grobner basis of Py C K[21,...,Zi-1, Tit1,- -, T

with respect to the term order induced by < is a Grobner basis of P,. Therefore
a Grobner basis of P4 and that of Py are essentially equivalent. In particular,
d(ing(Pa)) = 6(in<(Pu)), and inL(P4)) is generated by square-free monomials if
and only if inL(Py) is.

1. APPLICATIONS

1.1. Veronese configurations.

Let S = Kly1,...,Ys] = @,y Si be a N-graded ring with deg(y;) = 1 for all 4.
Let d be a positive integer, and A = {*(ai,...,a;) € N° | |]a] = d} be the Veronese
configuration, R = K|z, | a € A] be a polynomial ring, and ¢4 : R — S (za — y?)
the monomial homomorphism. It is known that there exist a lexicographic order on
R such that inL(P4) is generated by square-free monomial of degree two ([6]).

Corollary 1.1. Let I C S be a homogeneous ideal, w a weight vector on S such
that in,(I) is a monomial ideal, and < a term order on R such that inL(P,) is
generated by square-free monomial of degree two. We denote the weight vector ¢*w
by w'. Then the following hold:

(1) dlins,, (631(1)) < max{2, 8(in (1))},
(2) Ifiny(I) is generated by square-free monomials, then ing ,(¢*(I)) is gener-
ated by square-free monomials. '

Eisenbud-Reeves-Totaro proved in [5] that if K is an infinite field, the coordinates
Y1,...,Ys of S are generic, and < is a certain reversed lexicographic order, then it
holds that d(in< , (¢ (1)) < max{2,4(in,(I))/d}.

1.2. Toric fiber products.
We recall toric fiber products defined in [9]. Let si,...,58q, t1,...,t4 and d be
positive integers, and

Si=Klyl =Ky |i€d,j €[s]], S = Klz) = K[ [ € [d) k € [t]],
polynomial rings regarded as Z?-graded rings by assigning
deg(y;") = deg(2)") = e;
for all ¢ € [d],j € [si],k € [t;]. Then
S=5@x 52Ky, licld,jels]ket]
carries an Z¢ x Z4graded ring structure by setting

degs(y?) = (e;,0), degg(z") = (0,e:)



for all z e [d],j € [si],k € [ti] in S. Here, assummg S1 and Sy as subrings of S, we
write y] )®1and 1® z,(c) simply as y () and z;, @ Let

A={(a,a)|a€Zd}CdeZd
be the subsemigroup of Z¢ x Z%. Since A is generated by {(e;, e;) | i € [d]}, we have
8@ = Ky [ie(d),j € [s] k € ]

Let R = K[xyk) |i€ld],j € [si),k € [ti]] be a polynomial ring, and ¢ : R — S the
monomial homomorphism ¢(z y,Z) = yJ’) (@),
Let I; C S and I, C S, be Z%-graded ideals, and denote I; ® Sy + 51 ® I simply
by I + I. The ideal
I Xga Ip = o (I + 1)

is called the toric fiber product of I and I,. Originally, the assumptions in [9] are
that deg(y (')) deg(z,(:)) =al € 72 with a®, ..., a@ linearly independent, and I;
and I are Zd-graded ideals, which are equivalent to ours.

Let w, and wy weight vectors of S; and S such that in,, (I;) and in,, (1) are
monomial ideals, and set w = (wi,ws), the weight oder of S. Let Gi and G»
be Grobner bases of I; and I, with respect to w; and w; respectlvely, and set
w = (wy,ws).

Corollary 1.2. Let the notation be as above. Let < be the lexicographic term order
on R such that X}, <X, if i1 <tz 0T iy = iy and j1 < Jo oT iy =1z and j1 = Jo
and ky > ky. Then the following hold:
(1) d(ing,., (11 Xza I2)) < max{2, §(in,, (I1)), 6 (in,, (12))}.
(2) (19] C’orollary 2.11) If both of in,, (I1) and in,,(I2) are generated by square-
free monomials, then 1n_<p,,w(ll X gzaIy) is generated by square-free monomials.

1.3. Nested configurations.

Let d and p positive integers, and take A; € N for i € [d]. Let A be a configuration
of N¢ C EB;LI Ze;, where e; is the vector with unity in the i-th position and zeros
elsewhere. Let

B =®Y,...,bP), bl e N#
be a configuration of N* fori = 1,2,...,d, and set B = (By,...,Ba). The nested
configuration A[By, . .., B4] arising from A and By, . .. , B4 is the configuration

{bﬁl)-ﬁ--“‘l‘bgr) l 1§r€N,ei1+---—|-ei, €A jr€ [)\ik], ikE[d]}.

Originally, Aoki-Hibi—Ohsugi-Takemura ([1]) define nested conﬁgurations in the
case where there exists 0 < ,ul, .., a € N such that N# = N x ... x N“d and
B c N#. Let & = {e%,.. )} be a configuration of @)“ Ze(z) where e ) is the
vector with unity in the j- th position and zeros elsewhere. Let

S=K[(&,....&)] 2 K[ i€ ld), j €]



be the N¢-graded polynomial ring with degyq zj(-i) = ¢;. Then
SN = K[A[E,,..., &)

Corollary 1.3. Let R = K[xm | me Aé,... ,Sd]] be a polynomial ring and I an
Ne-graded ideal of S. If I and P4 admit quadratic Grobner bases with respect to
some term orders, then so does ¢;l?€1,...,£d](l )

Proof. If P4 admits a quadratic Grébner basis, then so does Py, ... ¢,) ([1] Theorem
3.6). Therefore the assertion follows from Theorem 1. O

Theorem 1.4. With the notation as above, assume in addition that there exists an
d x p rational matriz M € Homg(Q*, Q%) such that M - b?) =e; for alli € [d] and
J € [M]. If toric ideals P4 and Pg,...us, admit quadratic Grébner bases with respect
to some term orders, then Pap, . 5, admits a quadratic Grébner basis.

Proof. The set of column vectors of the product of matrices
B- A&, ... &)

coincides with A[By,...,B4]. Hence the Grobner basis of Py, 5, is essentially
equivalent to the Grobnaer basis of ¢/_4[1£1,...,£d](P31U"~U3 2)- Applying I = Pg,..us, in
the above corollary, we conclude the assertion. 0

REFERENCES

[1] S. Aoki, T. Hibi, H. Ohsugi, A. Takemura, Grébner bases of nested configurations, J. Algebra
320 (2008), no. 6, 2583-2593

[2] W. Bruns, J. Gubeladze, Polytopes, rings, and K-theory.

(3] D. Cox, J. Little, D. O’Shea, Ideals, Varieties and Algorithms, Springer-Verlag, 1992.

(4] D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Springer-Verlag, 1998.

[5] D. Eisenbud, A. Reeves, B. Totaro, Initial ideals, Veronese subrings, and rates of algebras,
Adv. Math. 109 (2) (1994), 168-187.

(6] D. Emanuela, Toric rings generated by special stable sets of monomials, Math. Nachr. 203
(1999), 31-45.

[7] T. Hibi, H. Ohsugi, The toric ring and the toric ideal arising from a nested configuration,
preprint, arXiv:0907.3253.

[8] B. Sturmfels, Grébner Bases and Convex Polytopes, Univ. Lecture Ser., vol. 8, Amer.Math.
Soc., Providence, 1996.

[9] S. Sullivant, Toric fiber products, J. Algebra 316 (2007), no. 2, 560-577.

DEPARTMENT OF MATHEMATICS, RIKKYO UNIVERSITY, NISHI-IKEBUKURO, TOKYO
171-8501, JAPAN
JST, CREST, SANBANCHO, CHIYODA-KU, ToKYO, 102-0075, JAPAN

E-mail address: shibuta@rikkyo.ac. jp



THE TORIC RING AND THE TORIC IDEAL ARISING FROM
A NESTED CONFIGURATION

HIDEFUMI OHSUGI

ABSTRACT. This is a summary of the paper [7] with Takayuki Hibi (Osaka Uni-
versity). The toric ring together with the toric ideal arising from a nested config-
uration is discussed. Especially, the algebraic study of normality of the toric ring
as well as of Grobner bases of the toric ideal will be done in detail. In addition,
as one of the combinatorial applications of our algebraic theory, toric ideals of
multiples of the Birkhoff polytope will be investigated.

INTRODUCTION

This is a summary of the paper [7] with Takayuki Hibi (Osaka University). In
[1], from a viewpoint of algebraic statistics, the concept of nested configurations is
introduced. In the present paper, the toric ring together with the toric ideal arising
from a nested configuration will be studied in detail.

Let K[t] = K]|t1,...,tq) denote the polynomial ring in d variables over a field
K. Recall that a configuration of K[t] is a finite set A of monomials belonging to
K|[t] such that there exists a vector (wi,...,ws) € R with S wia; = 1 for all
.. t5¢ € A. We will associate each configuration A of K[t] with the homogeneous
semigroup ring K[A], called the toric ring of A, which is the subalgebra of K[t]
generated by the monomials belonging to A. Let K[X] = K[{zy | M € A}] denote
the polynomial ring over K in the variables zps with M € A with each deg(zp) = 1.
The toric ideal I of A is the kernel of the surjective homomorphism 7 : K[X] —
K[A] defined by setting m(zp) = M for all M € A. It is known (e.g., [8, Section 4])
that the toric ideal I, is generated by those homogeneous binomials u — v, where u
and v are monomials of K[X], with 7(u) = 7(v).

Now, let A = {t*,...,t%} be a configuration of K[t] with the properties that
degt® = r for each 1 < j < n and that, for each 1 <1 < d, thereis1 < j < n
such that t% is divided by ¢;. Assume that, for each 1 <1 < d, a configuration
B; = {mgi), ey mf\?} of a polynomial ring K[u®] = K [u&’), ey uEfi)] in y; variables
over K is given. Then the nested configuration [1] arising from A and B, ..., By is
the configuration

A(B,,...,Bg) = {mg’;)---mg” tiotn €A, 1< jp <N, for1<k< r}
of the polynomial ring K[u®,..., u@®] in 3%, u; variables over K. One of the
fundamental facts of the nested configuration is



Theorem 0.1 ([1]). Work with the same notation as above. If each of the toric ideals

I4, Ip,,...,Ip, possesses a quadratic Grébner basis, then the toric ideal Iy,,..By)

possesses a quadratic Grébner basis.

In the present paper, first of all, in Section 1, we study normality of the toric ring
arising from a nested configuration. It is natural to ask if each of the toric rings
K[A],K[Bi],..., K[Bg] is normal if and only if the toric ring K[A(B, ..., By)] is
normal. Unfortunately, in general, the answer is negative. On the other hand,
however, Corollary 1.8 guarantees that, when A consists of squarefree monomials,
each of the toric rings K[A], K[By],..., K[By] is normal if and only if the toric ring
K[A(By,...,By)] is normal.

Second, the topic of Section 2 is Grobner bases of the toric ideal arising from a
nested configuration. A natural generalization of Theorem 0.1 will be obtained. In
fact, Theorem 2.4 together with Theorem 2.5 guarantees that if each of the toric
ideals I4,Ip,,...,Ip, possesses a Grobner basis consisting of binomials of degree
at most p, then the toric ideal I4(p,,. B, possesses a Grobner basis consisting of
binomials of degree at most p. Moreover, if each of the toric ideals I4,Ip,,...,Ip ’
possesses a Grobner basis consisting of binomials whose initial monomial is square-
free, then the toric ideal I4(p,,..B,) possesses a Grébner basis consisting of binomials
whose initial monomial is squarefree.

Finally, in Section 3, as one of the combinatorial applications of our algebraic
theory of nested configurations, we discuss the toric ideal of a multiple of the Birkhoff
polytope Bs. It seems to be known that the toric ideal of the multiple 2n B; possesses
a quadratic Grobner basis for each n > 1. We will prove that the toric ideal of the
multiple nB; possesses a quadratic Grobner basis for each n > 1. See Theorem 3.4.

1. NORMALITY OF TORIC RINGS OF NESTED CONFIGURATIONS
The purpose of this section is to study normality of K[A(By,..., By)].

Theorem 1.1. Work with the same notation as above. If K[A], K[Bi],..., K[By
are normal, then K[A(By, ..., By)] is normal.

The converse of Theorem 1.1 is false in general.

Example 1.2. Let A = {t?} and B, = {v, uv, u®v, u*v}. Then K[B] is very ample
(6], but not normal. However, I4p,) has a squarefree quadratic initial ideal and
hence K[A(B;)] = K[{uv™v?|i=0,1,...,8}] is normal.

Theorem 1.1 is not true if we replace “normal” with “very ample.” (See [6] for
the definition of very ample configurations.)

Example 1.3. Let A = {t,,3}, By = {v, uv, v, u*v} and B, = {w}. Then K[A]
and K[B,] are polynomial rings. On the other hand, K[B] is very ample, but not
normal. However, K[A(Bi, By)] = K|v, uv, u®v, u'v, w] is not very ample. In fact,
the monomial u?vw® is a hole for all o € L.



Let P, denote the convex hull of {a € Z¢, | t* € A}. For a subset B C A4,
K|[B] is called combinatorial pure subring ([5, 4]) of K[A] if there exists a face F
of P4 such that {b € Z¢, | t* € B} = {a € Z¢, | t* € A} N F. For example, if
B=An{ty,,...,t,}, then K[B)] is a combinatorial pure subring of K[A]. (This is
the original definition of a combinatorial pure subring in [5].)

Lemma 1.4. Work with the same notation as above. Then K[A(By,..., By)] has a
combinatorial pure subring which is isomorphic to K[A].

Since every combinatorial pure subring of a normal (resp. very ample) semigroup
ring is normal (resp. very ample), we have the following.

Theorem 1.5. Work with the same notation as above. If K[A(By, ..., By)] is nor-
mal (resp. very ample), then K[A] is normal (resp. very ample).

Lemma 1.6. Work with the same notation as above. Let
m = max(i | t;t5? -3¢ € A) (> 1).
Then K[A(Bs,...,BJ)] has a combinatorial pure subring which is isomorphic to

K[A'(By)] where A’ = {t"}. In particular, if m = 1, then we have K[A'(B;)] ~
K[Bi].

Thanks to Lemma 1.6, we have the following.

Theorem 1.7. Work with the same notation as above. If A has no monomial
divided by t? and if K[A(B,...,Ba)] is normal (resp. very ample), then K|[B;] is
normal (resp. very ample).

Corollary 1.8. Work with the same notation as above. If A consists of squarefree
monomials, then the following conditions are equivalent:

(i) K[A4], K[B1],...,K[Ba) are normal;
(ii) K[A(By,...,B4J)] is normal.

2. GROBNER BASES OF TORIC IDEALS OF NESTED CONFIGURATIONS

In this section, we study Grobner bases of the toric ideal of a nested configuration.
Let, as before, A = {t®,...,t*} and B; = {m&’), o .,m&?} for 1 <4 <d. Let K[x]
be a polynomial ring with the set of variables '

{ 15i15---§z‘r3d,13k5n}

(k) P = Qp
x(ilyjl)"'(ir,jr) (il).t'zl t;, t e A

m; . m}t’) € A(.B]_, R Bd)

and let K[y] = Klyy,...,vs] and K [20] = K [z@,...,z;?] (i =1,2...,d) be

polynomial rings. The toric ideal I, is the kernel of the homomorphism =g :
Kly] — K|t] defined by setting 7o (yx) = t*. The toric ideal Ip, is the kernel of the

homomorphism 7; : K[z()] — K[u®] defined by setting wi(zj(.i) ) = mg.i). The toric



ideal Iy(p,,..,B,) is the kernel of the homomorphism 7 : K[x] — K[u®,... u(®]

defined by setting 7 (x(ll) i) (zhh)) 5’11) . .mg.ir).

(k , L
Lemma 2.1. Let p; = x(il),jl)--'(ir,jr)z(ir)ﬂ,jr+1)-~-(i2,,jzr) be a quadratic monomial in

KI[x]. Then, p, = z¥) where

CRACEARCRIT NN CRA TR AT
(i1, 41) -+~ (8o, Jar) = s0rt( (11, 51) - - - (dzr, Jor))
with respect to the ordering
(L) = (1,2) = > (A1) > (2,1) = -+ = (d, \g)
is a monomial belonging to K[x| and, in particular, we have p; — ps € Ly, ... p,).

Lemma 2.2. Let yi, -+ - yx, — Yky " Yky be a binomial in I4 and let

(kt)
y (1(1 Dr41d(e—1)r+1) (Gerer)
be a monomial in K[x]. Then, there exists a binomial
P
o -t ~ L1566
LESE) L e Jer I_,. )‘I_,. z,.),.
i e—1)rt+1d(e=1)r+1) (beraTe P Ye-1)r+17(e-1) 1) (B
where sort((i1, j1) - -+ (ipr, Jpr)) = s0rt((i1, 1) - - (ipys Jpr)) -
Fix a monomial order <; on K [z(i)] for each 1 < ¢ < d. Let G; be a Grobner
basis of Ip; with respect to <;. For each M € A(By, ..., B,), the expression M =
ml) .. (”) is called standard if
(4e)
H zjtt

]1
ig=j, 1<f<Zr

) E IA(Bly 1Bd)’

is a standard monomial with respect to G, for all 1 < j < d. In order to study the
relation among I4, Ip; and Iyp,,..B,), we define homomorphisms

k
po: KIxl — KIy] o (0,50 = e

i k
i Kfx] — K[29] , ¢ (“’gil),jl)m(i,,jr)) = H a(f‘)’
i=j, 1<f<r
where mﬁ‘) § is the standard expression defined above.

Lemma 2.3 ([1]). Let f be a binomial in K[x]. Then the following conditions are
equivalent:

(i) f € IgB,,..Bs);
(11) oi(f) € Ip, forall1 <i<d.

Moreover, if the above conditions hold, then we have po(f) € I,.



2.1. Polynomial ring case. First, we study the case when all of K|[B;] are poly-
nomial rings.

Theorem 2.4. Let Gy be a Grébner basis of I 4 with respect to a monomial order <y.
If each B; is a set of variables, then the toric ideal I4(p,,. B,) possesses a Grobner
basis consisting of the following binomials:

P
(ke) _ H (k)
(1) eIllx(i(l—l)r-l—l1j(£—1)r+1)"'(ilr1jlr) x(il(l_l),._i.l)jzl_l)r_i.l)"'(illeér)

where Yy, - Yk, — Yx; Yk, € Go and

sort((i1, j1) -~ (ipr; Jpr)) = s0rt((i1, 1) - - (i, Jpr))-

(k) (k) k) (k)

(
(2) x(zh]l)'"("ﬁ]") (11‘+11-71'+1)"‘(7'21‘v.721‘) (1’{[!]’1)(1‘/3).7é)"'(7"21~—1).7%1‘_1) (1,27.7;)(1‘511]/’4)"'(7’121‘!Jér)

where sort((iy, j1) - - - (i2r, Jor)) = (41, 41) - - - (4%, Jar) with respect to the or-
dering (1,1) = (1,2) = - > (1, A1) = (2,1) >= -+ - = (d, Aa).
3) z® =) o ok
(il)jl)"'(il’jl)"'(ihj"‘) (1,11.71)(22/!.721)'(1';‘1]4‘) (il)jl)"'(i;/7j21)"'(iT7jT) (7’,17]1)(1(1]!)(14'.7:‘)

where k < k', 1y =1y and jp > jp.

The initial monomial of each binomial is the first (underlined) monomial and, in
particular, the initial monomial of each binomial in (2) and (3) is squarefree. More-
over, the initial monomial of each binomial in (1) is squarefree (resp. quadratic) if

the corresponding monomial Yy, - - - Yk, s squarefree (resp. quadratic).

2.2. General case. We now study the general case.

Theorem 2.5. Work with the same notation as above. Let Gy be a Grobner basis
of I, and let G; be a Grobner basis of Ip, with respect to <;. Then the toric ideal
Iu(B....By) Possesses a Grobner basis consisting of the binomaals (1), (2) and (3)
appearing in Theorem 2.4 together with the following binomials:

p (k) _1e (k)
(4) Tt sy i e )Gy — Llem Easgtiny )i,

P P
0 # H zgy)l . zj(z)“ - H 2D 2D belongs to G;.
=1 £=1 ¢

M where the binomial

Je1 Je,q

The initial monomial of each binomial is the first (underlined) monomial and, in par-
ticular, the initial monomial of each binomial above is squarefree (resp. quadratic)

if the corresponding monomial [T}, z§j)l . -zg)ﬂ is squarefree (resp. quadratic).

If G; possesses a binomial of degree 3, then we need the following binomials:
(k1) (k2) (k3) (k) (k2) (k3)
(2) 2 g, 150001 © M i) My T Ma i) 15, ~ T340 M )M s .75
(4 () (i) @) (1) (4 €G..

where Zj 25, Zjg — % %y z



(b) (k1) (kz) _ (kl) (/Cz)
Ml(zm)(mz)M’ Mz(ws)M' Mx(ml)(wz)Ml Mz(ma)M'

where z§1 z](?z](? z(f)z(f) z(, €G;.

We do not need (b) if A has no monomlal divided by t2. In general, we have
p P
ORISR _ (ke) ,
deg ( Zen " Z q,) = qu 2 p=deg (H xMi(i,jl,l)m(i,jz.")M;) :
=1 £=1

The binomials of type (a) are not always needed for a minimal Grébner basis even
if G; has a cubic binomial. In such a case, I4(p, . B,y may have a quadratic Grobner
basis. In Section 3, we will show an example.

2.3. Generators. Thanks to a part of the argument in Proof of Theorem 2.5, we
have the following.

Proposition 2.6. Let Hy be a set of binomial generators of I4 and let H; be a set
of binomial generators of Ip,. Then, the toric ideal Iy(B,,..B,) is generated by the
following binomials:

o T+t Sy
2 (z(l 1)1*+11.7(l 1)r+1) (Zh'l]lr) i (1/(l—1)r+l’J(l-l)r+1)m(12'f"]l1‘)

where Yy " Yk, — Yk, * Ukt € Ho and

sort((ihjl) T (iPT’jPT)) = SOI‘t(('L.Il,j{) T (Z;Jﬂjzl)r))
2% zF) (k)

(2) (k) o Nt s e ) Trd g s e
RO I CRES S CRIPAR) N CA 8 B CAV A [V R AN R R AV A (CA A R
where sort((¢y,71) - - (12,, 32,)) = (4),71) - - - (44, J5,) with respect to the or-
derzng (1,1) > (1, 2) (1, A1) = (2,1) =« = (d, \a).
(k") (k) K

(3) (zlﬂl) (7'11.7[) (21‘1.71‘) (1‘11]1) (1‘”.7[1) (’L;.,];) _w(llﬂl)(1211.721)("‘1‘1.71‘)‘/17(11»7;)(Zlﬂl)(";w]:-)
where k < k', ig = iy and jy > jp.

Sk 200
(4) Tlem Zhr )i 0 ~ Tt 2asti, 305, 1, where the binomial

@ .. 0 (i)
O#H Zje1 " Phng, thl " Zj belongs to H,;.

,'I

3. TORIC IDEALS OF MULTIPLES OF THE BIRKHOFF POLYTOPE

Let ¢ = (1, ¢z, ¢3) € Z%, and r = (ry, 73, 73) € Z3, be vectors with ¢; + ¢, +c3 =
r1 + 72+ 3. Then 3 X 3 transportation polytope T is the set of all non-negative
3 X 3 matrices A = (a;;) satisfying

E air, = ¢ and E Qg =g

=1
for1 <k, <3



Example 3.1. Let ¢ =r = (1,1,1). Then the transportation polytope B; := T is
called the Birkhoff polytope. The lattice points in Bj are

100 010 0 01
010}),{001},{100],
0 01 100 010
100 010 0 01
0o0o1}],{100],{010
010 0 01 100

and the toric ideal of Bs is a principal ideal generated by 212223 — 242526.

The following is proved by Haase—Paffenholz [2]:
e The toric ideal of 3 x 3 transportation polytope is generated by quadratic
binomials except for Bs.
e The toric ideal of 3 x 3 transportation polytope possesses a quadratic square-
free initial ideal if it is not a multiple of Bs.
Thus, it is natural to ask whether the toric ideal of a multiple of Bs possesses a
quadratic Grébner basis except for B;. The following fact is due to Birkhoff:
e Every non-negative integer p x p matrix with equal row and column sums
can be written as a sum of permutation matrices.
Thus, in order to study the toric ideal of n multiple of Bs, we consider the following:

Example 3.2. Let A = {7} and suppose that B; satisfies §{B;| = 6 and Ip, =
(212923 — 2425%6). If n =1, then A(B;) = By and {77273 — T4%5%6} is the reduced
Gréobner basis of I 4(p,) with respect to any monomial order. If n > 1, then, by virtue
of Theorem 2.5, I4(p,) has a Grobner bases consisting of the following binomials:

(a) T1M, T2M X3Mz — TaMy T5MaT6Mss
(D) Tjyiphy Tishts — TjsjsiTiohtz, Where {j1, jo,j3} = {1,2,3} and {js, js, jo} =
{4,5,6},
(€) TjyjnTingrmion = Titiyripny Eihiirdsn» WhETE SOTE(j1 -+ Jan) = 51 - - Jpn-
Since the Grobner basis in Example 3.2 is not quadratic, we have to consider
another monomial order to find a quadratic Grébner basis.

Remark 3.3. In [2], they say that L. Piechnik and C. Haase proved that the toric
ideal of the multiple 2nB; possesses a squarefree quadratic initial ideal for n > 1.
This fact is directly obtained by Theorem 2.5 since the toric ideal of the multiple 2533
possesses a squarefree quadratic initial ideal. Similarly, since the toric ideal of the
multiple 3B; possesses a squarefree quadratic initial ideal, Theorem 2.5 guarantees
that the toric ideal of the multiple 3nBs possesses a squarefree quadratic initial ideal
forn > 1.

Theorem 3.4. Let A = {t?} with n > 1 and suppose that By satisfies §| Bi| = 6
and I, = (212223 — 242526). Then, Iym,) has a quadratic Grobner basis consisting
of the following binomials:



@) TjijaMi TjaMz — TjajsMyTieMy Where {j1, 2, js} = {1,2,3} and {Ja, Js, Js} =
{4,5,6},

(i) ZjrrjnTingrrson = FLolfot T1dgl iy, WHETE SOTE(jy -+« Jon) = 1+ 141 -+ ja,
and jy > 1.
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Set-theoretic complete intersection
monomial curves II

Kazufumi Eto
Nippon Institute of Technology

We will give recent results for a question which asks whether every mono-
mial curves in affine space is set-theoretic complete intersection. We use
the following notations: Let N > 2 be a natural number, n;,...,ny nat-
ural numbers satisfying ged(ni,...,ny) = 1. And let k be a field, and
A =k[X;,...,Xn] a polynomial ring over k. We denote the ring of integers
by Z. For v € ZVN = Zﬁl Ze;, put o;(v) be the i-th entry of v for each 4,
vt = N max{0;(v),0}e;, and v~ = S max{—0;(v),0}e;. For v € ZV,

i=1
we put F'(v) = X¥ — X*" € A called a binomial, and for V C Z", we set
I(V) = (F(v))yev called a lattice ideal.
Definition 1. The curve
C={({t™,t,...,t"N): t € k}

is called a monomial curve in affine N-space defined by nj,ng,...,nnN.
And the kernel of the ring homomorphism

A — klt], X; —t™ foreachi
is called the defining ideal of the monomial curve C.

Definition 2. In general, for an ideal I in a ring R, if

3t fr€lst. VT=+/(f1,....f), r=htl,

then I is called a set-theoretic complete intersection.

Question 1. Is every monomial curve C in affine N-space a set-theoretic
complete intersection? Namely, if we put I be the defining ideal of C, then

are there
fireris a1 €Iste VI=+/(f1,- ., fn)?



We give the historical notes. If chark > 0, the above question is valid.
Further, there exist binomials fi,.. ., fy_1 satisfying the above ([9]). If N =
3, the question is valid by Bresinsky (1], Herzog [8] and Valla [11]. If N =
4 and if A/I is Gorenstein, then every monomial curve is a set-theoretic
complete intersection proved by Bresinsky [2]. There are other examples in
which the question is valid; the case that (ni,ns,...,ny) is an arithmetical
sequence [10], and the case that the defining ideal is an almost complete
intersection [3, 4]. In 2008, we proved that the question is valid, if N = 4
and ny + ng = ng + n3, which is defined by a "balanced” semigroup ([7]).

Now we give the sketch of the proof of the last case. From now, assume
chark = 0. Let V = Ker(ny,na,n3,ns) C Z* and w = ¥(-1,1,1,-1) € V.
We choose V;,V, C V submodules of rank 2 satisfying V; + V4 = V and
ViNVa = Zw and both V;/Zw and V,/Zw are torsion free. Assume that
I(V)is stci on I(V;) for 1 = 1,2, 1.e. I(V)/I(V}) is generated by one element
up to radical. Then we prove that, if we choose suitable V; and V5, then
I(V) is stci on I(V1) N I(V,) and I(V1) N I(V4) is stci on I(Zw). In this case,
I(V) is a set-theoretic complete intersection. From this proof, we present
two questions in general case.

Question 2. Q2-1. Assume rank V; = rankV, =rank Vi NV, + 1.
When I(V7) N I(Vz) is stci on I(V; NV5)?

Q2-2. Assume rank V) =rankVy =rank V) + V5 — 1
and that I(V; + V3) is stei on I(V)) for [ = 1,2.
When I(Vy + V3) is stci on (Vi) N 1(Vz)?

From now, we consider the above questions. We assume that any sub-
module in Z" is saturated and contained in Ker(n,,...,ny). Then I(V) is
prime and a toric ideal.

Definition 3. For a non empty subset S in {1,..., N} satisfying F(v) €
(X:)ies or suppv N S =0 for any v € V, put

ps = I(Vs) + (Xi)ies

where Vg = {v € V : suppv N S = 0}. We call a minimal ps w.r.t inclusion
a lattice divisor of I(V).

If ps is a lattice divisor, then ht ps =ht I(V) + 1 and ps D I(V).

Definition 4. Let V € Z" and vy,...,v, € V with V = > ;=1 Zvj where
rankV = r. Assume r = N — 1. We may assume that the determinant

Io'i(vj)li,j=1,‘..N—1



is positive. For vy € ZV, put 7 = 7y : ZV — Z sending vy to
|oi(vi)lij=1,..N-

Then 7 is defined by positive integers.
Assume 7 < N — 1. Let ps,,...,ps, be the lattice divisors of I(V') and
p: ZN — ZI5 = 37, o Ze; the projection for each I. Then rank p(V) =

|S)| — 1 and we may define 7, : ZI%!l — Z as above. Put
7= (np1,.-.,TLPL) " 7N — 7k,

In any case, the map 7 does not depend on the choice of a basis vy, ..., v, of
V and Ker7 = V. We call 7 the defining map of V.

We give the examples of the defining maps.

Example 1. (1) If V = Ker(ny,...,ny), then the defining map is

T=(ny,...,ny): ZV = Z.
(2) fV =Ker (g i’ ; 2), then the defining map is
(4 3 1 0\ 4 9
7‘—(0 1 3 4).Z — Z°.

(3) If V = Z*(-1,1,1,-1), then the defining map is

(7 - 7A

OO =~
o= O
= O = O
[ = =)

We also give a few propositions without proof.
Proposition 1. The defining map of V is surjective over Q if and only if
V is simplicial, i.e. A/I(V) is a semigroup ring associated with a simplicial
Semigroup.
Lemma 2. Let W C V be submodules in ZV. AssumeV =W + Zv. Put T

be the defining map of W and 7 : A — k[t] = k[t1, ..., tL] the induced algebra
map by 7. Then Ker7 = I(W) and 7-1(F(7(v)) = I(V).



Proposition 3. Let W C V be submodules in ZN. Assume V = W + Zv.
And let T, T be as in Lemma 2. If there is g € ImT satisfying 1/(g) =
(F(7(v))), then I(V) is stci on I(W).

Definition 5. Let W be a submodules in Z", 7 the defining map of W and
7 : A — k[t] the induced algebra map by 7. For a non zero element g € k|t
we call the ideal 771(g) in A, the lattice closure of g.

Example 2. If Vi/W = Vo/W = Vi + V,/Vi = Z, then I(V}) N I(V3) is a
lattice closure. Indeed,

IVi) NI(Va) = T (F(T(v1)) F(7(v2))),
where Vi, = W + Zv, and Vo = W + Zv,.
By Example 2, we generalize the question Q2-1 to

Question 3. When the lattice closure 77!(g) is stci on I(W), for non zero
g € k[t]?

We consider the following two conditions:

(C1) the ideal generated by M € k[t] satisfying Mg € Im7 is a monomial
ideal containing a power of g of height > 2,

(C2) there is a monomial M € Im 7 satisfying Mg € Im 7.

Proposition 4. Assume that g is not a monomial. Then 77(g) is generated
by one element up to radical on I(W) if both conditions (C1) and (C2) are
satisfied.

Proof. Let g = > ¢;M; where M, is a monomial and ¢; € k is non zero for each
I. By (C1) and (C2), for each [, there is b; > 0 satisfying M}’ My € Im7 for
each I (this part is crucial). This implies that there is b > 0 with ¢* € Im 7.
Therefore 7-1(g) is stci on I(W). o
Note that the converse of Proposition 4 is valid, if g is irreducible, or a
binomial F(v).
From Proposition 4, we obtain the following result.

Corollary 5. Let d; be a positive integer for eachi, W = Z'(—d,, da, d3, —d,),
and T the defining map of W. And let Vi, Vs submodules in Z* of rank 2
containing W with Vi /W = Vo /W 2 Vi + Vo /Vi = Z. If both F(7(v1)) and
F(1(v2)) satisfy the condition (C1) and if

a1(
) a(w)

o3(v1) oa(w)||o
s(v1) 03( ) o

o1(v1) o1(w)

03(v2) 0o2(w)
oa(v1) as(w)||o ' <90,

0’3(1.)2) 0'3(’11))




then I(Vy) N I(Va) is stci on I(W), where vy € V, with Vi = W + Zu; for
1=1,2.

Example 3. Let w = f(=1,1,1,-1), W = Zw, and 7 the defining map of
W. And put v; = %(-3,4,—1,0) and vy = ¥(7,—1,—4,0). Then 7(v;) =
t(1,-4,4,-1), 7(v2) = ¥(6,3,—1,—4). Since t3F((v1)),t3F(r(v1)) € ImT
(resp. t3F (7(v2)), t3F(1(v2)) € ImT), F(7(v1)) (resp. F(7(v2))) satisfies the
condition (C1). Since the inequality in Corollary 5 is satisfied, we conclude
that (V1) N I(Vz) is stci on I(W), where V; = Zv; + Zw for | = 1, 2.

For the question Q2-2, we have

Lemma 6. Let V C Z* be of rank 3 and V, C V with V/Vi X Z forl =1,2.
If I(V) is stci on both I(Vy) and I(V2) and if \/I(V1) + I(Va) = I(V), then
I(V) is stei on I(V1) N I(V5).

Proof. There is g € I(V) with I(V) = /(q1) + I(V}) for each I. We may
assume that g; and g, are homogeneous of the same degree. Since g; — g, €
I(V) and since I(V') is homogeneous of height 3, there is m > 0 satisfying
g — gy € I(V1) + I(V,). We write g* — 95" = hy + hy where hy € I(V;) and
he € I(V,). Then

I(V) = (gf* = h) + I(V)) N I (Va).
O

Example 4. Let V},V, be as in Example 3 and put V = V; + V,. Then
V = Ker(17,19,25,27) and /I(Vi)+ I(Vo) = I(V). By Lemma 6, I(V)
is stci on I(V;) N I(V;). Combining with Example 3, the monomial curve
associated with 17,19, 25 and 27 is a set-theoretic complete intersection.

Theorem 7. Let V = Ker(ni,no,n3,ng). If n1 + ng is contained in the
semigroup generated by ny and ng, then I(V) is a set-theoretic complete in-
tersection.

By the conditon of the theorem, there are natural numbers dp,ds sat-
isfying ny + ng = dang + dsnz. Put V = Ker(ni,ng,n3,n4). Then w =
Y(=1,dp,d3, —1) € V. Now, we may find vy, vy € V with V = Zw + Zv, + Zv,
such that both 7(V}) and I(V2) satisfy the condition (C1) where V, = Zw+Zy,
for each ! and that vy, v, satisfy the inequality in Corollary 5. By Corollary
5, I(V1) N I(Vy) is stci on I(Zw). Further, if I(V) is stei on I(V1) N I(V2),
then we conlude that I(V) is a set-theoretic complete intersection, and this
is possible. This is a sketch of the proof of Theorem 7.
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ON THE k-BUCHSBAUM PROPERTY OF SYMBOLIC POWERS
OF STANLEY-REISNER IDEALS

NGUYEN CONG MINH AND YUKIO NAKAMURA

1. INTRODUCTION

Let A be a simplicial complex on a vertex set [n] = {1,2,...,n}. Let S = K[z, z, ..., Zn)
be a polynomial ring of n-variables over a field K. Stanley-Reisner ideal I is defined
as;
I=In=([Jz| Fgn),
icF

which is a square-free monomial ideal of S being associated to A. The residue class
ring S/I is called the Stanley-Reisner ring. Throughout this report, we assume that
A is pure and dim(A) = 1, which means that any maximal element of A consists of

two element.

It is known that S/I is always a Buchsbaum ring, and that S/I is Cohen-Macaulay
if and only if A is connected (see [BH],[S]). For the case of symbolic powers 1) of
I, the first author and N. V. Trung gave the characterization for S/I) to be Cohen-
Macaulay in terms of the graphical property of A ([MT]). After that the authors get
the characterization of Buchsbaumness of S/I™ in [MN].

In this report, we study the k-Buchsbaum property of S/I ™ for all » > 0 and all
A. In our situation, S/I") is a generalized Cohen-Macaulay ring with dim S/I") = 2
and depth S/I( > 0. The condition for S/I™ to be k-Buchsbaum is equivalent to
saying that k is the minimal number satisfying m* HL(S/I™) = (0). We put

k(r) = min{k € Njm*HL(S/I") = (0)}.
Our purpose can be said to determine the value k(r) for any > 0 and any A. The

main result is the following theorem.

Theorem 1.1. Let v > 1 be an integer. Assume that S/I") is not Cohen-Macaulay.
Then
r—2 if diam(A) <2
k(r) = d(HL(S/I™) ={ r—1 if 3< diam(A) < 0o
2r—1 if diam(A) = oo

2000 Mathematics Subject Classification. 13H10, 13F55, 05E99.
Key words and phrases. k-Buchsbaum, monomial ideal, connected graph, symbolic power.



Here, we put
d(M) = max{n|M, # 0} — min{n|M, # 0} +1

for the finitely generated Z-graded module M with M # (0) and d(M) = 0if M = (0).
It is clear that k(r) < d(HL(S/I™)). diam(A) denotes the diameter of simplical
complex A, that is defined as;
diam(A) = max dist (s, ),
i,5€[n]

where dist(4, j) is the minimal length of the path between nodes ¢ and j. dist(, j) is
infinite if there is no paths connecting 7 and j. Thus, diam(A) < oo is equivalent to
saying that A is connected.

From Theorem 1.1, we immediately get the characterization of the Buchsbaumness
of S/I™M).

Corollary 1.2. ([MN, Theorem 3.7]) Let I be the Stanley-Reisner ideal of a pure
simplicial complex A of dimension one. Let r > 0 be an integer. Then the following
statements hold true.

(1) S/I® is Buchsbaum if and only if A is connected.
(2) S/I® is Buchsbaum if and only if diam(A) < 2.
(3) Letr > 3. If S/I™ is Buchsbaum, then it is Cohen-Macaulay.

This report consists of three sections. In Section 2, we set up the notation and
terminology. We quote some fundamental results from [MT] and [MN]. In Section 3,
we prepare auxiliary arguments with respect to the cone of complexes, and then give
the proof of the main result.

2. PRELIMINARIES

We begin with the notation on a simplicial complex. A simplicial complex A on a
finite set [n] = {1,2,...,n} is a collection of subsets of [n] such that F € A whenever
F C G for some G € A. Notice that, for the convenience in the later discussions, we
do not assume the condition that {i} € A fori=1,2,...,n. We put dim F' = |F| -1,
where |F| means the cardinality of F', and dim A = max{dim F' | F € A}, which is
called the dimension of A. When we assume a linear order on [n], say <, A is called
an oriented simplicial complex. In such a case, we denote F' = {1y, ...,7,} for F € A
with the order sequence i; < ... < i,. Let A be an oriented simplicial complex with
dim A = d. We denote by C(A). the augmented oriented chain complex of A:

ClA):05C3Cii S B30 —01—0
where

t
Ci= @ ZF and OF =) (-1YF
=0



for all F € A. Here we denote F; = {io, ...,ij, it} for F =~{2'0, ...yt }. For any field
K, we define the i-th reduced simplicial homology group H;(A; K) of A to be the
i-th homology group of the complex C(A), ® K. Further we define the i-th reduced

simplicial cohomology group H {(A; K) of A to be the i-th cohomology group of the
dual chain complex Homgz(C(A),, K) for all . Then it follows that

dimy Hy(A; K) = dim H'(A; K) foralli€Z  and

K if A={0)

H-l(Ai K)= ﬁ_l(A; K)= { 0 otherwise

We also note that H;(A; K) = Hi(A;K) =0 for all i € Z if A = . Moreover, it is
known that

dimg (Ho(A; K)) = the number of connected components of A — 1

when A # () (see [V, Proposition 5.2.3]). Let I' C A be a simplicial subcomplex of A.
Then C(T"), is a subcomplex C(A)., which yields the quotient complex C(A),/C(T),.
The cohomology module

HY(A,T; k) = H(Homgz(C(A)./C(T)s; k))

is called the i-th reduced relative simplicial cohomology of the pair (A,T). Let ' and
A be simplicial complexes on disjoint vertex sets V and W, respectively. The join
T'x A is the simplicial complex on the vertex set V' UW consists of faces F'UG where
FeTand G € A. The cone
Cone(A) =z x A

of A is the join of a point {z} with A.

Let I be a monomial ideal of a polynomial ring S = K|z, z, ..., Z,) over K. For
a = (a1, as, ..., a,) € Z" we put the subset G = {ila; < 0} of [n]. The degree complex
(see [T]) is a simplicial complex denoted by A,(J) and consists of all F' C [n] such

that
(1) FNGa =10,
(2) For every minimal generator z® of I there exists an index i« ¢ F' U Ga with

bi > a;.
Here we pick up important results stated in [MT] and [MN], which will be applied
several times in our argument.

Lemma 2.1. Let I be the Stanley-Reisner ideal of a pure simplicial compler A of
dimension one. Then, the following assertions hold true for all 0 < r € N.
(1) Let a € N* and A,(IM) # 0. Then Aa(IM) is a subcomplex of A of pure
dimension one.
(2) Let a = (ai1,...,a,) € N*. Fori,j € [n], we put 0;; = |a| — (a; + a;), where
la] = Yr_; ak. Then we have the following equivalent conditions:
(a) {1,5} € A.(IM).
(b) 0i; <T and {i,j} € A.



Next is the behaviour of the first local cohomology modules of S/I(").

Lemma 2.2 ([MT],[MN]). Let I be the Stanley-Reisner ideal of a pure simplicial
complex A of dimension one. Let r > 0 be an integer. The following assertions hold
true.

(1) Leta € Z™. If Go # 0 then HL(S/IM), = 0.

(2) [HL(S/IT)); =0 for all j > 2r — 2.

(3) Let 0 < j <r. Then [HL(S/IM)); = 0 if and only if G is connected.

(4) Assumer > 1. Then [HL(S/IM)], = 0 if and only if diam(G) < 2.

(5) Assumer >2andr +1<j <2r—2. Then [HL(S/IM)]; = (0) if and only

if any pair of disjoint edges of A is contained in a cycle of length 4.

At the end of the section, we recall a formula between the local cohomology modules
and reduced cohomology modules, due to Takayama.

Lemma 2.3. ([BH, Lemma 5.3.7], [T, Lemma 2]) Let I be a monomial ideal of S.
For allt € N and a € Z", there is an isomorphism of K -vector spaces

HE(S/1), = HIGI-1(A (1) K).

The above isomorphism gives us more information. Let b € N" and take the
monomial xP = ;;1 :L‘s-j € S. The multiplicative map S/I > f — xPf € S/I induces
the homomorphism

H.(S/T)a 22> H(S/ Do,

Lemma 2.4. ([MN, Lemma 2.3]) Let I be a monomial ideal of S and a,b € N*, For
any integers j > 0, we have the following commutative diagram:

Hi(S/Ta = Hi(S/Das
H™ (Da(1); K) —— 77 (Basn(1); K)
where the vertical maps are isomorphisms as in Lemma 2.8 and the bottom map is
induced from the natural embedding Aayn(I) C Aa(I) of simplicial complezes.
3. PROOF OF THE MAIN RESULT
We begin by establishing the following assertion.

Lemma 3.1. Let A be an arbitrary simplicial complez over [n] andT' C A a simplicial
subcomplex. Then there is an isomorphism of K -vector spaces

H(A,T; K) = Hi(A U Cone(T); K),
for all j € Z, where Cone(I") = Cone,(I') with a new vertez z ¢ [n].



Proof. By definition, there is an isomorphism between the chain complexes
C(A)./C(T)e =2 C(A U Cone(I')),/C(Cone(T'))..

Therefore, Hi(A,T; K) = Hi(A U Cone(T'), Cone(T); K) for all j € Z. On the other
hand, the short exact sequence of complexes

0 — Homgz(C(A U Cone(T"))./C(Cone(T))., K) — Homgz(C(A U Cone(T))., K)
— Homgz(C(Cone(T"))s, K) — 0
yields the following long exact sequence
... — H7(Cone(T"); K) — H’(A U Cone(T), Cone(T'); K)
— Hi(A U Cone(T); K) — H’(Cone(T)); K) —» - --
Since Cone(T") is acyclic, H3(A U Cone(T"); K) = H3(AU Cone(T"), Cone(T"); K) for all

j € Z. This implies our assertion.
O

We now come to the point to prove the main theorem.

Proof of Theorem 1.1

The proof is divided into three cases. Let t = d(HL(S/I()). We shall prove that
m-THL(S/10) # (0).
Case 1: Suppose that 2 < diam(A) < co. Then t = r — 1. We will show that
w2 H(S/IM) # (0). It is clear if r = 2 by Lemma 2.2 (4). Assume that 7 > 3.
Since diam(A) > 2, there exists 1 < 4 < j < n such that dist(z,j) > 3. Hence
stara (i) U stara (j) is not connected. Put

a=(r—1)e;+e; and b=(r—2)ej
where e; is 4-th unit vector in Z". Then one can check that
Aa(IM) = Ay (IM) = stara (i) Ustara(j),
by Lemma 2.1 (2). Hence
zb
0# HL(S/IYa = Ha(S/IM)atn

is isomorphic, which implies that m™"2HA(S/I™) # (0). Therefore, we get k(r) =
r—2.
Case 2: Suppose that diam(A) < 2. Then t = r — 2. We will show that
m"3HL(S/I) # (0). Since S/I") is not Cohen-Macaulay, we have r > 3 by Lemma
2.2, besides, there exists a pair of disjoint edges of A, say {1,2}, {3,4}, which is
not contained in any cycle of length 4 by [MT, Theorem 2.4]. We may assume that

{1,3},{1,4} ¢ A. 1t is clear if r = 3 by Lemma 2.2 (4). It is enough to check the
assertion in the case that r > 4. Put

a=(r—1)e,+es+e and b= (r-23)es.



Then one can check that
Aa(I7) = Dayn(I7) = stara(1) U 3,4},
which is not connected since {1,3},{1,4} ¢ A. Therefore,
P
0% HL(S/T™)a = He(S/TM)asn
is isomorphic, which implies that m™3H}(S/1()) # (0) as required.

Case 3: Suppose that diam(A) = oo, i. e., A is not connected. Then t = 2r — 1.
We will show that m*~2H}(S/I™) # (0). Since A is not connected, we may assume
that {1,2}, {3, 4} belong to different components of A. Put

a=(r—1)e; + (r — 1)es.
Applying Lemma 2.1, one can check
T = A.(I™) = stara(1) Ustara(3).

Then H “1(T'; K) = 0 and I is not connected. Hence, we have the following long exact
sequence of reduced cohomology modules

0 — H%A,T; K) — H(A; K) — H(T; K) — HY(A,TK) — - -

Note that H %A K) — H° (T; K) in the above sequence is induced from the natural
embedding I' C A. On the other hand, by Lemma 3.1,

dimg (H(A,T; K)) = dimg (H°(A U Cone(T'); K))
= the number of connected components of A U Cone(I") — 1

< the number of connected components of A — 1
= dimg (H°(A; K)).

Hence the natural map H°(A; K) —s HO(T; K) is never zero map. By Lemma 2.4,
we have the following commutative diagram:

HA(S/ID)0 = H(S/I"))a
HO(Do(IM); K) —— HY(AL(IM); K)
Moreover, since Ag(I™) = A we obtain x*HL(S/I11)q # (0). It implies
m> 2 HL (S/17) # (0),

which is the desired conclusion.
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On F-thresholds of some determinantal rings

TAKAHIRO CHIBA, KAZUNORI MATSUDA, MASAHIRO OHTANI

This is a joint work with Ken-ichi Yoshida.

Throughout this article, let k be a perfect field of characteristic p >
0, and let R be an F-finite (i.e. the Frobenius map is finite) reduced
Noetherian ring containing k.

For a ring R, let R° be the complement of the union of all minimal
prime ideals of R, and let m be a maximal ideal of R. For each integer
e > 1 and each ideal I of R, I"”! denotes the ideal generated by the p°th
powers of the elements of I.

Suppose that a is an m-primary ideal such that a N R° # (. For each
integer e > 1 and each ideal J such that a C VA , put

v (p°) = max{r e N| a" ¢ JF}.

Definition 1 (F-threshold, [HMTW]) Let R,a and J be as above.
Then the F-threshold of (R,a) with respect to J, denoted by ¢’(a), is
defined by E
& (a) = lim &)
ewoo P
if the limit exists. In particular, we call ¢*(a) the diagonal F-threshold
of R with respect to a.

Definition 2 (F-pure threshold, [TW]) Let R and a be as above.
Let t > 0 be a real number. Then the pair (R, a) is F-pure if for all
large q = p°, there exists an element d € al®¢=1! such that d'/9R — R4

splits as an R-homomorphism.
The F-pure threshold of R with respect to a, denoted by fpt(a), as

fpt(a) = sup{t € Rxq | (R, a*) is F-pure}.

If R is local, then ¢™(m) > fpt(m) holds ((HMTW]).
We ask the following question:

Question 3 (1) What is the value of c™(m)?



(2) What is the value of fpt(m)?

(3) When does ¢™(m) coincide with fpt(m)?

1 F-threshold

We gave an answer of Question 3(1) for some determinantal rings.

Theorem 4 Let R = @, 50 Bn, S = @, 5 be Noetherian graded
rings. Assume that k = Ry = Sp and R = k[R1],S = k[S1]. Put

m= @n>0 R”’ n= ®n>0 S'n
Let T = R#S = @, 5o Rn ® Sy, be the Segre product of R and S. Let
M be the graded maximal ideal of T. Then

M (M) = max{c™(m),c"(n)}.

proof) First, note that M™ = m"#n" and M = mlPlynll,

Assume that ¢®(m) > ¢*(n) and m" € mPl. Then we can take z €
m"\m/*} where degz = d.

For all y € Sy, we have 2 ® y ¢ M [°]. Indeed, consider an exact

sequence
0 — [mPNy — Ry — [R/mF]; — 0.

By Applying the functor ®S;, we have a diagram
0 — )y — Ry — [R/MF], — 0
! ! !
0 — mPFy® Sy — Ry® Sy — [R/mP)y® S — 0
as above. Since z & mPP, for all y € Sy,
r®y & Ker(Ry ® Sq — [R/mP], ® Sy).
Therefore
Ty ¢ [m[pe]]d ® Sy D [m[pe]]d ® [n[”e]]d = [M[pel]d‘

So we have c¢™(m) < cM(M).



Next, we will show cM (M) < c™(m). Set
7™(p®) = inf{r € N | m" C ml7}.
Assume m” C mP1. Since M™ C M1, so we have
vig (p°) < 9q (%) < T (p°).-

Therefore, we have ¢M (M) < c™(m). O
Corollary 5 For integers 2 < r < s, let X be a generic r X s matrix. Set
R =k[X]/I,(X) = k[X1,..., X, |#kY1,..., Y]]

And let m be a maximal ideal of R. Then

c™(m) = max{r, s}.

2 F-pure threshold

We do not have any satisfying answer. However we can give a partial
answer.

Proposition 6 Let
X1 Xz X3
i Yo %

be a generic 2x3 matrix. Set R = k[[X]]/2(X), and put m = (X1, Xa, X3, Y1, Y, Y3)R.
Then fpt(m) = 2 # 3 = c™(m).

X =

To prove this proposition, we use two lemmas.

Lemma 7 Let R, m be the same as in Proposition 6. Then
4
2 <fpt(m) < 2+5.

Lemma 8 Let R, m be the same as in Proposition 6. Then the F-pure
threshold fpt(m) does not depend on p.



proof of Lemma 8) First, R has three ring-theoretic properties: that is
strong F-regular, N-graded and toric. Second, the following is known: if
R is strongly F-regular, then

fpt(a) = sup{t € Rxq | 7(a’) = R}.

By [Ta, Corollary 3.5], R is strongly F-regular if and only if AnnR(O)*E“; =
R. By the N-gradedness of R and the definition of the generalized test
ideal 7(at), AnnR(O)E“; = Rif and only if 7(a*) = R. And by an argument
of [B], 7(a*) does not depend on p. O
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F-coherent rings and related results

Kazuma Shimomoto (Formerly at the University of Minnesota)

Throughout, all rings are commutative and of characteristic p > 0. The notation -
(R, m) denotes a local Noetherian ring. After tight closure theory was invented by
Hochster and Huneke, certain classes of Noetherian rings defined via the Frobenius
map have been studied in connection with those singularities that appear in bira-
tional geometry. In this article, we would like to introduce a new class of Noetherian
rings via the Frobenius map. Let R be a Noetherian ring of characteristic p > 0
and we define the ring R™ as the perfect closure of R..q, where R..q is the reduced
part of R. Then we say that R is F-coherent if the perfect closure R* is a coherent
ring. Recall that a commutative ring is coherent if its every finitely generated ideal
is finitely presented. As the ring R* is usually not Noetherian, it makes sense to
consider when R is coherent. In general, it is hard to check that a given ring is co-
herent. For example, let R := k[X? X3 V1,Y;,..., XV, XY,,.. ] Ck[X, Y1, Y%, .. ]
be a subring of a polynomial algebra in infinitely many variables over a field k. Then
we have ((X®)R :gp X?) = (X3, X* XY, XYs,...), which is not finitely generated.
Hence R is not coherent.

Question 1. What are the necessary (or sufficient) conditions to assure that R is
F-coherent?

Question 2. Is there any relationship between F-coherent rings and rings studied
typically in tight closure theory?

Answers to these natural questions are given under various assumptions. How-
ever, the following question still seems unclear at the time of writing this article
and it will be an important study to find out a practical way of constructing many
examples of F-coherent rings.

Question 3. A regular ring is F-coherent. Is there any example of an F-coherent
ring whose perfect closure does not coincide with the perfect closure of a regular
ring?

The coherence of R™ or of R*, which is the integral integral clsoure of R in an
algebraic closure of the field of fractions of R, was first investigated by Aberbach and
Hochster in an attempt to relate the so-called localization problem in tight closure
to the plus closure of rings. It is very clear from the definition that plus closure
commutes with localization. However, their attempt did not succeed, because it




was recently shown by Brenner and Monsky (1] that tight clsoure does not commute
with localization, at least in dimesnion three.

1 Basic properties of F'-coherent rings

As a simple observation, if R — S is a purely inseparable extension of Noetherian
rings such that either R or S is F-coherent, then so is the other. This is quite
useful, because it is usually hard to see the coherent property of rings. We state the
following proposition without proof (see [4] for a proof).

Proposition 4. Let R be a Noetherian ring of characteristic p > 0. Then the
following hold.

(1) Any regular ring is F-coherent.

(2) Let S be a multiplicative subset of an F-coherent ring R. Then the localization
SR is F-coherent as well.

(3) Let U denote the F-coherent locus of Spec R, i.e. the set of all P € Spec R
for which Rp is F-coherent. Then, if U is constructible, U is a non-empty
Zariski open subset.

(4) Let R C S be a faithfully flat extension. Then, if S is F'-coherent, so is R.

In relation to the above proposition, we do not know whether R is F-coherent or
not, assuming that the ring extension R C S is pure and S is F-coherent. We also
point out that (3) in the proposition is equivalent to asking the topological property
of the set of all P € Spec R such that R¥ is coherent.

Example 5. F-coherent rings which are not regular may be constructed as follows.
Let us consider k[t3,t5,t7] for a field k of characteristic p = 3,5,7. Then the map
k[t%,5,17] C k[t] is obviously purely inseparable. Hence k[t*,1°,t"] is F-coherent if
p=3,5,7, but it is not normal.

Here is another example. Let k[z4, 23y, zy*, y*] for a field of characteristic p =
2. Then we have a tower k[z?,y?] C k[z*, 23y, zy*,3*] C klz,y], which is purely
inseparable, due to the assumption p = 2. Hence k[z*, 23y, 2y ¢*] is F-coherent,
but it is not Cohen-Macaulay.

As seen in the examples above, when a ring is purely inseparable (sub)extension
of a regular ring, it is immediate that the ring is F'-coherent. In the following section,
we will give an example of a non-F-coherent ring using the Segre product. But this
requires some preliminaries from the theory of valuations.



2 Cohen-Macaulay property of R*

In general, the following fact is known (the proof is found in [5]).

Theorem 6 (Roberts-Singh-Srinivas). Let (R, m) be a complete local domain of
characteristic p > 0. Then there exists a nonzero element ¢ € R such that

MNP (@1, 30) g Tip) C (21, ., T5)
foralln € N, 0<i<d=dimR, and a system of parameters x,,...,zq of R.

To obtain more results on F-coherent rings, we need some preliminaries from
valuation theory. Let A be a domain and let P be its prime ideal. Then by Zorn’s
lemma, there exits a valuation ring (V,Q) such that ACV C Kand P=ANQ
for the field of fractions K of A. We assume that A is a Noetherian domain of
characteristic p > 0. Then we can take the valuation ring (V,Q) to be discrete
together with its valuation v : V' — Z U {co}, which naturally defines a valuation
v:A® - QU {oo}.

We prove the following.

Theorem 7. Let (R,m) be an F-coherent complete local domain of characteristic
p > 0. Then every system of parameters of R is a reqular sequence on R*®. In other
words, R* is a big Cohen-Macaulay R-algebra.

Proof. For a contradiciton, assume that R* is not a big Cohen-Macaulay algebra.
Then there exists a system of parameters z1,...,zq of R with d = dim R such that
the kernel, which we denote by N, of the multiplication map:

R®/(z1,...,2)R® =2 R®/(zy,...,1;)R®

is nonzero for some i. Let R*® -z C N be a nonzero cyclic module. Then we find
that R® -z ~ R*/J for a finitely generated ideal J by assumption and Theorem
6 yields that ¢/?" - R® C J for all n > 0 and some 0 #c€ R Letv: R®° —
QU {oo} be a valuation with center P C R® such that J C P. Then we see that
v(c/P") = - - v(c) — 0 as n — oo, while v(J) is bounded from below by a strictly
positive number, because J is finitely generated and v is positive on J. So we get a

contradiction and thus, every system of parameters of R is regular on R®. a

Rings which are not F-coherent are constructed by the Segre product. Let p
be a prime such that p = 1(mod3) and let R#S be the Segre product of R =
kXY, Z)/(X®+ Y%+ Z3) and S = k[s,t] for a field k of characteristic p. Then
R#S = k[zs,ys, zs, zt, yt, zt], where z,vy, z are the respective images of X,Y, Z in
R#S. Denoting by T the localization of R#S at the maximal ideal (zs, ys, zs, zt, yt, 2t),
we find that dim T = 3 and ys, zt, zs — yt forms a system of parameters. But then
there is a relation (zt)(zs)(zs — yt) — (25)%(zt) + (2t)*(ys) = 0 and so T is not
Cohen-Macaulay.



Proposition 8. Let T be as above and assume that p = 1(mod 3) for a prime p.
Then T 1is not F-coherent.

Let R° denote the complement of the union of all minimal primes of R. We use
some tight closure theory in the proof of the proposition.

Proof. In fact, it is seen that T is F-pure (see [3] P. 162 and P. 269 for example).
Now suppose that T is F-coherent. Then we show that [ F = I* for any ideal I C T,
where IF is the Frobenius closure of I and I* is the tight clsoure of R. The following
discussion holds for any reduced Noetherian ring T

We first recall that IF C I*. For a contradiction, let u € T be such that v € I*,
but u ¢ I F_ Then since T is F-coherent, it follows that J := IT® 1w u is a finitely
generated non-unit ideal, and we have cu? € [ [ for ¢ = p* > 0 and ¢ € T° by our
assumption. Hence c/%u € IT'4 C IT*, or equivalently ¢/? € J for ¢ = p* > 0.
Since ¢ € T, there is a minimal prime P of T such that (J + P) is a proper ideal
and thus c ¢ P. Now it is easy to see that [ F = I* by choosing an optimal valuation
as previously. '

In conclusion, it follows that T is weakly F-regular. But then T is Cohen-
Macaulay, which is a contradiction to the preceding remark. : O

The next corollary relates the F-coherent property to the F-purity [4].

Corollary 9. Suppose that R is a reduced F-coherent excellent ring of characteristic
p > 0. Then if R is F-pure, it is Cohen-Macaulay.

Let R — R be the completion map of local rings. Then we do not know if R is F'-
coherent if and only if R is so. However, the F-coherent property behaves well under
henselization [4]. The proof consists in applying the fact that the henselization of a
local ring (R, m) is obtained as the direct limit of various localizations of module-
finite étale R-algebras, so we skip the proof.

Proposition 10. Let (R, m) be a reduced local ring of characteristic p > 0. Then
R is F-coherent if and only if the henselization R is so.

For an injective ring map f : R — S such that there is a ring map h : S—R
satisfying the property that h o f is the identity map on R, we say that R is an
algebra retract of S. Then the following result may help us construct interesting
examples of F-coherent rings.

Theorem 11. Let R — S be a ring extension of reduced Noetherian rings of char-
acteristic p > 0 and suppose that R is an algebra retract of S and S 1is F-coherent.
Then R is F-coherent.



Proof. Let ¢ : S — R be a retraction map. Then we may extend ¢ to a ring map
$oo : S — R such that the restriction ¢uo|re is the identity map as follows. The
composition of ring maps:

ste =, 5 _*, R _=, Rl

where the first and the third maps are the Frobenius bijections, shows a compatible
sequence of retraction maps ¢, with ¢y = ¢ for every ¢ = p° and taking its direct
limit, we find that lim_¢. is the desired map. Now applying ([2], Theorem 4.1.5),
we conclude that R* is coherent, as desired. a
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a-INVARIANT OF NORMAL GRADED GORENSTEIN RINGS
AND VARIETIES WITH EVEN CANONICAL CLASS

KEI-ICHI WATANABE

INTRODUCTION

Let R = @n>0R, be a normal Noetherian graded ring with Ry = k a field. Then
we can attach to R a normal projective variety X = Proj (R). In this paper, we
always assume that R is a normal graded ring and we also assume that R, # 0 for
all sufficiently large n. Let Kg be the canonical module of R. We say that R is
quasi Gorenstein if Kg is a free R module. R is a Gorenstein ring if and only if R is
Cohen-Macaulay and quasi Gorenstein. If R is quasi Gorenstein, then Kr = R(a)
as graded R modules and this a is called the a invariant of R and denoted by a(R).
This concept was first defined in [GW] and known to be a very important invariant
of a graded ring.

In this paper, we study the following two questions.

Question 0.1. If R is a (quasi) Gorenstein ring, what kind of projective variety is
Proj (X)?

Question 0.2. Given a normal projective variety X over k, what are the possible
values of a(R) for a (quasi) Gorenstein ring R with Proj (R) & X.

If R is generated by elements of degree 1, then Kr = R(a) if and only if wy =
Ox(a), where wx is the dualizing module of X. Hence either wx is ample, w)'(l is
ample or wxy = Ox. But since we do not assume R is generated by elements of
degree 1, the answer is quite different. The following theorems are main results of
this paper.

Theorem 0.3. Let X be any normal projective variety over k and o be any positive
odd number.
(1) There is a quasi Gorenstein ring R with Proj (R) = X and a(R) = a.
(2) If, moreover, X satisfies the condition (CM) below, there is a Gorenstein
ring R with Proj (R) = X and a(R) = a.

The following condition is a necessary and sufficient condition for X to have a
Cohen-Macauly graded ring R with Proj (R) = X.

Proposition 0.4. Let X be a normal projective variety over a field k with HY(X,0,) =
k. Then there is a Cohen-Macaulay normal graded ring R with Proj (R) = X if and
only if X satisfies the following condition (CM).

(CM) X is a Cohen-Macaulay variety and H{(X,0x) =0 for every i, 1 <1 <
dimX — 1.

If there is some quasi Gorenstein normal ring with Proj (R) = X with even a(R),
X must satisfy an extra condition.



Definition 0.5. We say that a normal variety X has even canonical class if the
canonical divisor Kx is linearly equivalent to 2L, where L is a (Weil) divisor on X.

We will write D ~ E for (Weil) divisors on X if E = D + divx(f) for some
f € k(X). In this case we say that E is linearly equivalent to D.

Theorem 0.6. Let X be any normal projective variety over k and a be any positive
even number.
(1) There is a quasi Gorenstein ring R with Proj (R) = X and a(R) = « if and
only if X has even canonical class.
(2) If, moreover, X satisfies the condition (CM) and if there is a divisor with
2L ~ Kx and HY(X,L) = 0 for 0 < i < dimX, then there is a Gorenstein
ring R with Proj (R) = X and a(R) = a.

1. PRELIMINARIES

Our method to prove our assertions is based on so called DPD (Dolgacev- Pinkham
- Demazure) construction of normal graded rings.

Theorem 1.1. [D] Let R = ®p>oR, be a Noetherian normal graded ring over
Ry = k. We put X = Proj (R). If we fix a homogeneous element T # 0 of degree
1 in the fraction field of R, then there exists a unique Q divisor D on X such that
ND is an ample Cartier divisor for some positive integer N and

R= R(X, D) = @nZQHO(X, Ox(nD))T",
where we put H'(X, Ox(nD)) = {f € k(X) | divx(f) +nD > 0} U {0}.

Note that for every n € Z, Ox(nD) = Ox([nD]), where [nD] is the largest
integral divisor (element of div(X)) with [nD] < nD.

Definition 1.2. Let D be a Q divisor on a normal projective variety X. We denote
by div(X) the divisor group of X and by Cl(X) the divisor class group of X. We
will write D as

pv
D=FE+ —V,
;QV

where E € div(X), the V’s are irreducible codimension 1 subvarieties of X and we
always assume qy > py > 1, (pv.qv) = 1. Then we put

qv —1
fracD = .
; av

Cohen-Macaulay and Gorenstein property of R = R(X, D) is characterized in
terms of cohomology class and divisor class group ot X.

Theorem 1.3. [W] Let X be a normal projective variety over k with H*(X,Ox) = k
and R = R(X, D) with D as above.

(1) We have an isomorphism of graded R modules H:, (R) = @nez H (X, Ox(nD))T™
for 2 < i < dimR. In particular, R is Cohen-Macaulay if and only if
HY(X,0x(nD) =0 for 1 <i < dimX and for alln € Z.

(2) Kgr = R(a) if and only if Kx + fracD ~ aD.



2. THE PROOF OF THE MAIN RESULTS

Theorem 2.1. Let X be any normal projective variety over k and o be any positive
odd number.
(1) There is a quasi Gorenstein ring R with Proj (R) = X and a(R) = .
(2) If, moreover, X satisfies the condition (CM) below, there is a Gorenstein
ring R with Proj (R) = X and a(R) = a.

Proof. Recall that by 1.1, it suffices to find D € div(X) ® Q such that

(1) aD ~ Kx + fracD,
(2) ND is ample Cartier divisor for some positive integer N.

1
First let « = 1. Then we put D = Kx + 5‘/’ where V is an irreducible subvariety

of X of codimension 1 of X such that H = 2D = V + 2K is an ample Cartier
divisor. This D satisfies the conditions above.

1 1
Next, let a > 3. then put ¢ = xt and D=—-H + EV + a—-I—IW’ where H is

an ample Cartier divisor and V, W are integral divisors satisfying the conditions

(a) V ~aH + Kx and

(b) W ~ sH — 2Kx for some positive integer s.

Then we can easily see that oD ~ Kx + fracD and (¢ +1)D ~ (a — 1+ s)H is
an ample Cartier divisor. This proves our assertion (1).

(2) If we look carefully at [nD] for every n € Z, taking H sufficiently ample
we see that either [nD] = 0, [nD] = Kx, [nD] is sufficiently ample or —[nD] is
sufficiently ample. In any case, since we assume the condition (CM), we can assert
H!(X,Ox(nD)) = 0 for every 4, 0 < i < dimX and for every n € Z. This asserets
that R is Cohen-Macaulay by 1.3 (2).

Before showing (2), let us review the structure of the ring R(X, D) we have
constructed above. a

Remark 2.2. In our construction of 2.1, & = 1, we find that [2nD] = nH and
[(2n+ 1)D] = Kx + nH for every n € Z. Thus if we put

S = ®nxoH’(X, Ox (nH))T™,
we see that
R=S® KsT
as graded S modules.

Now let us investigate the case where a(R) is even.

Theorem 2.3. Let X be a normal projective variety over k. If there is a normal

graded quasi Gorenstein ring R with Proj (R) = X and even a(R), then X has even
canonical class.

Proof. Write D = E+),, ZqEV asin 1.2 and put @ = a(R). Since oD ~ Kx-+fracD,
v

we have
apy =-1 ( mod gv).



In particular, since o is even, every qy should be odd and if we write apy = myqy +
(gv — 1), then my should be even. Now, aD ~ Kx + fracD is equivalent to Kx ~
Yy myV, which is even. a

Remark 2.4. What normal projective varieties have even canonical class?

(1) If k is algebraically closed, then every curve has even canonical class.

(2) Assume dimX = 2 and X is smooth. Then X is minimal since exceptional
curve C must satisfy Ky -C = —1, which is impossible if Kx is even. Hence,
if moreover X is rational, then X = X,,, a Hirzebruch surface with even n.

Now we will show our existence theorem with even a(R).

Theorem 2.5. labelmain even Let X be any normal projective variety over k and
a be any positive even number.
(1) There is a quasi Gorenstein ring R with Proj (R) = X and a(R) = « if and
only if X has even canonical class.
(2) If, moreover, X satisfies the condition (CM) and if there is a divisor with
2L ~ Kx and H(X,L) = 0 for 0 < i < dimX, then there is a Gorenstein
ring R with Proj (R) = X and a(R) = a.

Proof. Assume « is a positive even integer. Since X has even canonical class, take
L € div(X) such that 2L ~ Kx. We fix this divisor L.
First we consider the case a = 2. Take

1
D—L+§V,

such that V ~ H — 3L, where H is a sufficiently ample Cartier divisor. Then
2D ~ Kx + fracD and 3D ~ H is an ample Cartier divisor.

Note that we have 3nD = nH,[(3n+ 1)D] = L + nH and [(3n + 2)D] = Kx +
nH. Hence if we put S = @n>0 H(X, Ox(nH)).T*" and M = @,50 H*(X, Ox(L +
nH)).T?", then

R=S® MT & KsT?

as graded S modules. ) .
Ifa24,thenweputD=—(a—2)H+L+a— V+ W, where H is a
a—1 a+1

sufficiently ample Cartier divisor and V ~ aH — L. Then aD ~ Kx + fracD and
We can arrange W so that (a2 — 1) D is an ample Cartier divisor. We can also show
(2) as in 2.1. O

3. SOME CONCLUDING REMARKS

Definition 3.1. Given a normal projective variety X over k, we define A(X) to be
the set of a(R), where R varies on the class of normal quasi Gorenstein rings with
Proj (R) = X.

Remark 3.2. Tt is easy to show that if 0 € A(X), then Kx ~ 0 and in this case
A(X) coincides with the set of non-negative integers.

We can show the following result concerning A(X).



Theorem 3.3. Let X be a normal projective variety whose canonical devisor Kx is
Q-cartier and assume that either Kx or —Kx is ample or Kx ~ 0. Then A(X) is
the one of the following sets.
(1) If Kx ~ 0, then A(X) = Z> 0, the set of all non-negative integers.
(2) A(X)=2Z\{0} if —Kx is ample and X has even canonical class.
(3) A(X) is the set of all odd integers if —Kx is ample and X does not have
even canonical class.
(4) A(X) s the set of all positive integers if Kx is ample and X has even
canonical class.
(5) A(X) is the set of all positive odd integers if Kx is ample and X does not
have even canonical class.

Remark 3.4. When there is a quasi Gorenstein ring with Proj (R) = X and negative
a(R), then —Kx — fracD is ample and thus —Kx is "big”, that is,

dim H(X, Ox(—nKx)) > cn®™X when n gets very big for some positive constant
c. Does the converse hold ?

Remark 3.5. If we require R to be a complete intersection or a hypersurface, then
X = Proj (R) will be very limited. For example assume R = k[X,Y, Z, W]/(f) be a
graded hypersurface with even a(R) and assume X = Proj (R) is a smooth rational
surface. Then I believe that X = P! x P*.
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GORENSTEIN REES ALGEBRAS OVER RINGS OF DEPTH ONE
HAVING FINITE LOCAL COHOMOLOGY

SHIN-ICHIRO IAI

This is a joint work with Shiro Goto [5]. Let A be a Noetherian local ring with the
maximal ideal m and d = dim A. For each ideal I of A, we set R(I) := @®;>0I*, which is
called the Rees algebra of I. Let q be a parameter ideal of A. In this paper, we consider
a question of when the Rees algebra R(q?) is Gorenstein.

A motivation for considering this question comes from an example of Hochster and
Roberts [7]. Let &[[s?,t, s3, st]] be a subring of the formal power series ring k[[s, t]] over
a field k in two variables s and t. Let q = (s?,t) be an ideal of the ring k[[s% ¢, s%, st]]
generated by elements s? and t. Then they showed that the Rees algebra R(g?) is
Gorenstein but the base ring k[[s?, ¢, s%, st]] is not Cohen-Macaulay. It is one of the most
important examples of Rees algebras and has provided the impetus for large amount
of research. That is not only an example of a non-Cohen-Macaulay ring that is direct
summand of a Gorenstein ring, but also an example of an arithmetic Gorensteinfication.
Our main result is a generalization of their example about the Gorenstein Rees algebra.

Suppose that A is a generalized Cohen-Macaulay ring (referred to in this paper as a
ring of finite local cohomology), namely the ith local cohomology module Hf (A) of A
with respect to m is finitely generated for all integers i < d. Assume that depth A > 0.
We denote the Sy-fication of A by A (cf. [2] and [6]). Let A be the m-adic completion
of A and K3 the canonical module of A. For each finitely generated A-module M,
we denote the length of M by £4(M) and set ps(M) := dimgm M/mM, ro(M) :=
dim 4 ExtGP*4Y (A /m, M), and

s
Z(z1,20,..., 255 M) := Z[(wl, VTim1, Titl, - - L) M ipg ] + (21, 22, ..., 25) M,

=1
where z1,12,...,2, € A. Let a;1,a,,...,a4 be a system of parameters for A and q =
(a1, aq,...,a4)A. We say that the system ay, as, . . ., a4 of parameters for A is standard
if the equality
-1 0 .
tafa) - ea) =3 (7 1) ati ()
i=0

holds, where eq(A) denotes the multiplicity of A with respect to q (cf. [9] and [10]).
There always exists a standard system of parameters for a ring of finite local cohomology.
We put a = X(a1,as,...,aq4; A). Then a is a common ideal of A and A whenever the
system ay,as,...,aq of parameters for A is standard, so that a C A : A. With this
notation, the main result in this paper can be stated as follows.



Theorem 1. Assume that d > 2 and the system a3, as,...,aq of parameters for A is
standard. Then the following three conditions are equivalent.

(1) The Rees algebra R(q?) is Gorenstein.

(2) depth A =1, r4(A) =1, ,uA(;l:) =p;(Kz), anda=A: A

(3) depth A =1, r4(A) = 1, pa(A) = uz(Kz), and La(A/a) = 2£4(A/a).

The equality a = A : A means that the multiplicity eq(A) of A with respect to the
standard parameter ideal q must be as small as possible, because we always have the
inclusion a C A : A and the equality

d-1
o) = ta(a/0)+ X (47 1) eatitaa)

(see [6], (3.15)). For example, the ring k[[s?t,s?, st]] is Buchsbaum and then the
sequence s3,t is also a standard system of parameters for k[[s?, ¢, s3, st]], but the Rees
algebra R((s3,t)?) is not Gorenstein.

When the base ring A is Buchsbaum, we have the following explicit result.

Corollary 2. Assume d > 2. Let A be a Buchsbaum local ring of depth one. Then the
Rees algebra R(q%) is Gorenstein if and only if en(A) = 2 and q is a reduction of m.
When this is the case, one has Hi (A) = (0) if i # 1,d.

The last assertion Hj (A) = (0) if 4 # 1, d means that the ring A is Cohen-Macaualy
(cf. [2]). In this case, we can omit the equality pa(A) = pz(Kz) from the condition
(2) in the theorem.

Corollary 3. Assume that d > 2 and H: (A) = (0) if i # 1,d. Then the following two
conditions are equivalent.

(1) The Rees algebra R(q%) is Gorenstein.

(2) depthA=1,14(A)=1, anda=A: A
When this is the case, the system ai,as,...,aq of parameters for A is standard.

In general, the theorem needs the equality pa(A) = uz(K3) in the condition (2). For
example, let R be a 3-dimensional complete regular local ring with the maximal ideal
n = (a1, a2,a3). Let 0 — F3 RN AR N AR AN AN R/n — 0 denote a minimal free
resolution of B/n. We put By = n and E; = Coker p3. Let A= R x (E, @ E;) denote
the idealization of Ey @ E» over R. Then A is a Buchsbaum local ring of depth one and
A=Rx (R® E,) (cf. [1]). Put g = (a1,a2,03)A and a = X(a1,az,a3; A). Then we
have equalites r4(A) = 1 and a = A : A, but the Rees algebra R(q?) is not Gorenstein,
as eq(A) # 2.

Let us close this paper with the following example.



Example 4. Let (R,n) be a complete local ring and d = dim R > 2. Assume that R has
finite local cohomology and that Kgr = R as R-modules. Let ay,ay,...,aq be a standard
system of parameters for R. Put b = X(ay, ag, . -, 04; R) and A = R x b, which is the
idealization of b over R. Then depth A =1 and A = Rx R. Since R/b is a Gorenstein
ring, r4(A) = 1. Set 9 = (a1,0aq,...,a4)A and a = X(ay,as,...,aq4; A). Thena =bxb,
and hence £4(A/a) = 2£4(A/a). Therefore the Rees algebra R(q?) is Gorenstein by the
theorem.
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QUASI-SOCLE IDEALS IN BUCHSBAUM RINGS

SHIRO GOTO, JUN HORIUCHI, AND HIDETO SAKURAI

ABSTRACT. Quasi-socle ideals, that is, ideals of the form I = Q : m? (g > 2) with Q
parameter ideals in a Buchsbaum local ring (A, m) are explored in connection to the
question of when I is integral over @ and when the associated graded ring G(I) =
@,,50 I"/I™+1 of I is Buchsbaum. The assertions obtained by H.-J. Wang [Wan] in
the Cohen-Macaulay case holds true after necessary modifications of the conditions
on parameter ideals @ and integers g. Examples are explored.

1. INTRODUCTION

Let A be a Noetherian local ring with maximal ideal m, d = dim A > 0, and infinite
residue class field A/m. Let
— @ mn/mn+1

n>0

be the associated graded ring of m. For each m-primary ideal I in A we denote by
e7(A) (0 < i < d) the 4-th Hilbert coefficient of A with respect I, whence the Hilbert
polynomla,l of I is given by the following formula

s =) ("5 ) — e ("1 -+ vl

for all n > 0, where £4(*) denotes the length.
With this notation the purpose of this paper is to prove the following.

Theorem 1.1. Suppose that A is a Buchsbaum ring and depth G(m) > 2. Let ¢ > 2 be
an integer and let Q = (a1, az, - ,aq) be a parameter ideal in A such that Q C m9*+2.
Assume that ag = ab for somea € m9,b € m and put I = Q : m9. Then
mil =m?Q, I Cm?™ and I°=QI
and the following assertions hold true.
(1) ep(A) = e§(A) + ep(A) — La(A/T).
(2) The Hilbert function of I is given by
La(A/T) = e(A)("}) e} (A) ("35) + Eia(—1)' [ (4) + ep(A)] ("3%)
for allm > 0.
(3) The associated graded ring G(I) = @, I"/I"*" of I is a Buchsbaum ring

with _
M(G(1)) = [Hiy (G(I)-: = Hy,(4)
Key words and phrases: quasi-socle ideal, Cohen-Macaulay ring, Buchsbaum ring, associated graded

ring, local cohomology, multiplicity.
2000 Mathematics Subject Classification: 13H10, 13A30, 13B22, 13H15.



as A-modules for all i < d and
max{n € Z | [HL(G(I) #(0)} <1-d.

Here M = mG(I) + G(I)+ and [Hi(G(I))]n (i,n € Z) denotes the homogeneous com-
ponent with degree n in the i-th graded local cohomology module Hi, (G(I)).

Thus the quasi-socle ideals I = @) : m? behave very well, inside Buchsbaum rings also,
under the conditions stated in Theorem 1.1. Notice that, because A is a Buchsbaum
ring, the Hilbert coefficients ey (A) of the parameter ideal @ are given by the following

formula

eoQ(A) ifi=0,
(—1)'ep(A) = { £La(Hn(A)) if i = d,
Yo ()0l (4)  if1<i<d-1

and one has the equality £,(4/Q™') = Y% (—1)'eh(A) ("5 ) for all n > 0 ([Sch,
Korollar 3.2]), so that {e},(A)}1<i<q are independent of the choice of @ and are invariants

of A. The crucial point in Theorem 1.1 is the equality I? = QI; assertions (1), (2),
and (3) readlly follow from this fact via [GO, Section 2] and [GN, Section 5], since
(@1, ,di,-++ ,aq) :m C I for all 1 < ¢ < d. Here we should also note the condition
in Theorem 1.1 that a; = ab for some a € m? and b € m is rather technical but, at this
moment, we do not know whether this additional condition is superfluous or not.

We now briefly explain the background of our theorem 1.1. Our researches date back
to the works of A. Corso, C. Polini, C. Huneke, W. V. Vasconcelos, and the first author,
where they explored the socle ideals Q:m for parameter ideals Q in Cohen—Macaulay
rings A and proved the following result.

Theorem 1.2 ([CHV, CP1, CP2, CPV, G1]). Let Q be a parameter ideal in a Cohen-
Macaulay ring A and let I = Q : m. Then the following conditions are equivalent.

(1) 12 £ QI

(2) Q is integrally closed in A.

(3) A is a regular local ring and the A-module m/Q is cyclic.

Hence, if A is a Cohen-Macaulay ring which is not regular, then I 2 = QI for every
parameter ideal Q in A, so that G(I) and F(I) = G(I)/mG(I) are both Cohen-Macaulay
rings, where I = @Q : m. The Rees algebra ’R(I ) = B,50I" is also a Cohen-Macaulay
ring, if dim A > 2. -

This result has led to two directions of researches for better understanding of quasi-
socle ideals I = @ : m? in arbitrary local rings. One direction is to weaken the as-
sumption on base rings A, which was performed by the first and the third authors
[GSal GSa2, GSa3]. They explored the socle ideals / = @ : m inside Buchsbaum local
rings A and showed that I 2 = QI and G(I) is a Buchsbaum ring, if €2 (A) > 2 and if Q
is contained in a sufficiently high power of the maximal ideal m. The other direction was
independently performed by H.-J. Wang [Wan| and the first author, N. Matsuoka, R.
Takahashi, S. Kimura, T. T. Phuong, and H. L. Truong [GMT, GKM, GKMP, GKPT).
In [GMT] the quasi-socle ideals @ : m? in Gorenstein local rings A with dim A > 0
and eX(A) > 3 are explored, and in [GKM, GKMP, GKPT] the quasi-socle ideals
Q@ : m? (¢ > 1) in Cohen-Macaulay local rings of dimension 1 are closely studied. How-
ever, at least in the case where dim A > 2, Wang [Wan] gave a great achievement in



these topics, settling affirmatively a conjecture of C. Polini and B. Ulrich [PU]. Let us
note one of his results in the following form.

Theorem 1.3 ([Wan]). Suppose that A is a Cohen-Macaulay ring and let ¢ > 1 be an
integer. Let @ be a parameter ideal in A such that Q C m?*t! and put I = Q : m9. Then

mil =m?Q, ICm™, and I*=QI,
provided depth G(m) > 2.

Since Buchsbaum rings are very akin to Cohen-Macaulay rings, it seems quite nat-
ural to expect that similar results of the Cohen-Macaulay case, such as Theorem 1.3,
should be true also in the Buchsbaum case after mild modifications of the corresponding
conditions, which we now report in Theorem 1.1.

The proof of Theorem 1.1 shall be given in Section 2, which we will divide into two
parts. The first part is to show that m?] = m?Q. The second part is to prove that
I2 = QI. Since A is not necessarily a Cohen-Macaulay ring, the equality I* = QI
does not readily follow from the fact that m?J = m?Q). We shall carefully analyze this
phenomenon in Section 2. A similar but more restricted result also holds true in the case
where G(m) is a Buchsbaum ring with depth G(m) = 1, which we will discuss in Section
3. In Section 4 we will give examples of Buchsbaum rings A with depthG(m) =d -1,
which satisfy the conditions required in Theorems 1.1 and 3.1

2. Proor oF THEOREM 1.1

For each f (#0) € A, let f* denote the initial form of f in G(m). The aim of this
section is to prove Theorem 1.1. Let us begin with the following.

Lemma 2.1. Suppose depth G(m) > 1. Then m® : m? = m*=? for all o, 8 € Z with
g =0.

After mild modifications of conditions on parameter ideals () and integers q, Wang’s
technique [Wan)] still works in the case where A is a FLC ring. Let us note a detailed
proof in order to clarify where and why we need such modifications.

Proposition 2.2. Suppose depth G(m) > 2. Assume that A is a FLC ring and choose
an integer £ > 0 so that mé is standard (cf. [T, Section 3]). Let ¢ > 2 be an integer
and let Q@ = (a1, a2, - ,aq4) be a parameter ideal in A such that Q C mati+l We put
I=Q:mi. Then m] =miQ and I C m+! whence I2 C Q.

Proof. Once we have m?] = m?Q), by Lemma 2.1 we get that I C matéel We shall
show m?I C miQ).

Let F' denote the set of all the products [I7_, fi, where f; e m\m? forall 1 <i < g
and f7, f; form a regular sequence in G(m) for all integers 1 < ¢ < j < ¢g. Then

m? = (F). Let @ € I and let f =T]i_, fi € F, Let us write

d
of = Za,-:ci

i=1

with z; € A. Tt suffices to show that z; e m? forall 1 <i <d.



We put g; = [T;<k<q, kz; fi for each 1 < j < g and choose g € m \ m? so that g*, 7
is a regular sequence in G(m) for all 1 < j <gq. Let

d
a(g;9) = Za"ixij
i=1

with z;; € A. Then, since f = f;g;, we have

d d
D alfizg) =) ailgas),
i=1 i=1
whence, for all 1 <7< dand 1< j<gq, we get
9% — fizi; € (a1, ,di, - -+ aq) © a;.
Therefore, since (a1, - -+ ,di,---aq) : a; = (a1, -+ ,d;, - ag) : m* by [T, Proposition 3.1]
(recall that m¢ is standard) and @ : m® C m7t+! : m¢ = m9*! by Lemma 2.1, we get
gzi — fizij € mItL
Consequently, since g*, f; form a regular sequence in G(m), we have
9%; — fizs; € (g, f;) NmT* = (g, f;)m?
(ct. [VV]), so that gz; — fizi; = gz; — f;zi; with zj, z}; € m?. Hence
zi—x; € (f;) 1 9= (fy)

and so,

Claim 1. (j_; [m? + (f;)] S m?+ ([T5-, f;) for all 1 <k < q.

Proof of Claim 1. We can prove this Claim by induction on k (1 < k < g), and use the
fact that (H;:ll fi)*and fi* form a regular sequence in G(m). a

Thanks to Claim 1 we get ; € m? + ([[]_, f;) =m? forall 1 <4 < d. O

We need the following to show the equality I? = QI.

Lemma 2.3 (cf. [GSa3, Lemma 2.3]). Let W, L and M be ideals in a commutative ring
R and a,b € R. Assume that a € M,aW = (0),L :a=L:a? and L : ab= L : b.
Then
(L+(ab)+W): M =[(L+W): M)+ [(L+ (ab)): M].
The heart of our proof of Theorem 1.1 is the following.

Proposition 2.4. Suppose that A is a FLC ring and choose an integer £ > 0 so that
mé is standard. Let ¢ > 1 be an integer and let Q = (a1,az,--- ,a4) be a parameter
ideal in A. Let I = Q) : m? and assume that the following three conditions are satisfied:
(1) mII=m?Q, I?CQ, anda; em’ forall1 <i<d-1,
(2) There ezist elements a € m? and b € m such that ag = ab and both systems
{a,az, -+ ,aq—,a} and {a1,as, -+ ,a4-1,b} of parameters in A are standard,



(3) eitherd=1 orq>{.
We then have 12 = QI.

Proof. We notice that the system {a1, as, - - , a4} of parameters is standard, because so
is {a1, a2, ,aqg-1,a} ([T, Corollary 3.3]). We put W = He(A),L = (ay,a2, - ,a4-1),
and M = m9. Then a € M, aW = (0), and

L:ia=L:a*=L:ab=L:b=]J[L:m",

n>0

since all the systems {a;,as, - ,aa-1,a}, {a1,as,- -+ ,ag-1,b}, and {a1,a, - ,a4-1,ab}
of parameters are standard. On the other hand, we have |J,5o[L : m"] = L : m* by [T,

Proposition 3.1], because L C m? and m¢ is standard. Hence L:a = L : M, if ¢ > £.
Consequently, since W = W : M, by Lemma 2.3 we get

Q+W) mi=W+[Q:m)=W+1I, (d=1)

and
Q+W) mi=Q:mi=1I (¢=1¢)

Suppose now that d =1 and let A= A/W, m=m/W, 1= IA, and Q = QA. Then
T=Q:mand M ]T =m?Q. Let z € 7. Then, since 7 C @, we have z = a;y with
y € A. Let a € m?. Then, since ai(ay) = az € ﬁqzz =mQ’, we get a;(ay) = a?z
for some z € A. Therefore oy € Q (notice that a; is A-regular), so that z = a;y € Q1,
because y € @ : M7 = 1. Thus T2 =0T, sothat I2 C QI+ W. Since WNQ = (0) and
IPCQ,weget I?C(QI +W)NQ = QI as required.

Suppose now that d > 2 and that our assertion holds true for d—1. Let B = A/(a;).
Then all the conditions (1), (2), and (3) are satisfied for the parameter ideal @/(a;) in
B and we get I? C QI+ (a,). Let z € I? and write z = y+a,z withy € QI and z € A.
Let o € m?. We then have

az = ay + a1 (az) € @,
because £ € I2 and m%] = m9Q. Consequently a;(az) € Q? (notice that ay € Q?),
so that a;(az) € (a1) N Q? = a1Q, because ay,as,- - - ,aq form a d-sequence in A (cf.
[T, Proposition 3.1]). Hence az —v € (0) : a1 € W for some v € @, which guarantees
z€(Q+W):mI=1,since ¢ > ¢ Thus z=y+az € QI, so that I = QI. O

Summarizing Propositions 2.2 and 2.5, we have the following. Taking £ = 1 in the
case where A is a Buchsbaum ring, Theorem 1.1 now follows from Theorem 2.5.
Theorem 2.5. Suppose that A is a FLC ring and depth G(m) > 2. Choose an integer
¢ > 1 so that m? is standard. Let Q = (ay,az,- - ,aq) be a system of parameters in A
and put I = Q : m9, where q is an integer such that ¢ > max{¢,2}. Assume that the
following two conditions are satisfied:

(i) @ C matiH,
(ii) There ezist elements a € m? and b € m such that ag = ab and the system
a1, -+ ,a4-1,b of parameters in A is standard.
Then I? = QI and the following assertions hold true.

(1) e1(A) = ef(A) + ep(A) — £a(A/]).



(2) The Hilbert function of I is given by ' _
Ca(A/IM) = (A ("5) = el (A) ("327) + Xica(= 1) [ (A) + e (A)] ("547)
for alln > 0.
(3) The graded ring G(I) = @,5, I"/] n+1 s Buchsbaum, if so is A.
(4) H(G(])) = [Hi,(G(I)))1—: & HE (A) as A-modules for alli < d and
max{n € Z | [HL(GU)#(0)} <1-4
where M = mG(I) + G(I)4.
Proof. The equality I* = QI follows directly from Propositions 2.2 and 2.5. See [GO,
Section 2] (resp. [GN, Section 5]) for assertions (1), (2) (resp. (3), (4)). O

3. THE CASE WHERE depth G(m) =1
In this section we study what happens if depth G(m) = 1. Our goal is the following.

Theorem 3.1. Let A be a Buchsbaum ring with d = dim A > 2 and suppose that G(m)
is a Buchsbaum ring with depth G(m) = 1. Let
n=min{n € Z | [Hy(G(m)). # (0)}

where M = G(m);. Then n > 0 and for every integer 1 < g < n+ 1 and for every
parameter ideal Q = (a1,as,- -+ ,aq) of A such that Q C m?*2, we have

(1) m9] = m?Q and

(2) I Cm?+2
where I = Q : m9. Consequently, I* = QI, so that assertions (1),(2), (3) in Theorem
1.1 hold true also in the present setting, provided ag = ab for some a € m? and b € m.

The proof of Theorem 3.1 is essentially the same as that of Theorem 1.1. However
let us note a detailed proof to show where we use the assumption that 1 < g <n+1.

Proof of Theorem 3.1. Choose f € m\m? so that f* is G(m)-regular. Then, since G(m)
is a Buchsbaum ring, we get

Hj,(G(W)) = [H), (G(m))] (-1)
as graded G(m)-modules, where m = m/(f). Hence
n+12>min{n € Z | [Hy(G@)).# (0)} > 1,

so that n > 0.
To show assertion (1), we may assume that ¢ > 2 (see [GSal, GSa2, GSa3] for the

case where ¢ = 1). Let F denote the set of all the products []{_, f;, where f; € m\ m?
forall 1 <i < gand f7, f; form, for all integers 1 <4 < j < g, a part of a homogeneous

system of parameters in G(m). Then m? = (F). Let a € [ and let f =[[L, f; € F,

Let us write .
Olf = Z a;T;
i=1
with z; € A. We will show that z; € m? for all 1 <4 < d. As exactly same way and
same notation in the proof of Prop 2.2, we have

9z; — fizi; € mIth



Let A = A/(f;) and let * denote the image in ‘A. We then have
gz—t € ﬁiq+17
where T = m/(f;). Hence Z; € Mm% In fact, assume that Z; ¢ m? and let £ = ow(%:).
Then £ < g — 1, while
0# %" € Hy(G()) = [H, (G(m))] (-1).

Hence [H},(G(m))],_, # (0) and so, n < £~1 < ¢—2. This is impossible, since ¢ < n+1
by our assumption.

Thus z; € m?+(f;) forall1 <7 < dand 1 < j < g, so that the proof of Claim 1 shows
z; € md for all 1 <4 < d. In fact, with the same notation as in the proof of Claim 1,

the crucial point is to check that 7 € @7~ (-1 Suppose that § & @9~ *~1). Then, since
_— ——\ %
H;:ll fiy € m? and (Hf;i fj) is a part of a homogeneous system of parameters in the

Buchsbaum ring G(m), we get 7* € H},(G()), so that n+1 < owm(7) <g—k < g—2,
which is impossible, since ¢ < n+ 1. Hence m?/ = m?Q), so that I C m9*2 by Lemma
2.1. The other assertions follow similarly as in the proof of Theorem 1.1. O

4. EXAMPLE
Let d > 0 and n > 0 be integers. We look at the graded ring

d
R=k[X1,Xs, -, X, V1, Y2, AN AREEES d)"+2 4 (inyinﬂ)],

i=1

where U = k[X1, Xg,- - , X4, Y1, Y2, -+, Yy] denotes the polynomial ring with 2d inde-
terminates over a field k. Let M = R,, A= Ry, and m = MRy

Example 4.1. The following assertions hold true.
(1) dimR =d and depthR=d — 1.
(2) HLY(R) = [R/M](—(n+ 2 — d)) as graded R-modules.
(3) R is a Buchsbaum ring.
(4) &(A) = (*) - L.

Since R = G(m), Example 4.1 provides Buchsbaum rings A which satisfy the condi-
tions required in Theorem 1.1 (take d > 3) and Theorem 3.1 (take d = 2).
Remark 4.2. Taking n = 0 in Example 4.1, we have % (4) =d =1 +Zf=_ll (i:;) hi(A),
where hi(A) = £4(H: (A)). Hence our Buchsbaum local ring A has minimal multiplicity
in the sense of [G2, Section 4].
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QUASI-SOCLE IDEALS AND GOTO NUMBERS OF PARAMETERS

TRAN THI PHUONG

1. INTRODUCTION AND THE MAIN RESULTS

This report records my talk at the 31-st Symposium on Commutative Algebra in
Japan. My talk is based on the joint work [GKPT], which will appear in J. Pure App.
Algebra. I refer the readers to [GKPT)] for the detail of arguments .

In what follows, let A be a Noetherian local ring with the maximal ideal m and
d=dimA > 0. Let Q be a parameter ideal in A and let ¢ > 0 be an integer. We put
I = Q : m? and refer to those ideals as quasi-socle ideals in A. In this report we are
interested in the following question about quasi-socle ideals I, which are also the main
subject of the researches [GMT, GKM, GKMP].

Question 1.1. . _
(1) Find the conditions under which I C @), where @ stands for the integral closure of
Q

(2) When I C @, estimate or describe the reduction number
ro(I) =min {n € Z | I"*' = QI"}

of I with respect to @ in terms of some invariants of Q or A.
(3) Clarify what kind of ring-theoretic properties do the graded rings

R(I) =PI, () =P/, and F(I) = P I"/mI"

n>0 n>0 n>0

associated to the ideal I enjoy.

The present research is a continuation of [GMT, GKM, GKMP] and aims mainly at
the analysis of the case where A is a complete intersection with dim A = 1. Following
W. Heinzer and I. Swanson [HS], for each parameter ideal () in a Noetherian local ring
(A, m) we define

8(Q) = max{g € Z | Q: m’ C Q)

and call it the Goto number of Q. In this report we are also interested in computing Goto
numbers g(Q) of parameter ideals. In [HS] one finds, among many interesting results,
that if the base local ring (A, m) has dimension one, then there exists an integer k > 0
such that the Goto number g(Q) is constant for every parameter ideal () contained in
mk. We will show that this is not true if dim A > 1, explicitly computing Goto numbers
g(Q) for certain parameter ideals Q in a Noetherian local ring (A4, m) with Gorenstein
associated graded ring G(m) = @,,., m"/m"*+.

To state the main results of this report, let us fix some notation. Let A denote a
Noetherian local ring with the maximal ideal m and d = dim A > 0. Let {a;}1<i<q be



positive integers and let {z;}1<i<4 be elements of A with z; € m% foreach 1 <i < d
such that the initial forms {z; mod m®*1},.,<,; constitute a homogeneous system of
parameters in G(m). Hence m’ = 3¢ z;m¢% for £ > 0, so that Q = (z1, 25, - , z4)
is a parameter ideal in A. Let ¢ € Z, I = Q : m9,

d
p=a(Gm/Q)) =a(G(m))+ > a;, and £=p+1—g,

i=1
where a(*) denote the a-invariants of graded rings ([GW, (3.1.4)]). We put
L, =inf{n €Z|m" CJI} and {,=sup{n€Z|ICQ+m"}.

With this notation our main result is stated as follows.

Theorem 1.2. Suppose that G(m) = @, ., m"/m™ is a Cohen-Macaulay ring and
consider the following four conditions:

(1) &y > a; foralll1 <i<d.

(2) ICQ.

(3) miI = m1Q.

(4) by > a; for all1 <i<d. )
Then one has the implications (4) = (3) = (2) = (1). If G(m) is a Gorenstein ring,
then one has the equality I = Q + m¥, so that ¢, < £ < {5, whence conditions (1), (2),
(3), and (4) are equivalent to the following:

(6) £>a; foralll <i<d.

Consequently, the Goto number g(Q) of Q is given by the formula

d
g(Q) = [a(G(m)) + Zai + 1] —max{a; | 1 <1< d},

i=1

provided G(m) is a Gorenstein ring; in particular g(Q) = a(G(m)) +1, if d = 1.
Let R = k[R;] be a homogeneous ring over a field k with d = dim R > 0. We choose
a homogeneous system fi, fa,- - -, fg of parameters of R and put q = (f1, fa, - , fa)-

Let M = R,. Then, applying Theorem 1.2 to the local ring A = Ry, we readily get
the following, where g(q) = max{n € Z | q : M™is integral over q}.

Corollary 1.3. Suppose that R is a Gorenstein ring. Then

d
g(q) = [a(R) + Zdeg fit 1] —max{deg f; | 1 <i < d}.

i=1
Hence g(q) = a(R) + 1, ifd=1.

Corollary 1.4. With the same notation as is in Theorem 1.2 let d = 1 and put a = a;.
Assume that G(m) is a reduced ring. Then the following conditions are equivalent:

(1) I1CQ.
(2) mi] = miQ.
(3) I Cma.



(4) ez Z a.

In what follows, unless otherwise specified, let (A, m) be a Noetherian local ring with
d = dim A > 0. We denote by e(A) = €2 (A) the multiplicity of A with respect to the
maximal ideal m. Let J C K (C A) be ideals in A. We denote by J the integral closure
of J. When K C J, let

r;(K) =min {n € Z | K™ = JK"}

denote the reduction number of K with respect to J. For each finitely generated A-
module M let ps(M) and £4(M) be the number of elements in a minimal system of
generators for M and the length of M, respectively. We denote by v(A4) = £4(m/m?)
the embedding dimension of A.

2. THE CASE WHERE G(m) IS A GORENSTEIN RING

The purpose of this section is to prove Theorem 1.2. Let A be a Noetherian local
ring with the maximal ideal m and d = dim A > 0. Let {a;}1<i<q be positive integers
and let {z;}1<i<a be elements of A such that z; € m® for each 1 <1 < d. Assume that
the initial forms {z; mod m®*1};<;<4 constitute a homogeneous system of parameters
in G(m). Let ¢ € Z and Q = (21,23, ,z4). Weput I = Q :m?.

Let us begin with the following.

Proposition 2.1. Let #3 € Z and suppose that mé C Q. Thenls > a; foralll <i<d.

We put p = a(G(m/Q)) = a(G(m)) + E:Ll a; (cf. [GW, (3.16)]) and L=p+1—gq.
Let 4, =inf{n € Z|m" C I} and { =sup{n € Z | C Q +m"}.
We are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. (4) = (3) We may assume £, < co. Then, since I C Q + m®,
we have m?] C m4Q + m9t%2 whence m?] = m?Q + [Q N m9**2]. Notice that

d
+8 __ § : +E2—a;
Q n mq 2 — xlmq 2 1.)

=1

because the initial forms {z; mod m®**'};<;<q4 constitute a homogeneous system of
parameters in the Cohen-Macaulay ring G(m), and we have m™2~% C m?, since £ > a;
for all 1 < i <d. Thus m4l = m?Q.

(3) = (2) See [NR, Section 7, Theorem 2].

(2) = (1) This follows from Proposition 2.1.

We now assume that G(m) is a Gorenstein ring. Then I = @ + m by [Wat] (see
[0, Theorem 1.6] also), whence £; < £ < £, so that the implication (1) = (4) follows.
Therefore, I C Q if and only if £ = p+ 1 — ¢ > a; for all 1 <i < d, or equivalently

d
g< {a(G(m)) +Za,~ + 1] —max{a; | 1 <7< d}

i=1



Thus g(Q) = [a(G(m)) +5 ai+ 1] —max{a; | 1 <i < d}, so that

g(@) = a(G(m)) + 1,
if d=1. O

Remark 2.2 (cf. Example 3.4). Unless G(m) is a Gorenstein ring, the implication (1) =
(4) in Theorem 1.2 does not hold true in general, even when A is a complete intersection
and G(m) is a Cohen-Macaulay ring. For example, let V' = k[[t]] be the formal power
series ring over a field k and look at the numerical semigroup ring A = k[[t%, 18, t1?)] C V.
Then A = k[[X,Y, Z]}/(Y® — Z2,X* — Y Z), while G(m) = k[X,Y, Z)/(Y*, Y Z, Z?),
whence G(m) is a Cohen-Macaulay ring but not a Gorenstein ring. Let Q = (t*°) in A
and let = @ : m3; hence a; = 4 and ¢ = 3. Then I = (t%°,¢%2,¢%,¢%,¢*) C m® and
I¥ = QI? so that I C @, while I? = QI + (t*) C Q but t* ¢ QI, since t>* ¢ I. Thus
I? = QN1I*# QI, so that rg(I) = 2 and the ring G(I) is not Cohen-Macaulay. It is
direct to check that m* C I, m3 ¢ I, and I € Q +m* = m* since t? € I but t*? ¢ m*.
Thus 4, =4 and /, = 3.

Thanks to Theorem 1.2, similarly as in [GKMP] we have the following complete
answer to Question 1.1 for the parameter ideals @ = (21,22, , ).

Theorem 2.3. With the same notation as is in Theoreml.2 assume that G(m) is a
Gorenstein ring. Suppose that £ > a; for all 1 < i < d. Then the following assertions
hold true.

(1) G(I) is a Cohen-Macaulay ring, 1q(I) = [$], and a(G(I)) = [4] — d, where
[4] =min{n € Z | { < n}.
(2) F(I) is a Cohen-Macaulay ring.
(3) R(I) is a Cohen-Macaulay ring if and only if ¢ < (d — 1)<.
(4) Suppose that ¢ > 0. Then G(I) is a Gorenstein ring if and only if £ | q.
(5) Suppose that ¢ > 0. Then R(I) is a Gorenstein ring if and only if ¢ = (d — 2)X.
We now discuss Goto numbers. For each Noetherian local ring A let
G(A) = {g(Q) | Q is a parameter ideal in A}.

We explore the value min G(A) in the setting of Theorem 1.2 with dim A = 1. For the
purpose the following result is fundamental.

Theorem 2.4 ([HS, Theorem 3.1]). Let (A, m) be a Noetherian local ring of dimension

one. Then there ezists an integer k > 0 such that g(Q) = min G(A) for every parameter

ideal Q of A contained in m*.

Thanks to Theorem 1.2 and Theorem 2.4, we then have the following,.

Corollary 2.5. Let (A, m) be a Noetherian local ring withdim A = 1. ThenminG(A) =
a(G(m)) + 1, if G(m) is a Gorenstein ring.

We close this section with the following.

Proposition 2.6. Let (A,m) be a Cohen-Macaulay local ring with dim A = 1. Then
v(A) < 2 if and only if min G(A) = e(A4) — 1.



Proof. Suppose that v(A) < 2. Then G(m) is a Gorenstein ring with a(G(m)) =
e(A) — 2. Hence minG(A) = a(G(m)) + 1 = e(A) — 1 by Corollary 2.5. Conversely,
assume that min G(A) = e(A) — 1. To prove the assertion, enlarging the field A/m if
necessary, we may assume that the field A/m is infinite (use Theorem 2.4). Let z € m
and assume that Q = (z) is a reduction of m. We put e = e(A) and ¢ = g(Q). Then
g>e—1 Let B= A/Q and n = m/Q. Then Q@ : m? C Q ¢ A. Hence n? # (0), so
that nf # n**! for any 0 < i < ¢. Consequently, because ¢ +1 > e and

q
e=L4(A/Q) =D La(ni/nt) > > Ly(ni/nth) 2 g+ 1,
>0 =0
we get n?t = (0) and £4(ni/ni*!) = 1 for all 0 < i < g. Hence £a(n/n?) < 1, so that
v(A) <2 a

3. THE CASE WHERE A = B/yB AND B IS NOT A REGULAR LOCAL RING

In the following two sections 3 and 4 we shall restrict our attention on quasi-socle
ideals in the ring A of the form A = B/yB, where (B,n) is a Cohen-Macaulay local
ring of dimension 2 and y is part of a system of parameters in B. This class of local
rings contains all the local complete intersections of dimension one. Typical examples
we have in mind are numerical semigroup rings and the main purpose is to go beyond
the restriction in [GKMP] that parameter ideals be generated by monomials.

In this section assume that B is not a regular local ring; we do not assume that
G(m) = @,5om"/m™*! is a Gorenstein ring. Our result is the following.

Theorem 3.1. Let (B,n) be a Cohen-Macaulay local ring of dimension 2 and assume
that B is not a reqular local ring. Let n,q be integers such that n > q > 0. Let y € n"
and assume that y is reqular in B. We put A = B/yB and m = n/yB. Let Q be a
parameter ideal in A and put I = Q : m?. Then the following assertions hold true,
where m =n — q.
(1) m4I =mIQ,I C Q, and QN I* = QI. Hence g(Q) = n.
(2) I? = QI, if one of the following conditions is satisfied.
i m>qg-1;
(i) m<g—1and Q@ Cmi™,
(iii) m > 0 and @ C mI~L.
(3) Suppose that B is a Gorenstein ring. Then I3 = QI? and G(I) is a Cohen-
Macaulay ring, if one of the following conditions is satisfied.
(i) m < ¢—1 and Q C mI~(m+D);
(ii) @ C m7~t

Let us note here some concrete examples. Let n > 0 be an integer and put a = 6n+5,
b==6n+8 andc=9n+12. Then0 < a < b < c and GCD(a,b,c) = 1. Let
A = k[[t, *,t9]] C K[[t]], where k[[t]] denotes the formal power series ring over a field
k. Then

A KXY, Z])/(Y® - 2%, X - y*nZ),



where k[[X,Y, Z]] denotes the formal powers series ring. Let m be the maximal ideal
in A. Then

G(m) 2 k[X,Y, 2]/ (Y, y3rt1Z 72).
Hence A is a complete intersection with dim A = 1, whose associated graded ring G(m)
is not a Gorenstein ring but Cohen-Macaulay. We put

B =k[[X,Y,Z])/(Y? - Z%)

and let y denote the image of X*" ™ —Y3+17 in B. Let n = (X,Y, Z) B be the maximal
ideal in B. Then B is not a regular local ring and A = B/yB. We have y € n**2 and
y is part of a system of parameters of B. Therefore by Theorem 3.1 (1), (2), and (3)
we have the following.

Example 3.2. Let 0 < ¢ < 3n + 2 be an integer and put m = (3n + 2) — q. Let Q be
a parameter ideal in A and put I = @ : m?. Then the following assertions hold true.
(1) miI =m?Q, I C Q, and QN 12 = QI. Hence g(Q) > 3n + 2.
(2) I? = QI, if one of the following conditions is satisfied.
im>qg-1
(i) m<g—1land @ Cms™
(iii) m > 0 and Q C m?~%.
(3) I3 = QI? and the ring G(I ) is Cohen-Macaulay, if one of the followmg conditions
is satisfied.
(i) m<g—1and Q CmI~(m+h);
(i) Q@ CmeL.
Remark 3.3. In Example 3.2 (3) the equality I> = QI does not necessarily hold true.
For example, let n = 0; hence A = k[[t%,%,¢'?]]. Let @ = (t) in A and I = Q : m>.
Then I = (5,#'2,¢*6) C Q and ro(I) = 2.

As we see in the following examples, the assumption that y € n? in Theorem 3.1 is
crucial in order to control Cohen-Macaulayness in G(I) for quasi-socle ideals I = @ : m9.

Example 3.4. In Example 3.2 take n = 0 and look at the local ring A = k[[t°, t8, t17]].
Hence
: AZE[[X,Y,Z)]/(Y3 - Z2 X -Y2).

Let 0 < s € (5,8,12) := {ba+80+12y |0 < a, B, v € Z} and Q = (t°) in A, monomial
parameters. Let us consider the quasi-socle ideal I = @ : m®. Then we always have
I C @, but G(I) is Cohen-Macaulay (resp. the equality m®] = m3Q holds true) if and
only if s € {5,10,12,15,17} (resp. s € {5,12,17}), or equivalently @ N I?> = Q1. Thus
Cohen-Macaulayness in G([) is rather wild, as we summarize in the following table.

4. THE CASE WHERE A = B/yB AND B IS A REGULAR LOCAL RING

In this section let us assume that (B, n) is a regular local ring of dimension 2 and A =
B/yB, where y is part of a system of parameters in B. Hence G(m) = D50 m"/mn+!



s I m3l =m?Q | G(I) is CM | rg(I)
5 m = (£°,1%,t"?) Yes Yes 3
8 (8,219, ¢17) No No 3
10 (210,812,113, ¢1%) No Yes 2
12 (12, ¢, ¢, 1) Yes Yes 1
13 (53, 55, t1%,¢%2) No No 2
15 (5,117 18 21 12%) No Yes 2
16 (18, 1%, %% %) No No 2
17 (17,890,123, t%4, ¢%9) Yes Yes 1
18 (18,420 ¢21 ¢4, ¢%7) No No 2
> 20 (ts, t'5+2, ts+3’ t'9+6, ts+9) No No 2

is a Gorenstein ring, so that the basic assumption in Theorem 1.2 is satisfied. Recall
that v(A) < 2 and min G(A) = e(A) — 1 (Proposition 2.6).
Our result of this time is the following.

Theorem 4.1. Let (B,n) be a regular local ring of dimension 2. Let n,q be integers
such thatn > q¢ > 0 and put m = n —q. Let 0 # y € n" and put A = B/yB and
m = n/yB. Let Q be a parameter ideal in A and put I = Q : m?. Then the following
assertions hold true.

() mi=miQ, I CQ, and QNI2=QI.
(2) I? = QI, if one of the following conditions is satisfied.
(i) m=g
(i) m < q and Q C mI~(m=1),
(3) I®* = QI? and the ring G(I) is Cohen-Macaulay, if one of the following condi-
tions is satisfied.
(i) m<gand Q@ CmI™;
(i) @ C moL.

Remark 4.2. To see that the results of Theorem 4.1 are sharp, the reader may consult
[GKM, GKMP] for examples of monomial parameter ideals @ = (¢°) (0 < s € H) in
numerical semigroup rings A = k[[H]]. See [GKMP, Proposition 10] for the case where
H = {a,b) with GCD(a,b) = 1. Let us pick up the simplest ones.

(1) The equality I? = QI does not necessarily hold true. Let A = k[[t?,t*]], Q =
(t%),and I = Q : m?. Then ] =m C Q and 1o(1) = 2.

(2) The reduction number ro(/) could be not less than 3. Let A = k[[t*,#°]], @ =
(t%), and I = Q : m®. Then I =m C Q and rq(I) = 3.

(3) The ring G(I) is not necessarily Cohen-Macaulay. Let A = k[[t*,t%]), @ = (t'!),
and [ = Q : m%. Then I = (t",t'%,¢**) C @ and r¢(I) = 3. However, since
3% € QNI but t3 ¢ QI% we have @ N I* # QI? so that G(I) is not a
Cohen-Macaulay ring.
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On quasi-socle ideals in a Gorenstein local ring

Hideto Sakurai (Meiji University)

1 Introduction and Main Theorems

Let A be a Noetherian local ring with the maximal ideal m and d = dim A. Let Q

be a parameter ideal for A (that is, @ is generated by a system of parameters for

A) and p > 0 a positive integer. Then we call the quotient ideal @) :4 m” the p-th

quasi-socle ideal of @ in A (or shortly the p-socle ideal of Q) and put [ = @ :4 m?.
The purpose of this article is to answer the following two problems:

+ When I C mP?

» When does the equality I2 = QI hold?

When p =1, I = @ :4 m is so-called the socle ideal of Q) in A, and there are
many studies of the socle ideals. In the Cohen-Macaulay case, for example, there is
the following.

Theorem ([CHV, CP, CPV, G]). Let (A,m) be a Cohen-Macaulay local ring
with dim A = d. Let Q be a parameter ideal in A and let I = Q :y m. Then the
following three conditions are equivalent to each other.

1) *# QI

(2) Q is integrally closed in A.

(3) A is a regular local ring, which contains a regular system ay,az,---,aq of
parameters such that Q = (ay, - ,aq4-1,a5) for some 1< g € Z.

Therefore, we have I? = QI for every parameter ideal Q in A, if A is a Cohen-
Macaulay local ring but not regular.

Then what is studied in the case when p > 2?7 When p > 2 and A is a Cohen-
Macaulay local ring with d = dim A > 2, there is a remarkable and excellent theorem
given by H.-J. Wang.

Theorem A ([W]). Let (A, m) be a Cohen-Macaulay local ring with d = dim A > 2.
Let p > 0 be a positive integer and Q a parameter ideal for A. Assume that Q C m?
and put I = Q :4 mP. Then we have

mPl=mPQ, ICwmP, and I*=QI
provided that A is not reqular if d > 2 and that p > 2 if d > 3.



Then our question is what about one-dimensional case. As S. Goto, S. Kimura,
N. Matsuoka, and R. Takahashi suggested in [GKM, GTM], you can see that one-
dimensional case is different from higher-dimensional cases and more complicated to
control even though A is Cohen-Macaulay. For example, @ :4 m? is not necessarily
contained in mP for a parameter ideal Q C m” in a one-dimensional Cohen-Macaulay
local ring.

Example 1. Let A = k[[X,Y]]/(X?), where k[[X,Y]] is the formal power series
ring with two indeterminates X and Y over a field k. Put m = (z,y) C A, where
z and y are the images of X and Y in A respectively. Then m™ = (zy"1,y") for
all positive integers n > 0. Now let p > 2 be an integer and put @ = (y**~2). Then
QCm?P2CmP and Q :amP = (zyP 2,977 !) = mP ! € mP.

Then the first theorem of this article is the following.

Main Theorem 1. Let (A,m) be a one-dimensional Cohen-Macaulay local ring,
and p > 0 a positive integer and ¢ > 0 a non-negative integer. Then @ ;4 mP C m?
for all parameter ideals @ C mPt?. Moreover if A is not regqular, then Q :4 mP C
ma*L for all parameter ideals Q C mP*4,

Therefore we get the following, taking ¢ = p — 1 in Main Theorem 1.

Corollary. Assume that A is a one-dimensional Cohen-Macaulay local ring, but
not reqular. Let p > 0 be a positive integer. Then @ :a mP C mP for all parameter
ideals Q@ C m?~!

We shall remark that Example 1 shows that the value 2p — 1 of an order of
parameter ideals @ C m?~! in this corollary is the best possible.

Here we should mention a very interesting paper [GKPT] given by S. Goto, S.
Kimura, T. T. Phuong, and H. L. Truong. The author was inspired by discussions
with Satoru Kimura. In fact our technique of proof is similar to theirs (see [GKPT,
Lemma 3.2, Proposition 3.3.]) and they give more interesting results in rather special
settings. But their results do not cover Main Theorem 1.

So next, we would like to talk about the reduction number of quasi-socle ideal
in a one-dimensional Cohen-Macaulay local ring. Some results are given for one-
dimensional (or arbitrarily dimensional) Cohen-Macaulay local rings. S. Goto, S.
Kimura and N. Matsuoka explored quasi-socle ideals in numerical semigroup rings
(see [GKM]). S. Goto, S. Kimura, N. Matsuoka and T. T. Phuong, and also, S. Goto,
S. Kimura, T. T. Phuong, and H. L. Truong explored quasi-socle ideals in a certain
one-dimensional (or an arbitrarily dimensional) Cohen-Macaulay local ring and got
some interesting results, but in rather special settings (see [GKMP, GKPT)]). When
p = 2 and the base ring A is Gorenstein, there is the following remarkable result
given by S. Goto, N. Matsuoka, and R. Takahashi [GTM].
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Theorem B ([GTM]). Let (A, m) be a Gorenstein local ring with d = dim A > 0,
Q a parameter ideal for A and I = Q :4 m%. Then the following assertions hold.

(i) Assume that n = pa(m/Q) > 2, where py(x) denotes the minimal number of
generators. Then the following conditions are equivalent.

1)

2) I C Q, where Q denotes the integral closure of Q.

3) mINQ=mQ.

4) pa(I) =n+d.

(1) m?I =m?Q.
(
(
(

(i) Assume that pa(m) > 2, Q@ C m?, and mI N Q = mQ. Then we have that
m2] =m?Q, I Cm?, and I? = QI.

(13i) Assume that €5 (A4) > 3. Then m*I = m2Q and I® = QI%. Moreover I? = QI
if Q Cm2.

When d = dim A > 2, the assertions (ii) and (iii) of Theorem B are completely
covered by Wang’s theorem, Theorem A. But Goto-Takahashi-Matsuoka’s technique
of proof is independent form Wang’s one, and works for one-dimensional case.

Here our question is the following.

Question: Can we generalize Theorem B top > 27
But the following example shows difficulty solving the question.

Example 2 ((GKPT, Example 5.3.]). Let A = k[[¢%,¢%,#'?]] C k[[¢]] and m =
(t5,8,12), where k is a field. Then (A, m) is a one-dimensional Gorenstein local ring
and G (A) is Cohen-Macaulay, where G (A) is the associated graded ring of A with
respect tom. Let 0 < a €< 5,8,12 >= {5a+8b+12¢ | 0 < a,b,c € Z}, and Q = (t%)
and I = Q 14 m3. Assume that o > 20. Then I = (t*,t2+2 ¢o+3 go+6 1o+9) C Q,
hence mI N Q = mQ, but m*I # m3Q, I? # QI and I*® = QI%. Finally, you should
notice m2I N Q # m2Q).

Then the second and third theorem of this article are the following.

Main Theorem 2 (a generalization of Theorem B (i)). Let (A,m) be a
Gorenstein local ring with d = dim A and p > 2 be an integer. Let Q) be a parameter
ideal, I = Q 14 wP, n = pa(mP 1+ Q/Q), and s = Ls(m/mP~1 + Q), where £4(x)
denotes the length. Assume that the following three conditions hold.

(@) pa(I/Q)=n22.
(b) I CmPl,

() MP I+ Q=Q:am.
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Then the following conditions are equivalent.

(1
(2) I CQ and La(mI/mP~I) =s(d+1).

m?~2[ = m?»72Q and L4(mI/mP1]) = s(d + 1).

)
)
(3) mINQ =mQ and La(mI/mP~11) = s(d +1).
4) pal) = n+d and La(mI/mP=11) = s(d +1).
)

5 mPlINQ =mP Q.

When p = 2, you can check that the condition p4(I/Q) = n is automatically
satisfied, and the assumption p4(I/Q) > 2 implies the conditions (b) and (c). Also,
if p = 2, then s = 0 and hence the equality £4(mI/mP~1I) = s(d + 1) is obvious.
Therefore this theorem gives a kind of generalization of the assertion (i) of Theorem
B.

Main Theorem 3 (a generalization of Theorem B (ii)). Let (A,m) be a
Gorenstein local ring with d = dim A > 0, and assume that depth G,(A) > 0. Let
p > 2 be an integer, Q a parameter ideal and I = @Q :4 mP. Assume that ps(m) > 2,
Q Cm?* 2 and mP1INQ = mP~1Q. Then we have that mPI = mPQ, I C m?P~2
and I? = QI.

The next target is to generalize the assertion (iii) of Theorem B. For example,
the author want to control all parameter ideals using an invariant depends only on
the base ring A, for exaple €% (A) or something.

In the next section, we shall give a proof of Main Theorem 1. The author skip
a proof of Main Theorem 2 and 3 for a limit the number of pages.

2 Proof of Main Theorem 1

In this section we shall give a proof of Main Theorem 1. In fact, we shall show
Theorem 2.3 which shows more general assertion and get Main Theorem 1 as a
corollary (Corollary 2.4) to Theorem 2.3.

Now let us begin with the following.

Lemma 2.1. Let' A be a commutative ring, a, b, and ¢ ideals of A. Assume that
a contains a non-zero divisor and a C b. Furthermore assume that there ezists a
subset F' C a of a such that a is generated by F and (f) :4 b C ¢ for all elements
f € F. Then we have that (a) :a b C ¢ for all non-zero divisors a € a.
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Proof. Take any non-zero divisor a € a and fix it. Take any elements z € (a) :4 b
and f € F. Since a C b, we can write fz = ay for some y € A. On the other hand,
take any element b € b and write bz = az for some z € A. Then we have that

bay = b(fz) = f(bz) = faz.

Hence by = fz because a is a non-zero divisor. Thus y € (f) :4 b. Then we have
that y € ¢ by the assumption. Therefore fx = ay € ac, and thus, £ € ac :4 a
because a is generated by the set F. Now, because a € a, we have that ax € ac.
Therefore z € ¢, since a is a non-zero divisor. Then we get that (a) :4 b C c. O

Lemma 2.2. Let (A,m) be a commutative local ring and assume that m con-
tains a non-zero divisor. Let p > 0 be a positive integer and q¢ > 0 an integer.
Let aj,as,...,ap1q € M be non-zero divisors and assume that (a;) # m. Then
(@102 - Gpiq) ia WP C mItL,

Proof. First suppose that ¢ > 0. Now it is easy to show that
(0102 - Gpyg) 4 ™ C (@102~ Gpyg) 14 G102+ ap C [(0) 14 a1+~ ap)+(apt1 -~ Gpig)-

Since a; - - - a, is a non-zeor divisor, we have that (a1a2 + ** Gpyq) 14 WP C (Gpy1 - Gpyg)-
Take any element £ € (@10 - Gptq) 14 MP and write T = apy1 - - Gppqy for some
y € A. Now we claim the following.

Claim 1. y € (a;) :4 m.
Proof of Claim 1. Take any element o € m. Then
Qg+ GpT = Qly * * * Qplpyl ** Opyql

because T = @p41 - - Gptqy. On the other hand, since aay---a, € mP, we can write
Qg+ ApT = @y Gpyqz for some z € A. Thus we have that ay = a;2, since
@3-+ Gpiq is & non-zero divisor. Therefore y € (a;) 14 m. O

Because of the assumption that (a;) # m, we have that (a;) :4 m C m. Then
y € (a1) :a m C m. Therefore z = ap41- - ap40y € mi+!) and thus, we get that
(@10 -+ Gpiq) 14 MP C MITL

In fact, this proof works in the case when ¢ = 0 considering an element z itself
instead of y, that is, the above proof of Claim 1 shows that (aiaz---ap) 14 m? C
(a1) :a m. |

Then we have the following.

Theorem 2.3. Let (A,m) be a Noetherian local ring with depth A >0 andp >0 a
positive integer. Let ¢ > 0 be an integer. Assume that m is not principal. Then we
have that (a) :4 m? C m9*! for all non-zero divisors a € mP*e,
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Proof. First it is easy to check that m?19 is generated by the following set F:
F ={a109 - apyq | a1,0,...,a5+4 € m are non-zero divisors}.

Since m is not principal, we have that (ajay - - -apiq) :4 M C m?*! for all elements
a10; - - - Gpyq € F, by Lemma 2.2. Therefore, by Lemma 2.1, we get that (a) : 4 m? C
m?*! for all non-zero divisors a € mP*9. O

Applying Theorem 2.3 to one-dimensional Cohen-Macaulay local ring, we get
the following.

Corollary 2.4 (Main Theorem 1). Let (A, m) be a one-dimensional Cohen-Macaulay
local ring, p > 0 a positive integer, and ¢ > 0 an integer. Then we have that
Q :am? CmI for all parameter ideals Q C mP*9. Moreover if A is not regular, then
we have that @ :4 m? C m*! for all parameter ideals Q C mP*9.

Proof. When A is regular, that is A is a DVR, it is clear that Q :4 m?» C m? for all
parameter ideals @ C mP*?. So we may assume that A is not regular. Then our
assertion readily follows form Theorem 2.3. a

Finally the author would like to give the following, although the following asser-
tion is almost coverd by Wang’s theorem (Theorem A) in the case when dim A > 2.

Corollary 2.5. Let (A, m) be a Cohen-Macaulay local ring with d = dim A > 0. Let
p > 0 be a positive integer and ¢ > 0 an integer, and suppose that p+q > 2. Assume
that m is not principal. Then we have that Q :4 mP C mI*! for all parameter ideals
Q Cmre,

Proof. When d = 1, it readily follows from Theorem 2.3. Suppose that d > 2 and
our assertion holds for d — 1. Let @Q = (a1, as,...,aq) € mP*? be a parameter ideal
for A. Now we shall remark that A/(a;) is not regular, since a; € m?*? C m2, Then,
passing to A/(a;), by the hypothesis of induction on d, we have that

Q :am? C mi*! 4 (a;) C mot!

as is claimed. |
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COHEN-MACAULAYNESS VERSUS THE VANISHING OF
THE FIRST HILBERT COEFFICIENT OF PARAMETERS

SHIRO GOTO AND KAZUHO OZEKI

1. INTRODUCTION

This is based on [GhGHOPV, GOJ a joint work with L. Ghezzi, J. Hong, T. T.
Phuong, and W. V. Vasconcelos.

Let A be a Noetherian local ring with the maximal ideal m and d = dim A > 0. Let
£4(M) denote, for an A-module M, the length of M. Then, for each m-primary ideal I
in A, we have integers {e}(A)}o<i<q such that the equality

Ca(A/T™Y) = )(A) (”Zd> — e}(A) ("Zf; 1) oot (-De(A)

holds true for all integers n > 0, which we call the Hllbert coefficients of A with
respect to I. We say that A is unmixed, if dim A/p = d for every p € AssA where A
denotes the m-adic completion of A. Wlth this notation Wolmer V. Vasconcelos posed,
exploring the vanishing of e}Q(Q) for parameter ideals (), in his lecture at the conference
in Yokohama of March, 2008 the following conjecture.

Conjecture 1.1 ([V]). Assume that A is unmixed. Then A is a Cohen-Macaulay local
ring, once eg(A) = 0 for some parameter ideal Q of A.

In Section 2 of the present paper we shall settle Conjecture 1.1 affirmatively. Here we
should note that Conjecture 1.1 is already solved partially by [GhHV] and [MV]. Let
us call those local rings A with e}?(A) = ( for some parameter ideals ) Vasconcelos.
In Section 3 we shall explore basic properties of Vasconcelos rings. In Section 4 we
will study the problem of when e},(A) is constant and independent of the choice of
parameter ideals @ in A. We shall show that A is a Buchsbaum ring, if 4 is unmixed
and ep(A) is constant (Theorem 4.3).

In what follows, unless otherwise specified, let A denote a Noetherian local ring with
the maximal ideal m and d = dim A. Let {H{ (*)}:cz be the local cohomology functors
of A with respect to the maximal ideal m. Let pa(M) denote, for an A-module M, the
number of generators.

Let AsshA = {p € AssA | dim A/p = d} and let (0) = (,cas 4 L(P) be a primary
decomposition of (0) in A with p-primary ideals I(p) in A. We put

Ua0)= () 1(v)

pEAssh A

and call it the unmixed component of (0) in A.
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2. PROOF OF THE CONJECTURE OF VASCONCELOS

The purpose of this section is to prove the following, which settles Conjecture 1.1
affirmatively. One of the main results of this paper is the following.

Theorem 2.1. Let A be unmized. Then the following four conditions are equivalent to
each other.

(1) A is a Cohen-Macaulay local Ting.

(2) e}(A) > 0 for every m-primary ideal I in A .
(3) e5(A) > 0 for some parameter ideal Q in A.
(4) e (A) = 0 for some parameter ideal Q in A.

In our proof of Theorem 2.1 the following facts are the key. See [GNa, Section 3] for
the proof.

Proposition 2.2 ([GNa]). Let (A,m) be a Noetherian local ring with d = dim A > 2,
possessing the canonical module K. Assume that dim A/p = d for every p € AssA\
{m}. Then the following assertions hold true.

(1) The local cohomology module Hy (A) is finitely generated.

(2) The set F = {p € SpecA | dim A, > depthA, = 1} is finite.

(3) Suppose that the residue class field k = A/m of A is infinite and let I be an
m-primary ideal in A. Then one can choose an element a € I \ mI so that a is
superficial for I and dim A/p = d — 1 for every p € AssaA/aA\ {m}.

Proof of Theorem 2.1. We have only to check the implication (3) = (1). Let @ =
(a1,as," -+ ,aq) With a system ay,as, -+ ,aq of parameters in A. Enlarging the residue
class field k = A/m of A and passing to the m-adic completion of A, we may assume
that the field k = A/m is infinite and that A is complete. Since the assertion is obvious
in the case where d < 2 (recall that for any Noetherian local ring (A, m) of dimension
one, we have e},(A) = —£4(HS(A)); see [GNi, Lemma 2.4 (1)], and the two-dimensional
case is readily deduced from this fact via the reduction modulo some superficial element
z = a, of Q; see [GNi, Lemma 2.2] and notice that z is A-regular), we may assume that
d > 3 and that our assertion holds true for d — 1. Then we are able to choose, thanks
to Proposition 2.2 (3), the element z = a; so that = is a superficial element of the
parameter ideal @ and (the ring A/zA is not necessarily unmixed but) the unmixed
component U = Ug(0) of (0) in B = A/zA has finite length, whence U = H{(B). Then
the d — 1 dimensional local ring B/U is Cohen-Macaulay by the hypothesis of induction
on d, because

e1Q~(B/U)(B/U) = ebB(B) = eE(A) >0
(cf. [GNi, Lemma 2.2]). Hence Hi (B) = (0) for all i # 0,d — 1. We now look at the
long exact sequence

.. — Hi(A) S HL(A) — HL(B) —
e — an-l(B) — H:n(A) =z, H:H(A) — .
1

S HEXB) - HEUA) S HE(A) -
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of local cohomology modules, derived from the short exact sequence
0-A3A—B—0
of A-modules. We then have H (A4) = (0) for all 2 < i < d—1, since H (B) = (0) for all
1<4i<d-2, while H}(A) = ZH! ! (A), since H,(B) = (0). Consequently H}(A) = (0),
because the A-module H} (A) is finitely generated by Proposition 2.1 (1). Thus A is a
Cohen-Macaulay ring. a
Let us give one consequence of Theorem 2.1.

Corollary 2.3 ([MV]). We have ep(A) < 0 for every parameter ideals Q in A.

3. VASCONCELOS RINGS

The purpose of this section is to develop a theory of Vasconcelos rings. Let us begin
with the definition.

Definition 3.1. We say that A is a Vasconcelos ring, if either d = 0, or d > 0 and
eg(A) = 0 for some parameter ideal Q in A.

Here is a basic characterization of Vasconcelos rings.

Theorem 3.2. Suppose that d = dim A > 0. Then the following four conditions are
equivalent.
(1) A is a Vasconcelos ring.
(2) ep(A) = 0 for every parameter ideal Q in A.
(3) A\/UA(O) is a Cohen-Macaulay ring and dimzUz(0) < d — 2, where'U;(O)
denotes the unmized component of (0) in the m-adic completzon A of A.
(4) The m-adic completion A of A contains an ideal I # A such that A/l is a
Cohen-Macaulay ring and dimz I < d - 2.
When this is the case, A is a Vasconcelos ring, Hé-1(A) = (0), and the canonical module
7z of Aisa Cohen-Macaulay A-module.

Proof. See [GhGHOPV, Theorem 3.3]. O

Notice that condition (3) of Theorem 3.2 is free from parameters. Therefore, since
ep(A) = 0 for some parameter ideal, then ej(A) = 0 for every parameter ideals @ in
A. This is what the theorem says.

In the rest of this section, let us give some consequences of Theorem 3.2.

Corollary 3.3. Let A be a Noetherian local ring with the mazimal ideal m and d =
dim A > 0. Let Q be a parameter ideal in A. Assume that ea (A)=0 foralll <i<d.
Then A is a Cohen-Macaulay ring.

Suppose that d > 0 and let @ be a parameter ideal in A. We denote by R = R(Q)
(resp. G = G(Q)) the Rees algebra (resp. the associated graded ring) of Q. Hence

R=A[Qf] and G=R(Q)/t7'R(Q),
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where t is an indeterminate over A and R'(Q) = A[Qt,t7}]. Let 9t = mR + R, be the
graded maximal ideal in R. With this notation we have the following.

Corollary 3.4. The following assertions hold true.
(1) A is a Vasconcelos ring if and only if Gan is a Vasconcelos ring.

(2) Suppose that A is a homomorphic image of a Cohen-Macaulay ring. Then Rox
is a Vasconcelos ring, if A is a Vasconcelos ring.

Thus Vasconcelos rings enjoy very nice properties.

4. BUCHSBAUMNESS IN LOCAL RINGS POSSESSING CONSTANT FIRST HILBERT
COEFFICIENTS OF PARAMETERS

In this section we study the problem of when eé(A) is constant and independent of
the choice of parameter ideals @ in A.

Here let us briefly recall the definition of Buchsbaum local rings. The readers may
consult the monumental book [SV] of J. Stiickrad and W. Vogel for a detailed theory,
some of which we shall note here for the use in this paper.

We say that our local ring A is Buchsbaum, if the difference

€a(A/Q) — e3(A)

is independent of the choice of parameter ideals @) in A and is an invariant of A, which
we denote by I(A). As is well-known, A is a Buchsbaum ring if and only if every system
ai,ay,- - ,aq of parameters in A forms a d-sequence in the sense of C. Huneke ([H]).
When A is a Buchsbaum local ring, one has

mHi(4) = (0)
for all 4 # d, whence the local cohomology modules {H% (A)}i.q are finite-dimensional

vector spaces over the field A/m, and the equality
=1 04 ‘
1) =3 (7 )iy
i=0
holds true.

We say that A is a generalized Cohen-Macaulay local ring, if all the local cohomology
modules {H% (A)}ixq are finitely generated. Hence every Cohen-Macaulay local ring is
Buchsbaum with I(A) = 0 and Buchsbaum local rings are generalized Cohen-Macaulay.
A given Noetherian local ring A with d = dim A > 0 is a generalized Cohen-Macaulay
local ring if and only if

I(4) = Sgp{fA(A/Q) —eg(A)} < oo,

where Q runs through parameter ideals in A ([STC]). When this is the case, one has

) =5 (7 eat
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Suppose that A is a generalized Cohen-Macaulay local ring and let () be a parameter
ideal in A. Then @ is called standard, if

I(A) =4a(A/Q) — eOQ(A).
This condition is equivalent to saying that @) is generated by a system ay, as,- - ,aq of
parameters which forms a strong d-sequence in any order ([STC]).

Let
A = A(A) = {eg(A) | Q be a parameter ideal in A }.

Then we can ask the following questions.

Question (1) When is A a finite set?
(2) When is A a singleton?
For example, our characterization of Vasconcelos rings says that 0 € A if and only if
A ={0}.
Let us summarize what is known about the questions, where we put h'(A4) =
L4(H: (A)) for each i € Z.

Proposition 4.1 ([GNi, Sch]). Suppose that A is a generalized Cohen-Macaulay local
ring and d > 2. Let @ be a parameter ideal in A. Then we have the following.

(1) eb(A4) = = 55 () hi(A).-
(2) We have ep(A) = — Sl (4-2)hi(A), if Q is standard.

=1 \4i—

Thanks to Proposition 4.1, if A is a generalized Cohen-Macaulay ring then we have

= [(d-2
>el(A) > - i
0> eb(A) > ; (i_ l)h (A)
for every parameter ideal @) in A. Hence A is finite. If A is a Buchsbaum ring then,
since all parameter ideals in A are standard, we have

ep(A) = — § <‘:: 12) hi(A)

i=1

for every parameter ideal @ in A. Thus, we have

= (d—2
A={- R'(A
X (527
so that A is a singleton It is natural to ask the converse is also true.

Our answer is the following.

Theorem 4.2. Suppose that d > 2 and A is unmized. Assume that A is a finite set
and put £ = —min A. Then m*H: (A) = (0) for every i # d. Hence H: (A) is a finitely
generated A-module for every i # d, so that A is a generalized Cohen-Macaulay local
Ting.

The main result of this section is stated as follows.
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Theorem 4.3. Suppose that d = dim A > 2 and A is unmized. Then the following two
conditions are equivalent.
(1) A is a Buchsbaum local ring.
(2) The first Hilbert coefficients eb(A) of A are constant and independent of the
choice of parameter ideals @ in A.
When this is the case, one has the equality
d-1
) == 3 (127 ) eatir(a)
i=1

for every parameter ideal Q in A.

Thus Buchsbaum rings are characterized in terms of consistency of the first Hilbert
coefficients of parameters. This is a new characterization of Buchsbaum rings.
The following result is a key for the proof of Theorem 4.3.

Theorem 4.4. Suppose that A is a generalized Cohen-Macaulay local ring with d =
dim A > 2 and depthA > 0. Let Q be a parameter ideal in A. Then the following two
conditions are equivalent.

(1) Q is a standard parameter ideal in A.

(2) eh(4) = = Ti5 (IZ)R'(A).
Proof of Theorem 4.3. We have only to show the implication (2) = (1). Since
fA = 1, by Theorem 4.2 A is a generalized Cohen-Macaulay local ring, so that
A= {-4 42)hi(A)} by [Sch, Korollar 3.2]. Hence by Theorem 4.4 every pa-
rameter ideal @ is standard in A, because ef,(4) = — Iy (-2)hi(A), so that A is a
Buchsbaum local ring. a

Unless A is unmixed, Theorem 4.3 is no more true, even if ef(A) = 0 for every
parameter ideal Q in A (cf. [GhGHOPV, Theorem 2.7]). Let us note one example.

Example 4.5. Let R be a regular local ring with the maximal ideal n and d =
dimR > 3. Let X;,Xs,---,Xq be a regular system of parameters of R. We put
p=(X1,Xs,- - ,X41) and D = R/p. Then D is a DVR. Let A = R x D denote the
idealization of D over R. Then A is a Noetherian local ring with the maximal ideal
m=nx D and dim A = d. Let @ be a parameter ideal in A and put q = p(Q), where
w: A— R,p(a,z) = a denotes the projection map. We then have

La(A/Q™) = fr(R/q™')+ £p(D/q""' D)
n+

eR(R/q)-< 4 d) +eD(D/qD)-<nJ1r 1)

= &(R) (" :l' d) + (D) (" 4{ 1)

for all integers n > 0, so that e} (A) = eJ(R),e5(4) = (=1)*e)p(D), and ex(A) =0
if i # 0,d—1. Hence e} (A) is constant but A is not even a generalized Cohen-Macaulay

I
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local ring, because Hl (A4) (=2 H.(D)) is not a finitely generated A-module. The local
ring A is not unmixed, although depth A = 1.

5. CHARACTERIZATION OF LOCAL RINGS WITH CONSTANT eg(A)

We close this paper with a characterization of Noetherian local rings A possessing
fA = 1. Let us note the following,.

Proposition 5.1 ([GhGHOPV, Proposition 4.7]). Suppose that d = dim A > 2 and let
U be the unmized component of the ideal (0) in A. Assume that there exists an integer
t > 0 such that ep(A) = —t for every parameter ideal Q in A. Then dimsU < d — 2
and ej(A/U) = —t for every parameter ideal q in A/U.

The goal of this paper is the following.

Theorem 5.2. Suppose that d = dim A > 2. Then the following two conditions are
equivalent.
(1) A =1.
(2) Let U = Uz(0) be the unmized component of the ideal (0) in the m-adic comple-
tion A of A. Then dim 2U<d-2and AJU is a Buchsbaum local ring.

When this is the case, one has the equality

10N
ep(A) = — Z (Z ~ 1) hi(A/U)
i=1
for every parameter ideal Q in A.
Proof. (1) = (2) For every parameter ideal g of A we have q= (qﬂA),Z, so that gNAis
a parameter ideal in A. Hence A(A) = A and so the implication follows from Theorem
4.3 and Proposition 5.1. R R
(2) = (1) Since dim 3z U < d—2 and A/U is a Buchsbaum local ring, we get #A(A) =
1 by [GhGHOPV, Lemma 2.4 (c)], whence #A = 1.
See Proposition 5.1 and [Sch, Korollar 3.2] for the last assertion. a
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A NOTE ON THE BUCHSBAUM-RIM FUNCTION OF A
PARAMETER MODULE

FUTOSHI HAYASAKA

This note is a summary of a part of the paper [11] with Eero Hyry
(University of Tampere). In this note we prove that the Buchsbaum-Rim
function £4(S,+1(F)/N**!) of a parameter module N in F' is bounded
above by e(F/N) ("7 1) for every integer v > 0. Moreover, it turns
out that the base ring A is Cohen-Macaulay once the equality holds
for some integer v. As a direct consequence, we observe that the first
Buchsbaum-Rim coefficient e;(F/N) of a parameter module N is always
non-positive.

1. INTRODUCTION

Let (A, m) be a Noetherian local ring of dimension d. Let F' = A" be a
free module of rank r > 0, and let S = S4(F) be the symmetric algebra
of F', which is a polynomial ring over A. For a submodule M of F, let
R (M) denote the image of the natural homomorphism S4(M) — Sa(F),
which is a standard graded subalgebra of S. Assume that the quotient
F/M has finite length and M C mF. Then we can consider the function

A Zzo b ZZO P 7 e d EA(S,,/MV)

where S, and M denote the homogeneous components of degree v of S
and R(M), respectively. Buchsbaum and Rim studied this function in [4]
in order to generalize the notion of the usual Hilbert-Samuel multiplicity
of an m-primary ideal. They proved that A(v) eventually coincides with
a polynomial P(v) of degree d + r — 1. This polynomial can then be
written in the form

d+r—1 —2—1
P(v) = Z (—=1)*e;(F/M) (Vji-j_:—i 1 31 )

with integer coefficients e;(F/M). The coefficients e;(F//M) are called the
Buchsbaum-Rim coefficients of F//M. The Buchsbaum-Rim multiplicity
of F/M, denoted by e(F/M), is now defined to be the leading coefficient
eo(F/M).

—114—



In their article Buchsbaum and Rim also introduced the notion of a
parameter module (matrix), which generalizes the notion of a parameter
ideal (system of parameters). The module N in F is said to be a param-
eter module in F, if the following three conditions are satisfied: (i) F/N
has finite length, (ii) N C mF, and (iii) pa(N) = d+r—1, where pa(N)
is the minimal number of generators of N.

A starting point of this note is the characterization of the Cohen-
Macaulay property of A given in [4, Corollary 4.5] by means of the
equality £4(F/N) = e(F/N) for every parameter module N of rank r
in FF = A". Brennan, Ulrich and Vasconcelos observed in [1, Theorem
3.4] that if A is Cohen-Macaulay, then in fact

£a(Sos1/N"H1) = e(F/N) (u+ dtr— 1)

d+r—1
for all integers v > 0. Our main result is now as follows:

Theorem 1.1. Let (A, m) be a Noetherian local ring of dimension d > 0.
(1) For any rank r > 0, the inequality

talseaN 2 (g4t

always holds true for every parameter module N in F' = A" and
for every integer v > 0.
(2) The following statements are equivalent:
(i) A is a Cohen-Macaulay local ring;
(i3) There ezists an integer r > 0 and a parameter module N of
rank v in F = A" such that the equality

£4(Su41/NH) = e(F/N) ( P 1)

holds true for some integer v > 0.

V-I—d-l-r—l)

This generalizes our previous result [10, Theorem 1.3] where we as-
sumed that v = 0. The equivalence of (i) and (ii) in (2) seems to contain
some new information even in the ideal case. Indeed, it improves a re-
cent observation that the ring A is Cohen-Macaulay if there exists a
parameter ideal Q in A such that £4(4/Q"!) = e(4/Q)("5%) for all
v > 0 (see [8, 12]). Moreover, as a direct consequence of (1), we have
the non-positivity of the first Buchsbaum-Rim coefficient of a parameter
module.
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Corollary 1.2. For any rank r > 0, the inequality
always holds true for every parameter module N in F = A".

Mandal and Verma have recently proved that e;(A4/Q) < 0 for any
parameter ideal @ in A (see [15], and also [8]). Corollary 1.2 can be
viewed as the module version of this fact. However, our proof based on
the inequality in Theorem 1.1 (1) is completely different from theirs and
is considerably more simpler.

2. PRELIMINARIES

Let (A, m) be a Noetherian local ring of dimension d. Let F = A" be
a free module of rank 7 > 0. Let S = Sy(F') be the symmetric algebra
of F. Let N be a parameter module in F', that is, IV is a submodule of
F satisfying the conditions: (i) £4(F/N) < oo, (i) N C mF, and (iii)
pa(N)=d+r—1. Weput n=d+r—1. Let N” be the homogeneous
component of degree v of the graded subalgebra R(N) = Im(S4(N) —
S) of S. Let N = (cij) be the matrix associated to a minimal free
presentation

AN F S F/INSO

of F/N. Let X = (X;;) be a generic matrix of the same size r x n. We
denote by I;(X) the ideal in the polynomial ring A[X] = A[X;; | 1 <
i < 1,1 < j < n] generated by the s-minors of X. Let B = A[X]mx)
be the ring localized at the graded maximal ideal (m, X) of A[X]. The
substitution map A[X] — A where X;; — c;; now induces a map ¢ :
B — A. We consider the ring A as a B-algebra via the map . Let

b=Kerp=(X;j—c¢;|1<i<r,1<j<n)B.

Set G = B", and let L denote the submodule Im(B" X G) of G. Let G,
and L” be the homogeneous components of degree v of the graded alge-
bras Sg(G) and R(L), respectively. Then one can check the following.

Lemma 2.1. For any integers v > 0, we have the following:
(1) (Gur/L*') ®p (B/b) = Sypa [NV,
(2) Suppp(Gy41/L"*') = Suppp(B/I:(X)B);
(3) The ideal b is generated by a system of parameters of the module
G,,+1/LV+1.
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The following fact concerning G,,11/L"** is known by [3, Corollary 3.2
(see also [13, Proposition 3.3]).

Lemma 2.2. For any integer v > 0, we have G,1/L" is a perfect
B-modules of grade d.

The following plays a key role in the proof of Theorem 1.1.

Proposition 2.3. For any p € Ming(B/I.(X)B), the equality

25, (Gur/L"*1)y) = s, ((B/1(X)B)y) (V - 1)

d+r—-1

holds true for all integers v > 0.

3. Proor oF THEOREM 1.1

In order to prove Theorem 1.1, we need to introduce more notation.
For any matrix a of size r X n over an arbitrary ring, we denote by K, (a)
its Eagon-Northcott complex [6]. When r = 1, the complex K,(a) is
just the ordinary Koszul complex of the sequence a. See [7, Appendix
A2] for the definition and more details of complexes of this type. Recall
in particular that if N is a parameter module in a free module F' as in
section 2, then

e(F/N) = x(K.(N)),

where x (K, (N)) denotes the Euler-Poincaré characteristic of the complex
KJ(N) (see [4] and [14]). Moreover, one can check the following by
computing Torf (B/IB, A) for all p > 0 (see [5]).

Lemma 3.1. Using the setting and notation of section 2, we have
X(Ku(b) ® (B/1:(X)B)) = x(K.(N).

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. We use the same notation as in section 2. Put
I=1.(X).
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(1): Fix integers v > 0. The ideal b being generated by a system of
parameters of the module G,,,/L"*!, we get
EA (Su+1/NV+1)
C5((Gy+1/L"™") ®5 (B/b))
6(6; GV+I/LV+1)
d.  e(t;B/p) - £5,((Coar/L"H),)

pEAsshp(Gy41/Lv+1)

) demrfm«BﬂB»(

pEAsshp(B/IB)

= e(b; B/IB)(

AV

v+d+r-—1
d+r—-1

v+d+r—1
d+r—1

= x(K.(b) ®5 (B/IB)) (V ;i:iz 1)

_ X(K.(N))(V;i:: 1)

V+d+r—1>

- e(F/N)< d+r—1

as desired, where e(b; *) denotes the multiplicity of * with respect to b.
(2): The other implication being clear, by the ideal case, for example,
it is enough to show that (ii) implies (i). Assume thus that

+d+r-1
/NP = e(F/N) (¥
aSen/N =erm (V34T TY)
for some v > 0. The above argument then gives

C5((Gur1/L"*") ®5 (B/b)) = e(b; Guya /LH).
It follows that G,4;/L**! is a Cohen-Macaulay B-module of dimension
rn ([2, (5.12) Corollary]). By Lemma 2.2, G,,;/L**! is a perfect B-
module of grade d. Thus, by the Auslander-Buchsbaum formula,
depth B = depthg(Gy11/L""") + pdp(Gyer /L")

= dimp(G,11/L""") + gradeg(G,41/L" )

= rm+d

= dim B.
Therefore B is Cohen-Macaulay so that A is Cohen-Macaulay, too. [0
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GORENSTEINNESS OF A RING WHICH ADMITS A
MODULE OF FINITE HOMOLOGICAL DIMENSION

TOKUJI ARAYA

This ia a join work with Ryo Takahashi.

Through in this talk, we denote by R a noetherian local ring with the
unique maximal ideal m and the residue class field k. We also denote
by mod R the category of finitely generated R-modules and by D(R)
the derived category.

In the 1970s, Foxby [5], verifying a conjecture of Vasconcelos [12],
proved the following theorem.

Theorem 1. [5, (4.4)] If there exzists a non-zero finitely generated R-
module M such that both projective dimension of M and injective di-
mension of M are finite, then R is Gorenstein.

As a natural generalization of this statement, Takahashi and White
[11] asked the following.

Question 2. If there exists a non-zero finitely generated R-module M
such that both C-projective dimension of M and C-injective dimension
of M are finite for some semidualizing module C, then must R be
Gorenstein ?

Recently Sather-Wagstaff and Yassemi [10] answered that this ques-
tion has an affirmative answer in the case where the C-projective di-
mension is equal to zero. The main purpose of this talk is to give a
complete answer to the question. To see this, we give some definitions.

Definition 3. For C € mod R, we say C' is semidualizing if the homo-
thety map R — Hom(C, C) is an isomorphism and Ext*(C, C) = 0 for
all i > 1.

The followings are typical examples of semidualizing module.

Example 4. (1) The free module R is semidualizing.
(2) If R is Cohen-Macaulay with a canonical module w, then w is semi-
dualizing.

Definition 5. Let C be a semidualizing module. For M € mod R, the
C-projective dimension C-pdg M of M is defined to be the infimum of
integers n such that there exists an exact sequence

0—-CQrP,— -  2CQQrP L —-CQrPh—M—-0
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of R-modules where P, is projective for 0 < ¢ < n. Dually, the C-
injective dimension C-idg M of M is defined to be the infimum of
integers n such that there exists an exact sequence

0 — M — Hompg(C, I°) — Homg(C,I') — - -+ — Homg(C,I") — 0

of R-modules where I is injective for 0 < i < n. The C-projective and
C-injective dimensions of the zero module are defined as —oo.

Remark 6. (1) Since R ®g P, & P, and Hompg(R,I') = I*, we have
R-pdy M = pdg M and R-iddg M =idg M.

(2) If R is Cohen-Macaulay with a canonical module w, then we can
see that w-pdg M is finite if and only if idg M is finite. Similarly,
we can also see that w-idg M is finite if and only if pdz M is finite.

(3) For any semidualizing module C, we can check that C-pdg M =
pdg Homg(C, M) and C-idg M =idg C ®r M (c.f. [?, cdim].

Now we can give a main theorem of this talk.

Theorem 7. If there exists a non-zero finitely generated R-module M
such that both C-projective dimension of M and C-injective dimension
of M are finite for some semidualizing module C, then R is Gorenstein.

As a corollay of Theorem 7, we get the following.

Corollary 8. If there erists a semidualizing module C' such that C-
injective dimension of C is finite, then R is Gorenstein.

Let R be a Cohen-Macaulay with a canonical module w. It is known
that if pdpw is finite, than R is Gorenstein. On the other hand, if
w-idg w is finite, then pdgw is finite by Remark 6 (2). Thus Corollary
8 is a generalization of this fact.

To prove our theorem, we prepare a lemma and a proposition.

Lemma 9. Let X,Y,Z be R-complexes. Assume the following:
(1) H(X) and H*(Z) are finitely generated for all i € Z,
(2) H(X) and H'(Z) are zero for all i > 0,
(3) pdg Z < .
Then there is a natural isomorphism
RHompg(X,Y) ®% Z = RHomg(X,Y ®F 2).
in D(R).
Proposition 10. [7, Theorem 3.2] Let X be an R-compler. Assume
the following:

(1) H{(X) are finitely generated for all i € Z,
(2) H{(X) are zero for all i >0,

—121—



(3) RHom(X ®% X, X ®% X) > R.
Then X is isomorphic to R[n] for some n € Z in D(R).

Now we can prove our main theorem.

Proof of Theorem 7. Note from [11, (2.9)—(2.11)] that M is in both
the Auslander class Ac(R) and the Bass class Bo(R), and that
Hompg(C, M) (respectively, C ®z M) is a nonzero finitely generated
R-module of finite projective (respectively, injective) dimension by Re-
mark 6 (3). We have isomorphisms

CRRM=CLM
~ C ®% (C ®% Hompg(C, M))
~ (C ®% C) ®% Homg(C, M)

in D(R). Using Lemma 9, we get isomorphisms

RHomg(k,C ®r M) = RHompg(k, (C ®% C) ®% Homg(C, M))
=~ RHompg(k,C ®% C) ®% Homp(C, M).

By [1, (A.7.9)], we obtain:
sup(RHompg(k,C ®% C)) = sup(RHomg(k,C g M))
— sup(k ®% Hompg(C, M))
idR(C ®r M) < 00
inf(RHompg(k,C ®r M))
— inf(k ®% Hompg(C, M))
= depthg(C ®r M) + pdr Hom(C, M)
—00.
Hence the R-complex RHompg(k, C®%C) is bounded, and so is C®%
C by [6, (2.5)]. Thus we get idg(C®FC) = sup(RHompg(k, C®LC)) <
oo by [1, (A.5.7.4)]. It follows from [2, (4.4) and (4.6)(a)] that there is a
natural isomorphism C' = RHompg(C, C®% C), and so we have natural
isomorphisms RHomp(C®%C, C®%C) =2 RHompg(C, RHomg(C, C®%
C)) = RHomg(C,C) = R. It follows from Proposition 10 that C
is isomorphic to R and therefore C ®% C is isomorphic to R. Since
idg(C ®% C) < o0, R is a Gorenstein ring. O

inf(RHompg(k, C ®% C))

\Y

Our method in the proof of Theorem 7 actually gives a more simple
proof of Theorem 1 than the proof due to Foxby. In fact, let R and M
be as in Theorem 1. Then we have

RHompg(k, M) = RHomg(k, R ®% M) = RHompg(k, R) ®% M,
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which gives
idg R = sup RHompg(k, R)
= sup RHompg(k, M) — sup(k ®% M) =idg M < oo,

namely, R is Gorenstein.
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On hypersurfaces of countable Cohen-Macaulay type
Kei-ichiro Iima
The Graduate School of Natural Science and Technology, Okayama University

e-mail:iima@math.okayama-u.ac. jp

This is a joint work with Tokuji Araya and Ryo Takahashi.

Throughout this proceeding, let k be an algebraically closed field of characteristic
zero, and let R be a complete Gorenstein local ring with coefficient field k. We denote
by mod(R) the category of finitely generated R-modules, by CM(R) the full subcategory
of mod(R) consisting of all maximal Cohen-Macaulay R-modules, and by P(R) the full
subcategory of CM(R) consisting of all modules that are locally free on the punctured
spectrum of R. The stable categories of CM(R) and P(R) are denoted by CM(R) and
P(R), respectively. Let M(R) be the set of non-isomorphic indecomposable maximal
Cohen-Macaulay R-modules X with X ¢ P(R), and let V(M) be the non-free locus of
M for each maximal Cohen-Macaulay R-module M.

When R has finite Cohen-Macaulay representation type, R is isomorphic to

Kllzo, z1, 22, ..., z4])/(f), where

R s
wowy + @i a4+ ad
f=qa8+at+ai+ - +a] (
g+ zzd+ i+ +3i |
i+ +a22+-- 422 (

In this case, all objects and morphisms in CM(R) have been classified completely,
namely, the AR-quiver of CM(R) has been obtained; see [1],[3],[5],(8],[9). When R

has infinite but countable Cohen-Macaulay representation type, R is isomorphic to

k([zo, z1, Za, - . ., z4]]/(f), Where

f= f+ai++2d (AL)
zar + 23+ - +z2 (DL)
In this case, all objects in CM(R) have been classified completely (see [3],[4]), but mor-
phisms in CM(R) have not. The purpose of this proceeding is to investigate the relation-
ships among objects in CM(R).
The main result of this proceeding is the following theorem.
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Theorem 1 Let R = k[zo, %1, %2, . - . ,74)]/(f), where f is either (AL) or (D), and let
pr = (20, T2, . .., Z4) and mg = (Zo, L1, T2, . . ., T4) be tdeals of R. Then the following hold.
(1) There exist an indecomposable mazimal Cohen-Macaulay module X such that

(a) M(R) = {Xr,UXR)},
(b) V(Xr) = {pr,mr} = V(Q2(XR)).
(2) For each M € P(R), there is an ezact sequence

0= L—-M®R*"—-N-—-0

such that L, N € M(R) and n € Ny.
(3) [Schreyer, [7]] We are able to draw the AR-quiver of P(R).

f=(4%),(D%) f= D%

The proof of Theorem 1 will use Knorrer’s periodicity. Let us recall here Knorrer’s
periodicity.

Proposition 2 (Knoérrer’s periodicity) For the hypersurfaces S = k[[zo, 21, ..., z4]]/(f)

and S™ = k[[zo, 1, ..., Za,y, 2]/ (f + yz), there is a triangle equivalence from CM(S) to
CM(S™).
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Now we shall give the outline of the proof of Theorem 1.
(Outline of Proof) (i) The (AL) case, we have CM(R) = add{R, R/(zo)R, Coker(i,)| n >

1}, where
_ (%o =t
9011. - (O zo) )

by [3]. In this case Xg = R/(zo)R satisfies (1) and (2).
(ii) The (D.,) case, we have CM(R) = add{R, R/(z0)R, R/(zoz1)R, R/(z2)R, R/(z1)R,
Coker(p;t), Coker(gon) Coker (1), Coker(v; )| n > 1}, where

+1
ot = o x¥ o = ToZ1 X7 o = Tor1 T} v = T x7
n 0 —z¢/)'™™ 0 —zoxy/)’'7"" 0 -z’ 0 —xzo11)’

by [3]. In this case Xg = R/(xo)R satisfies (1) and (2).
(iii) The (A2)) case: R is isomorphic to k[[zo, Z1, Z2]]/(zoT2) by exchanging the vari-
ables. We have CM(R) = add{R, R/(z0)R, R/(x2)R, Coker(p;), Coker(p;)| n > 1},

where
+_ [To =T - (w0 -7
()On—<0 xﬂ)a(pn"(o .’Ez)’
by [4]. In this case Xg = R/(zo)R satisfies (1) and (2).
(iv) The (D2,) case, R is isomorphic to k[[zq, T1, Z2]]/ (z3z1—22) by exchanging the vari-
ables. We have CM(R) = add{R, Coker(a™), Coker(a~), Coker(8"), Coker(8~), Coker(y}),
Coker(¢;,), Coker(¢;+), Coker(1;, )| n > 1}, where

T3 ToT - (-zo T
R R 2 ZoT1)
Zo —X2
gt = 3 :cz )
Ty :c1 i )’

To Tor; O Tor; 0 —zP!
ot = o Ty IT - —Zy IT 0
n 0 0 ) xofB1 rrn 0 —.’L‘z ToZy ’
0 0 To —Tg
Ty ToTi1 —IT ——xz xoccl —9:1 0
bt = Ty T2 0 z? oo = 7
n 0 0 Ty (Bom'l ’ —.’L‘z ToTy ’
0 0 Zo —X9

by [4]. In this case X = Coker(at) satisfies (1) and (2
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(v) The general case, there is a unique hypersurface T of type (AL,), (DL,), (A%) or
(DZ,) and the composition of Knérrer’s periodicity

F: CM(T) — CM(R)

is a triangle equivalent functor. In this case Xr = F Xr satisfies (1) and (2). ]
As an application of Theorem 1, we get the following result.

Corollary 3 With the notation of Theorem 1 the following hold.
(1) The dimension of CM(R) (in the sense of Rouguier) is equal to one.
(2) The Grothendieck group of CM(R) is generated by [R] and [Xg].
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CLASSIFYING THICK SUBCATEGORIES OF
COHEN-MACAULAY MODULES

RYO TAKAHASHI

One of the principal approaches to the understanding of the structure
of a given category is classifying its subcategories having a specific
property. It has been studied in many areas of mathematics which
include stable homotopy theory, ring theory, algebraic geometry and
modular representation theory. A landmark result in this context was
obtained in the definitive work due to Gabriel [15] in the early 1960s.
He proved a classification theorem of the localizing subcategories of the
category of modules over a commutative noetherian ring by making a
one-to-one correspondence between the set of those subcategories and
the set of specialization-closed subsets of the prime ideal spectrum of
the ring. A lot of analogous classification results of subcategories of
modules have been obtained by many authors; see [22, 32, 29, 16, 17, 18]
for instance.

For a triangulated category, a high emphasis has been placed on clas-
sifying its thick subcategories, namely, full triangulated subcategories
which are closed under taking direct summands. The first classifica-
tion theorem was obtained in the deep work on stable homotopy the-
ory due to Devinatz, Hopkins and Smith [12, 21]. They classified the
thick subcategories of the category of compact objects in the p-local
stable homotopy category. Hopkins [20] and Neeman [31] provided a
corresponding classification result of the thick subcategories of the de-
rived category of perfect complexes (i.e., bounded complexes of finitely
generated projective modules) over a commutative noetherian ring by
making a one-to-one correspondence between the set of those subcat-
egories and the set of specialization-closed subsets of the prime ideal
spectrum of the ring. Thomason [36] generalized the theorem of Hop-
kins and Neeman to quasi-compact and quasi-separated schemes, in
particular, to arbitrary commutative rings and algebraic varieties. Re-
cently, Avramov, Buchweitz, Christensen, Iyengar and Piepmeyer [2]
gave a classification of the thick subcategories of the derived category
of perfect differential modules over a commutative noetherian ring. On
the other hand, Benson, Carlson and Rickard [6] classified the thick
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subcategories of the stable category of finitely generated representa-
tions of a finite p-group in terms of closed homogeneous subvarieties of
the maximal ideal spectrum of the group cohomology ring. Friedlander
and Pevtsova [14] extended this classification theorem to finite group
schemes. A recent work of Benson, Iyengar and Krause [8] gives a new
proof of the theorem of Benson, Carlson and Rickard. A lot of other re-
lated results concerning thick subcategories of a triangulated category
have been obtained. For example, see [3, 4, 5, 28, 10, 7, 24, 9, 13, 34].

Here we mention that in most of the classification theorems of sub-
categories stated above, the subcategories are classified in terms of
certain sets of prime ideals. Each of them establishes an assignment
corresponding each subcatgory to a set of prime ideals, which is (or
should be) called the support of the subcategory.

In the present article, as a higher dimensional version of the work
of Benson, Carlson and Rickard, we consider classifying thick sub-
categories of the stable category of Cohen-Macaulay modules over a
Gorenstein local ring, through defining a suitable support for those
subcategories. Over a hypersurface we shall give a complete classifica-
tion of them in terms of specialization-closed subsets of the prime ideal
spectrum of the base ring contained in its singular locus.

CONVENTION. In the rest of this article, we assume that all rings are
commutative and noetherian, and that all modules are finitely gener-
ated. Unless otherwise specified, let R be alocal ring of Krull dimension
d. The unique maximal ideal of R and the residue field of R are de-
noted by m and k, respectively. By a subcategory, we always mean a
full subcategory which is closed under isomorphism.

Let us make several definitions of subcategories.

Definition 1. (1) Let C be a category.

(i) We call the subcategory of C which has no object the empty
subcategory of C.

(ii) Suppose that C admits the zero object 0. We call the subcat-
egory of C consisting of all objects that are isomorphic to 0 the zero
subcategory of C.

(2) A subcategory of a triangulated category is called thick if it is
closed under direct summands and triangles.

(3) A subcategory of mod R is called resolving if it contains R and if
it is closed under direct summands, extensions and syzygies.

Next we recall the definitions of the nonfree loci.
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Definition 2. (1) We denote by V(X)) the nonfree locus of an R-module
X, namely, the set of prime ideals p of R such that X, is nonfree as an
Ry,-module.

(2) We denote by V(X) the nonfree locus of a subcategory X of
mod R, namely, the union of V(X) where X runs through all noniso-
morphic R-modules in X.

We denote by Sing R the singular locus of R, namely, the set of prime
ideals p of R such that R, is not a regular local ring. For each ideal I of
R, we denote by V(I) the set of prime ideals of R containing I. Recall
that a subset Z of Spec R is called specialization-closed provided that
ifp € Z and g € V(p) then q € Z. Note that every closed subset of
Spec R is specialization-closed. For a subset ® of Spec R, we denote by
V~1(®) the subcategory of mod R consisting of all R-modules M such
that V(M) is contained in ®.

We recall the definition of the stable category of Cohen-Macaulay
modules over a Cohen-Macaulay local ring.

Definition 3. (1) Let M, N be R-modules. We denote by Fg(M, N)
the set of R-homomorphisms M — N factoring through free R-
modules. It is easy to observe that Fgr(M, N) is an R-submodule of
Hompg(M,N). We set Homg(M, N) = Homg(M, N)/Fr(M, N).

(2) Let R be a Cohen-Macaulay local ring. The stable category of
CM(R), which is denoted by CM(R), is defined as follows.

(i) Ob(CM(R)) = Ob(CM(R)).

(i) Homenmyr) (M, N) = Homg(M, N) for M, N € Ob(CM(R)).

It is known that CM(R) is a triangulated category if R is Gorenstein;
see [4, 19].

Now, we define the notion of a support for objects and subcategories
of the stable category of Cohen-Macaulay modules.

Definition 4. Let R be a Cohen-Macaulay local ring.

(1) For an object M of CM(R), we denote by Supp M the set of
prime ideals p of R such that the localization M, is not isomorphic
to the zero module 0 in the category CM(R,). We call it the stable
support of M.

(2) For a subcategory ) of CM(R), we denote by Supp ) the union
of Supp M where M runs through all nonisomorphic objects in Y. We
call it the stable support of .

(3) For a subset ® of Spec R, we denote by Supp™ ® the subcategory

of CM(R) consisting of all objects M € CM(R) such that Supp M is
contained in ®.
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The notion of a stable support is essentially the same thing as that
of a nonfree locus.

Proposition 5. Let R be a Cohen-Macaulay local ring.
(1) Let M be a Cohen-Macaulay R-module. Then Supp M = V(M).
(2) Let X be a subcategory of CM(R). Then Supp & = V(X).

(3) Let Y be a subcategory of CM(R). Then SuppY = V().

(4) Let & be a subset of Spec R. Then Supp™' @ = V~}(®).

Now we can state our main result.

Theorem 6. (1) Let R be a local hypersurface. Then one has the
following one-to-one correspondences:

{nonempty thick subcategories of CM(R)}

Suppl TSupp_l

{specialization-closed subsets of Spec R contained in Sing R}

v v

{resolving subcategories of mod R contained in CM(R)}.

(2) Let R be a d-dimensional Gorenstein singular local ring with
residue field k which is a hypersurface on the punctured spectrum. Then
one has the following one-to-one correspondences:

{thick subcategories of CM(R) containing Q%k}

Suppl TSupp‘1

nonempty specialization-closed subsets of Spec R contained in Sing R
g

| Ty

{resolving subcategories of mod R contained in CM(R) containing Q°k}.

Remark 7. Very recently, after the work in this article was completed,
Iyengar announced in his lecture [25] that thick subcategories of the
bounded derived category of finitely generated modules over a locally
complete intersection which is essentially of finite type over a field are
classified in terms of certain subsets of the prime ideal spectrum of
the Hochschild cohomology ring. This provides a classification of thick
subcategories of the stable category of Cohen-Macaulay modules over
such a ring, which is a different classification from ours.
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A singular local hypersurface and a Cohen-Macaulay singular local
ring with an isolated sigularity are trivial examples of a ring which sat-
isfies the assumption of Theorem 6(2). We make here some nontrivial
examples.

Example 8. Let k& be a field. The following rings R are Cohen-
Macaulay singular local rings which are hypersurfaces on the punctured
spectrums.

(1) Let R = k[[z,y,2]]/(z? yz). Then R is a 1-dimensional local
complete intersection which is neither a hypersurface nor with an iso-
lated singularity. All the prime ideals of R are p = (z,vy), q = (z,2)
and m = (z,y, 2). It is easy to observe that both of the local rings R,
and R, are hypersurfaces.

(2) Let R = k[[z,y, z,w]]/(y* — z2,yz — 2w, 2® — yw, zw,w?). Then
R is a 1-dimensional Gorenstein local ring which is neither a complete
intersection nor with an isolated singularity. All the prime ideals are
p=(y,z,w) and m = (z,y, z,w). We easily see that R, is a hypersur-
face.

(3) Let R = k[[z,9,2])/(2% zy,yz). Then R is a 1-dimensional
Cohen-Macaulay local ring which is neither Gorenstein nor with an
isolated singularity. All the prime ideals are p = (z,y), 9 = (z, z) and
m = (z,y, z). We have that R, is a hypersurface and that R, is a field.

Applying Theorem 6(1), we observe that over a hypersurface R hav-
ing an isolated singularity there are only trivial resolving subcategories
of mod R contained in CM(R) and thick subcategories of CM(R).

Corollary 9. Let R be a hypersurface with an isolated singularity.

(1) All resolving subcategories of mod R contained in CM(R) are
add R and CM(R).

(2) All thick subcategories of CM(R) are the empty subcategory, the.
zero subcategory, and CM(R).

As another application of Theorem 6, we obtain a vanishing result of
homological and cohomological d-functors from the category of finitely
generated modules over a hypersurface.

Proposition 10. Let R be a hypersurface and M an R-module. Let A
be an abelian category.

(1) Let T : mod R — A be a covariant or contravariant homological
§-functor with T;(R) = 0 for ¢ > 0. If there exists an R-module M
with pdg M = 00 and T;(M) =0 for i > 0, then T;(k) =0 fori>> 0.

(2) Let T : mod R — A be a covariant or contravariant cohomological
-functor with T*(R) = 0 for i > 0. If there erists an R-module M
with pdg M = oo and T*(M) = 0 for i > 0, then T'(k) = 0 for i > 0.
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Proof. (1) We easily see that for any R-module N and any integers
n > 0 and 7 > 0 we have

Ty(Q"N) = {

Consider the subcategory X of CM(R) consisting of all Cohen-
Macaulay R-modules X with T;(X) = 0 for ¢ > 0. Then it is
easily observed that X is a thick subcategory of CM(R) containing
R. Since T;(2¢M) is isomorphic to Tiya(M) (respectively, Ti—q(M))
for i > 0 if T is covariant (respectively, contravariant), the nonfree
Cohen-Macaulay R-module Q¢M belongs to X. Hence the maximal
ideal m belongs to V(Q¢M), which is contained in V(X), and we have
V(Q9k) C {m} C V(X). Therefore Q% belongs to V=*(V(X)), which
coincides with X by Theorem 6(1). Thus we obtain T;(Q2%) = 0 for
i > 0. Since T;(02%k) is isomorphic to T;1q4(k) (respectively, T;_q(k)) for
i > 0if T is covariant (respectively, contravariant), we have T;(k) = 0
for i > 0, as desired.

(2) This is shown similarly to (1). : O

Titn(N) if T is covariant,
T;—n(N) if T is contravariant.

As a corollary of Proposition 10, we obtain the following vanishing
result of Tor and Ext modules.

Corollary 11. Let R be an abstract hypersurface. Let M, N be R-
modules. If Tor?(M,N) = 0 for i > 0, then either pdg M < oo
or pdg N < oo. Dually, if Exth(M,N) = 0 for i > 0, then either
pdg M < 00 oridg N < oo.

The first assertion of Corollary 11 gives another proof of a theorem
of Huneke and Wiegand [23, Theorem 1.9].

Corollary 12 (Huneke-Wiegand). Let R be an abstract hypersurface.
Let M and N be R-modules. If Tor®(M,N) = TorZ (M, N) =0 for
some i > 0, then either M or N has finite projective dimension.

Remark 13. Several generalizations of Corollaries 11(1) and 12 to
complete intersections have been obtained by Jorgensen [26, 27], Miller
[30] and Avramov and Buchweitz [1].

The assertions of Corollary 11 do not necessarily hold if the ring R
is not an abstract hypersurface.
Example 14. Let k be a field. Consider the artinian complete in-
tersection local ring R = kl[[z,]]/(z% y?). Then we can easily verify
TorF(R/(x), R/(y)) = 0 and Extz(R/(z), R/(y)) = 0 for all > 0. But
both R/(z) and R/(y) have infinite projective dimension, and infinite
injective dimension.
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TRIANGULATED CATEGORIES FOR ISOLATED HYPERSUFACE
SINGULARITIES AND MIRROR SYMMETRY

ATSUSHI TAKAHASHI

1. INTRODUCTION

Mirror symmetry is now understood as a categorical duality between algebraic ge-
ometry and symplectic geometry. One of our motivations is to apply some idea of mirror
symmetry to singularity theory in order to understand various mysterious correpondences
among isolated singularities, root systems, Weyl groups, Lie algebras, discrete groups,
finite dimensional algebras and so on.

In this paper, we describe an algebro-geometric aspect of the homological mirror
symmetry of isolated hypersurface singularities. We shall show that the stable categories
of finitely generated graded Cohen-Macaulay modules are equivalent to the bounded de-
rived categories of finite dimensional modules over finite dimensional algebras.

2. CATEGORIES OF SINGULARITIES

Let k£ be an algebraically closed field of characteristic zero. Our main interest is a
weighted homogeneous polynomial f € S := k[z1;...,Z,), where we set deg(z;) =:r; €
Zso, deg(f) =: h € Zsq. Assume that f defines at most an isolated singularity at the
origin.

2.1. The maximal abelian grading. Define an abelian group Ly by
L; = &r, 2 & Zf/I,

where I is the subgroup generated by
n
f - Z k’if;y for akl,...,kn # O’

_ are coefficients of the monomial z¥ ... z*¥ in f. Note that the quotient
ring Ry := S/(f) is Ly-graded.
A group homomorphism deg : Ly — Z, 7; +— r; is called the degree map.

where ay, kn

Date: January 11, 2010.
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2.2. Categories of singularities. Denote by gr’/-R; the category of finitely generated
Ls-graded Rj-modules and by proj’/-R; C grls-R; the full subcategory of projective

modules.
Definition 2.1. The triangulated category

Dg!(Ry) == D*(gr™-Ry)/K"(proj*s-Ry)
is called the triangulated category of L-graded singularity.

Remark 2.2. If the ring Rj is regular, then we have the equivalence Db(grts-Ry) ~
K?*(proj’’-Ry). Hence, we see that the category Dgg’ (Ry) measures the complexity of the
singularity f.

Remark 2.3. The objects
k() := (Rg/m)(l) € Dg}(Ry), T€Ly.
will play an essential role in our story.

2.3. Categories of CM modules. Although the category Dé;(Rf) is easy to define, it
is too difficult to study since it is defined as a localization. Therefore, we replace it by

the equivalent category which is more natural from the mirror symmetry point of view.
Definition 2.4. M € gr7-R; is a Ly-graded Cohen-Macauley module if
Ext‘kf(Rf/m,M) =0, i< dime.
Note that Ry is Ly-graded Gorenstein ring, i.e., we have

Kp, ~Ri(~&), &= @i,

i=1
where (l_§ is the grading shift by lelL s- Therefore, we have the following:

Lemma 2.5 (Auslander). The category of Cohen-Macauley Rs-modules CM(Ry) C
grls-R; is o Frobenius category, u.e., an ezact category with enough injectives and

projectives and its class of injectives coincides with that of projectives. a
Definition 2.6. Define a category CM™/ (Ry) as follows:
Ob(CMY (Ry)) = Ob(CM"*(Ry)),
CM"(R;)(M, N) := Hom1,  (M,N)/P(M,N),
where g € P(M, N) if and only if there exist a projective object P and homomorphisms

¢ : M — Pand g": P — N such that g = g" o g'. The category CM”(Ry) is called the
stable category of a category CM%/ (R;)
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Then, the following facts are well-known.\
Proposition 2.7 (Happel[H]). The category CM™ (R;) is a triangulated category. O
Proposition 2.8. CM™/ (R;) is finite
> " dim; CM" (Ry,, ) (M, T'N) < oo,
and Krull-Schmidt, i.e., any object is a finite direct sum of indecomposable objects. O
The triangulated category CM%/ (R ) has the following special property:

Proposition 2.9 (Auslander-Reiten[AR]). The functor S = T" 2 o (—&) defines the

Serre functor on CM™ (Ry), i.e., there exists a bi-functorial isomorphism

CMY (Ry,,)(M, N) ~ Homy(CM*/ (R, )(N,SM), k).

a

2.4. Categories of matrix factorizations. Since Ry is a hypersurface and L-graded
local ring, there exists an Ls-graded free resolution of M € CM™ (Ry) in gr’s-S:

0-FR 3R M-o.

However, the multiplication of f on M is zero, we have a morphism (homotopy) fo : Fy —
Fy such that

fifo=f-1dr, fofi=f-idR.
Based on this observation, Eisenbud introduced the following notion of matrix factoriza-

tions:

Definition 2.10 (Eisenbud[E]). Let Fp, F; be Lj-graded free modules and fy : Fy —
B, fi : Fi — Fy be morphisms such that fifo = f -idg, fofi = f-idg. The tuple
(Fo, F1, fo, f1) is called a Ly-graded matrix factorization of f and denoted by

F;:(Foépl).

f
Example 2.11. There exist f; € m, i =1,...,n such that

f=onifi+zfot -+ z,fn

-

This decomposition defines matrix factorizations which will be isomorphic to k(I) in
Ly
D Sg (Rf )
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Lemma 2.12. The category MFg’ (f) of graded matriz factorizations of f is a Frobenius
category. Therefore, its stable category

HMF/ (f) := ME/ (f)
is triangulated. O

Lemma 2.13. On the category HMFé’ (f), we have T* = ( f). In particular, HMFg’ (f) is
fractional Calabi-Yau triangulated category of dimension (n—2)-—2,%, where €5 := deg(€7)
and hy = deg(f). O
2.5. Triangulated equivalences and semi-orthogonal decompositions. For any

matrix factorization F = ( R = R ), the Lj-graded R;-module Coker(f;) is in

f

CM?’1(R;). Furthermore, we have the L-graded version of the famous triangulated equiv-

alences:

Theorem 2.14 (c.f., Buchweitz, Orlov[O]). There ezists a triangulated equivalence
HMF¢/ (f) ~ CM" (Ry) = Dg}(R;).
O

In order to have L-graded generalization of Orlov’s semi-orthogonal decomposition,

we first introduce the quotient stack
= [Spec(R;)\{0} /Spec(k - Ly)].
Then, we have the triangulated equivalence D°coh(Xy,) ~ D*(gr’s-Ry)/D*(tor’s-Ry).

Proposition 2.15 (c.f., Orlov[O]). There exzists the following triangulated equivalence:
(l) If €f > 0,
Dbcoh(Xy,) = <Dsg(Rf) A(0),..., Ales — 1)),
where A(7) := <Ofo ([}>d g(l

(ii) If €f = 0, DbCOh(XLf) = DSg(Rf)'
(iii) If ef < 0,

Dg!(Ry) = (DPcoh(Xz,),K(0), ..., K(=¢; +1)),
where (i) = <k(f)>

deg(l)=i’
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3. STRUCTURE OF HMF? (f)

Now, we assume that f is a sum of the following polynomials:
Fermat type: :c?l"» + 2B+ R
chain: 2}* + 2325 + - - - + 71,2},
loop: 2,25 + 2125’ + - - - + Zp_12P0.
Then, from the mirror symmetry conjecture for the above singularities, we may expect

the following;:

Conjecture 3.1 (c.f. T: arXiv:0711.3907). There ezists a triangulated equivalence
HMFY (f) ~ D*(mod-kA/I)

for some quiver A and relations I. a

From the next section, we shall give some results for the above conjecture.

4. EXAMPLES
4.1. Simplest case.

Theorem 4.1. There exists a triangulated equivalence HMF%M (a¥*1) =~ D¥(mod-kA »,)

where A 4, 15 the Dynkin quiver of type A;.

4.2. Curve singularities. Consider polynomials of the following types:
Type I. f = zP + 49, Type II: f = zP + zy?, Type III: f = yaP + zy9.

Theorem 4.2. For any f of type I, II and III, ? a quiver A and relations I such that
HMF¢! (f) ~ Db(mod-kA/I)

O
Corollary 4.3 (ADE). Let f be one of polynomials in the table
f Type
o442 | A (1>1)
yr!~t + 2 | Dy (1 > 4)
z* + ¢ Es
yzd + 38 E;
x5 + 8 Es.
Then, we have the triangulated equivalence
HMFY (f) ~ D*(mod-kA),
where A is the Dynkin quiver of corresponding type. a
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4.3. Surface singularities.

Theorem 4.4 (Kajiura-Saito-Takahashi[KST1]). Let f be one of ADE singularities.
Then, we have the triangulated equivalence

HMFZ(f) ~ Db(mod-kA),
where A is the Dynkin quiver of corresponding type.
4.4. Another important class.

Theorem 4.5 (Kajiura—Saito-Takahashi[KST2]). For Arnold’s 14 exceptional singular-

ities, Conjecture holds.

5. SKETCH OF PROOF

All the above trinagulated equivalences are proven in the following way:

(i) We find enough “good” matrix factorizations.
(ii) We show that these matrix factorizations form a strongly exceptional collection.
(iii) We use the “category generating lemma” in order to prove the above strongly

exceptional collection is full.

First two steps are done by case-by-case study by hand. Therefore, we shall explain the

category generating lemma:

Theorem 5.1 (Category Generating Lemma). Suppose a full triangulated subcategory T'
of HMF? (f) generated by an exceptional collection (Ex, ..., E,) satisfies the following:

(i) T" is closed under the shift () for all [ € Ly,
(ii) There exists an object E € T' isomorphic to k(0) in D;;(Rf).
Then T' ~ HMFY (f).

Proof. First, we note that 7" is right admissible:

Lemma 5.2. For any X € HMF;’ (f) there is an ezact triangle
N->X—->M->TN
where N € T' and Hom(N, M) = 0. a
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Then, we only have to show that the right orthogonal is zero. But, this follows from
HMFY (F)(ED, T'M)=0 “TeL; YieZ
— Extj}t!(Rf/m, M) =0 (i #d)
< M e CM™(Ry) is Gorenstein
<> M € CM™(Ry) is free
< M ~0in CM™(Ry).
Therefore, 7' ~ HMF? (- O

6. A FuLL EXCEPTIONAL COLLECTION EXISTS

Consider polynomials of the following types:
TypeL: f = zPr+yP2+ 273 Typell: f = :v”l—l-ym—i-yz%, Typelll: f = gPr 4y®+lz4yz92+1
Type IV: f = 2P + zym + yz%g, Type V: f = zz*k + zy} 4+ yz™.

Theorem 6.1. For any f of type I, II, III, IV and V, there exists a full exceptional
collection in HMF (f).

Proof. First, we describe the category D’coh(X,).

Proposition 6.2. Xy, is isomorphic to P}, ,, .., an orbifold P* with S-isotropic points

Type Ag = (on,09,03)
d (Pl,Pzaps)
ps _
Of order ay, 09,03 a (ph 2! (,'02 1);01)
I (P17P1Q27P1Q3)
v (pr, (B = 1)py, B2 — B 4 1)
V |[(m—m+1,lk—k+1,km—m+1).

Remark 6.3. If Ly ~ Z, Ay is called the Dolgachev number.
01,02,03

Remark 6.4. If ;- + - + ;- > 1, then we have P} =~ [P!/Gaya9,05], Where

Gayaz,03 =< g1, 92,93 | gt =977 = 93° = 919293 >

is a binary polyhedral group.

Proof (of Proposition). Set Ry, := k[X1, X3, X3] /(X" + X532 + X§°) and

3
La, = @ZX}/(a,-)Zi —uXpl<i<j< 3) .
=1
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Note that we have the equivalence of abelian categories

coh(P} )~ grL"f-RAf/torL"f-RAf.

Q1,0:2,03

We can show (see [T]) that there exists a natural embedding
Rf — Ra,, Ly La,,
which induces an equivalence
grLf-Rf/torLf-Rf ~ grL"f-RAf/torL"f-RAf.
O

Proposition 6.5 (Geigle-Lenzing[GL]). Dcoh(P} ) has a full exceptional collection.

01,002,063
O

Hence, Theorem follows from the semi-orthogonal decomposition of HMFg’ (f). O

REFERENCES

[AR] M. Auslander and I. Reiten, Cohen-Macaulay modules for graded Cohen-Macaulay rings and their
completions, Commutative algebra (Berkeley, CA, 1987), 21-31, Math. Sci. Res. Inst. Publ., 15,
Springer, New York, 1989.

[E] D. Eisenbud, Homological algebra on a complete intersection, with an application to group repre-
sentations, Trans. AMS., 260 (1980) 35-64.

[GL] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation the-
ory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles
(Lambrecht, 1985), 9-34, Lecture Notes in Math., 1273, Springer, Berlin, 1987.

[H]  D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras,
London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge,
1988. x+208 pp.

[KST1] H. Kajiura, K. Saito and A. Takahashi, Matriz Factorizations and Representations of Quivers
II: type ADE case, math.AG/0511155, Adv. in Math. 211, 327-362 (2007).

[KST2] H. Kajiura, K. Saito and A. Takahashi, Triangulated Categories of matriz Factorizations for
reqular systems of weights with e = —1, arXiv:0708.0210.

[LP] H. Lenzing and J. A. de la Pena, Eztended canonical algebras and Fuchsian singularities,
arXiv:math/0611532. ‘

[0] D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities,
arXiv:math/0503632.

(T] A. Takahashi, Weighted Projective Lines Associated to Regular Systems of Weights of Dual Type,
arXiv:0711.3906.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOY-
ONAKA OSAKA, 560-0043, JAPAN
E-mail address: takahashi@math.sci.osaka-u.ac.jp

—143—



SUBFUNCTORS OF IDENTITY FUNCTOR AND
T-STRUCTURES

YUJI YOSHINO AND TAKESHI YOSHIZAWA
( OKAYAMA UNIVERSITY )

Let R be a commutative noetherian ring. We denote the category of
all R-modules by R-Mod and also denote the derived category consist-
ing of all left bounded complexes of R-modules by D*(R-Mod).

The aim of this paper is to characterize the section functor Iy (resp.
the right derived functor RIw of I'y) as elements of the set of all
functors on R-Mod (resp. D*(R-Mod)).

1. THE DEFINITION OF ABSTRACT LOCAL COHOMOLOGY FUNCTORS
Let us recall some definitions for functors from the category theory.

Definition 1.1. Let v be a functor on R-Mod.

(1) A functor + is called a preradical functor if v is a subfunctor
of identity functor 1.

(2) A preradical functor 1 is called a radical functor if y(M/v(M))
= 0 for every R-module M.

(3) A functor v is said to preserve injectivity if () is an injective
R-module whenever [ is an injective R-module.

Example 1.2. Let W be a subset of Spec(R). Recall that W is said to
be specialization-closed if p € W and p C q € Spec(R) imply q € W.
When W is closed under specialization, we can define the section
functor I'y with support in W as
I'w(M) ={z € M | Supp(Rz) C W},

for all M € R-Mod. Then it is easy to see that Iy is a left exact
radical functor that preserves injectivity.

The notion of stable t-structure is introduced by J. Miyachi.

Definition 1.3. A pair (U, V) of full subcategories of a triangulated
category 7 is called a stable t-structure on 7 if it satisfies the following
conditions:

(1) Homg(U,V)=0.
(2) U=U[1] and V = V[1].



(3) For any X € T, there is a triangle U — X -V - U[1] with
UeUUandV eV.

For a triangle functor ¢ on triangulated category 7, we define two
full subcategories of T

Im(6) ={XeT|X=6Y) forsome Y €T},
Ker(6) ={X € T |4(X)=0}.

The following theorem proved by J. Miyachi is a key to our argument.
We shall refer to this theorem as Miyachi’s Theorem.

Theorem 1.4. [2, Proposition 2.6] Let T be a triangulated category and
U a full triangulated subcategory of T. Then the following conditions
are equivalent for U.
(1) There is a full subcategory V of T such that (U,V) is a stable
t-structure on 7.
(2) The natural embedding functor i : U — T has a right adjoint
p: T —-U.

If it is the case, setting 6 =10 p: T — T, we have the equalities
U =1Im(6) and V=U' = Ker(d).

Remark 1.5. Let ({,V) be a stable t-structure on 7, and let p be a
right adjoint functor of ¢ : Y — 7. Set 6 = i o p as in the theorem.
The functor p, hence § as well, is unique up to isomorphisms, by the
uniqueness of right adjoint functors.

Now we can define an abstract local cohomology functor.

Definition 1.6. We denote 7 = D*(R-Mod) in this definition. Let
§ : T — T be a triangle functor. We call that ¢ is an abstract local
cohomology functor if the following conditions are satisfied:

(1) The natural embedding functor 4 : Im(d) — 7 has a right
adjoint p : 7 — Im(8) and § = i o p. (Hence, by Miyachi’s
Theorem, (Im(6), Ker(8)) is a stable t-structure on 7".)

(2) The t-structure (Im(d),Ker(d)) divides indecomposable injec-
tive R-modules, by which we mean that each indecomposable
injective R-module belongs to either Im(d) or Ker(6).

Example 1.7. We denote by Eg(R/p) the injective hull of an R-
module R/p for a prime ideal p € Spec(R).

Let W be a specialization-closed subset of Spec(R). We claim that
Rl is an abstract local cohomology functor on D*(R-Mod).
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In fact, it is known that D*(R-Mod) is triangle-equivalent to the tri-
angulated category K*(Inj(R)), which is the homotopy category con-
sisting of all left-bounded injective complexes over R. Through this
equivalence, for any injective complex I € K*(Inj(R)), RIw(I) =
I'w(I) is the subcomplex of I consisting of injective modules sup-
ported in W. Hence every object of In(RIy) (resp. Ker(RIw)) is
an injective complex whose components are direct sums of Eg(R/p)
with p € W (resp. p € Spec(R)\W). In particular, if p € W
(resp. p € Spec(R)\W), then Eg(R/p) € Im(RI'w) (resp. Er(R/p)
€ Ker(RIw)). Since Homg(Egr(R/p), Er(R/q)) = 0 for p € W and
q € Spec(R)\W, we can see that

Homyc+ nj(ry) (1, J) = Home+ j(ry) (I, Tw (J))

for any I € Im(RIw) and J € K*(Inj(R)). Hence it follows from the
above equivalence that RI is a right adjoint of the natural embedding
i : Im(RIw) — D*(R-Mod).

2. MAIN RESULT

The main result of this paper is the following,.

Theorem 2.1. (1) The following conditions are equivalent for a left
ezact preradical functor v on R-Mod.

(i) v is a radical functor.
(it) 7 preserves injectivity.
(ii) v is a section functor with support in a specialization closed
subset of Spec(R).
(iv) Ry is an abstract local cohomology functor.
(2) Given an abstract local cohomology functor § on D+(R-Mod), there

exists a specialization closed subset W C Spec(R) such that § is iso-
morphic to the right derived functor RIwy of the section functor I'y .

We shall prove the statement (2) in Theorem 2.1. To do this, we
introduce several lemmas.

Lemma 2.2. Let X € D*(R-Mod) and let W be a specialization-closed
subset of Spec(R).

(1) X =0 <= RHomg(R/p,X), =0 for all p € Spec(R).

(2) X € Im(RI'y) <= RHomg(R/q,X); = 0 for all q €

Spec(R)\W.

(3) X € Ker(RI'w) <= RHomg(R/p,X), =0 forallpe W.
Corollary 2.3. Let (R, m,k) be a noetherian local ring and let X %
0 € D*(R-Mod). If X € Im(RI,), then RHompg(Eg(k), X) 2 0.
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It follows from above results that we can show the following lemma.

Lemma 2.4. Let X € D (R-Mod) and let W be a specialization-closed
subset of Spec(R).
(1) If X € Ker(RI'w) and RHomg(X, Er(R/q)) = 0 for all q €
Spec(R)\W, then X = 0.
(2) If X € Im(RIw) and RHomg(Er(R/p),X) =0 for allp € W,
then X = 0.

Now we can prove the statement (2) in our main theorem.

Proof of Theorem 2.1(2). In this proof we denote 7 = D*(R-Mod).
Suppose that § : 7 — 7 is an abstract local cohomology functor. We
divides the proof into several steps.
(1st step) : Consider the subset W = {p € Spec(R) | Er(R/p) €
Im(6)} of Spec(R). Then it is easy to see that W is a specialization-
closed subset. B

Our final goal is, of course, to show the isomorphism § = RIw.
Notice that, since the both functors § and RIy are abstract local
cohomology functors, we have two stable t-structures (Im(d), Ker(é))
and (Im(RIw),Ker(RIw)) on 7.
(2nd step) : Note that if p € W, then Eg(R/p) € Im(6) N Im(RIw).
On the other hand, if g € Spec(R)\W, then Egr(R/q) € Ker(d) N
Ker(RIy). B
(3rd step) : To prove the theorem, it is enough to show that Im(d) =
Im(RI) by Miyachi’s Theorem 1.4. (See also Remark 1.5.) B

(4th step) : Now we prove the inclusion Im(d) C Im(RIw).

To do this, assume X € Im(d). Then there is a triangle in 7 ;
RIw(X) » X —» V — RIw(X)[l], where V € Ker(RIw). Let
q be an arbitrary element of Spec(R)\W. Since (Im(d),Ker(d)) and
(Im(RIw), Ker(RIw)) are stable t-structures and since Er(R/q) be-
longs to Ker(d) N Ker(RIw), it follows that

Homz (X, Er(R/q)[n]) = Hom7 (RIw(X), Er(R/q)[n]) =0
for any integer n. Then by the above triangle we have
Homy(V, Er(R/q)[n]) =0

for any integer n. This is equivalent to that RHomg(V, Er(R/q)) = 0.
In fact, the n-th cohomology module of RHomg(V, Er(R/q)) is just
Hom7(V, Er(R/q)[n]) = 0. Since V € Ker(RI'w), Lemma 2.4(1) forces
V = 0, therefore X = RIw(X). Hence we have X € Im(RIw) as
desired. B '
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(5th step) : For the final step of the proof, we show the inclusion
Im(8) D Im(R Ty ).

Let X € Im(RIw). Then there are triangles §(X) - X - Y —
O(X)[1] with ¥ € Ker(d), and RI'w(Y) - Y - V — RIw(Y)[]
with V € Ker(RIw). Let p be an arbitrary prime ideal belonging to
W. Similarly to the 4th step, since Er(R/p) € Im(6) N Im(RIy),
we see that Hom7 (Egr(R/p)[n],Y) = Homz(Er(R/p)[n],V) = 0 for
any integer n, hence we have Homz(Eg(R/p)[n],RIw(Y)) = 0 for
any n. This shows RHomg(Egr(R/p), RI'w(Y)) = 0, then by Lemma
2.4(2) we have RIw(Y) = 0. Thus Y € Ker(RIw). Then, since
(Im(RI'w), Ker(RIw)) is a stable t-structure, the morphism X — Y
in the triangle 6(X) — X — Y — §(X)[1] is zero. It then follows that
0(X) = X @ Y[-1]. Since there is no nontrivial morphisms §(X) —
Y[-1] in 7, it is concluded that §(X) = X, hence X € Im(J) as
desired, and the proof is completed. a

Next, we consider the following sets.

Definition 2.5. (1) We denote by S(R) the set of all left exact radical
functors on R-Mod.

(2) We denote by A(R) the set of the isomorphism classes [§] where §
ranges over all abstract local cohomology functors on D*(R-Mod).

(3) We denote by sp(R) the set of all specialization closed subsets of
Spec(R).

If {Wx | XA € A} is a set of specialization-closed subsets of Spec(R),
then (), W\ and |J, W, are also closed under specialization. By this
reason sp(R) is a complete lattice. In view of Theorem 2.1, the complete
lattice structure on sp(R) induces complete lattice structures on S(R)
and A(R).

Corollary 2.6. The mapping S(R) — A(R) which maps v to [Ry]
(resp. sp(R) — A(R) which sends W to [RI'w]) gives an isomorphism
of complete lattices.

3. CHARACTERIZATION OF I} AND I7 ;

We are concerned with the following two types of subsets V(I) and
W(I,J) in Spec(R) which are closed under specialization, and their
corresponding left exact radical functors I'y and I7 ;. The aim of this
section is to characterize I7 and Iy ; as elements of S(R).

Definition 3.1. Let I, J be ideals of R.
(1) We set V(I) = {p € Spec(R) | p 2 I} and set I := Iy the
corresponding left exact radical functor. See [1].
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(2) We set W(I,J) = {p € Spec(R) | I™ C p + J for some n > 0}.
The corresponding left exact radical functor Iy (s, ) is denoted by I7 5,
which is called the section functor defined by the pair of ideals I, J.

We define the ‘multiplication’ and ‘quotient’ in S(R).
Lemma 3.2. If 11, 72 € S(R), then 11 -2 =72 71 = 71 N 72 € S(R).

Lemma 3.3. Let 1, 72 € S(R). Suppose that 11 C vo. Then the set
Sy ={7 €S(R) | v- 12 = m} has a unique mazimal element with
respect to inclusion relation.

Definition 3.4. For 71, v2 € S(R) with 73 C 2, we denote by v, /72
the unique maximal element of S, ,, in Lemma 3.3 and call it the
quotient of v, by vs.

Now we characterize I'7 and I s as elements of S(R).

Theorem 3.5. The following conditions are equivalent for v € S(R).
(1) ~ =TIy for an ideal I of R.
(2) ~ satisfies the ascending chain condition in the following sense:
If there is an ascending chain of left exact radical functors
NMNCE"S - CrnmC - Cy
with J,, 7» = 7, then there is an integer N > 0 such that vy =
41 ==
Theorem 3.6. The following conditions are equivalent for v € S(R).
(1) v =TIty for a pair of ideals I, J of R.
(2) v = 11/72 for left exact radical functors vy C 72, the both of
which satisfy the ascending chain condition in Theorem 8.5.

We note that same theorems in terms of A(R) hold.
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Gorenstein orders associated with modules

Hiroki Abe and Mitsuo Hoshino

For a ring A we denote by Mod-A the category of right A-modules. We denote
by A°P the opposite ring of A and consider left A-modules as right A°°-modules.

1 Gorenstein orders

Throughout this note, we will work over a commutative Noether ring R. We
denote by (—), the localization at a prime ideal p of R. An R-algebra A is a
ring A endowed with a ring homomorphism R — A whose image is contained
in the center of A, and a Noether R-algebra A is an R-algebra A which is
finitely generated as an R-module. If A, T are R-algebras, every I'-A-bimodule
M is assumed to be a right (I'°P ®g A)-module, i.e., to satisfy az = za for all
a€RzxzeM.

Recall that a finitely generated R-module M is said to have Gorenstein
dimension zero provided M is reflexive, i.e., the canonical homomorphism

em : M — Homg(Homg(M, R),R),z — (f — f(x))

is an isomorphism and Ext (M, R) = Ext’(Hom(M, R),R) = 0 for i > 1 (see
[4]). Note that if R is a Gorenstein ring then a finitely. generated R-module M
has Gorenstein dimension zero whenever Ext (M, R) = 0 for ¢ > 1.

Definition 1.1 (cf. [2]). A Noether R-algebra A is said to be a Gorenstein R-
order provided that R is a Gorenstein ring, and that A has Gorenstein dimension
zero as an R-module and A = Hompg (A, R) as A-bimodules.

Assume R is a Gorenstein ring. Then Gorenstein R-orders are Gorenstein al-
gebras in the sense of [6] in which the theory of Gorenstein algebras is studied in
detail. For instance, (a) for any finite group G, the group ring R|G] is a Goren-
stein R-order; (b) for any Noether R-algebra A having Gorenstein dimension
zero as an R-module, the trivial extension ring A x Hompg(A, R) is a Goren-
stein R-order (see [5]); and (c) if R is a 2-dimensional normal domain, for any
finitely generated torsionfree R-module M, the endomorphism ring Endg (M)
is a Gorenstein R-order (see [3, Lemma 5.4]).

Lemma 1.2. Let A be a Gorenstein R-order. Then the following hold.

The detailed version of this note has been accepted for publication in Comm. Algebra.
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(1) For any M € Mod-A we have Ext} (M, A) = Ext}(M, R) in Mod-AP for
all i > 0.

(2) For any idempotent e € A, eAe is a Gorenstein R-order.

Let A be a Gorenstein R-order and e € A an idempotent. Then A = eAe,
' = (1 — e)A(1 — e) are Gorenstein R-orders and, setting M = (1 — e)Ae and
N =eA(1 — e), we can decompose A into a matrix ring

(v %)

where M has Gorenstein dimension zero as an R-module and N = Hompg(M, R)
as A-T-bimodules. Conversely, for a Gorenstein R-order A we ask when there
exist a Gorenstein R-oder I' and a I-A-bimodule M having Gorenstein dimen-
sion zero as an R-module such that, setting N = Hompg (M, R), we have a matrix

ring
r M
N A

2 Derived equivalent Gorenstein orders

which is a Gorenstein R-order.

We start by formulating a lemma on derived equivalences for endomorphism
rings. For an object X of an additive category 2 we denote by add(X) the
additive full subcategory of 2 consisting of direct summands of finite direct
sums of copies of X.

Lemma 2.1. Let 0 » Y 5 E 5 X — 0 be an ezact sequence in an abelian
category A and P an object of A. Assume E € add(P) and both Hom4 (P, ¢)
and Hom 4 (u, P) are epic. Then Endq(X @ P) and End4(Y @ P) are derived
equivalent to each other.

By [1, Theorem 4.3] we have the following.

Lemma 2.2. Every ring derived equivalent to a Gorenstein R-order is a Goren-
stein R-order.

Let A be a Gorenstein R-order, M € Mod-A a finitely generated module
having Gorenstein dimension zero as an R-module and Q"M € Mod-A the nth
syzygy of M. We set

A, =Endpa(Q"M & A) and T, =End)(Q"M)

for n € Z. Note that the A,, are uniquely determined up to Morita equivalence

and that
A = T, Q"M
"7\ Homg(Q"M,R) A

for all n € Z. By Lemmas 2.1 and 2.2 we have the following.
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Theorem 2.3. Every A, is derived equivalent to Ay and hence if Ag is a
Gorenstein R-order then A, and T',, are Gorenstein R-orders for all n € Z.

We need to ask when Ag is a Gorenstein R-order.

Proposition 2.4. The ring Ag is a Gorenstein R-order if M, is projective as a
right Ap-module for every prime ideal p of R with ht p < 1 and Ext) (M, M), =
0, 1 <i¢<ht p—2, for every prime ideal p of R with ht p > 3.

Corollary 2.5. Ifht p = 2 for every mazimal ideal p of R and M = Q2L with
L a right A-module of finite length, then Ag is a Gorenstein R-order

3 Matrix rings associated with ideals

Throughout this section, M is a two-sided ideal of A with Exth(A/M, R) = 0
for i > 2. Note that Extz (M, R) = 0 for i > 1 and M has Gorenstein dimension
zero as an R-module.

Proposition 3.1. Set N = Homg(M, R). Then for any idempotent e € A we

have matriz rings
ehe eM d eAe eN
Ne A an Me A
which are Gorenstein R-orders. '

If either Exth(A/M,R) = 0 for i # 1 or ExtG(A/M,R) = 0 for i > 1, we
can describe Homg(M, R) concretely.

Consider first the case where Ext%(A/M, R) = 0 for i # 1, this is the case
if ht p = 1 for every maximal ideal p of R and A/M is an Artin ring. Let S
be the set of regular elements of R and denote by (—)g the quotient by S. Set
N={qgeAs|gM C A}.

Proposition 3.2. We have N = {g € As | ¢M C A} = {g € As | Mq C A}
and hence we have a matriz ring

(¥ %)

which is a Gorenstein R-order. Furthermore, we have M = {ADeA| AN C
A}={AeA|NXCA}

Next, assume Ext}}(A/M ,R) = 0for i > 1, this is always the case if dim R =
0. Set L={Xe A| M =0}.
Proposition 3.3. We have L={X € A | XM =0} ={X € A | M) = 0} and
hence we have a matrix ring
A M
A/JL A

which is a Gorenstein R-order. Furthermore, we have M ={A € A | \L =0} =
{AeA|Lx=0}.
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Let I' = A/L x M, the trivial extension of A/L by M (see [5]). Note that
we have a homomorphism of R-algebras A — I')A — (A + L,0) and T is a
A-bimodule. Also, identifying z € M with (0,z) € I, we consider M as a
two-sided ideal of T'.

Proposition 3.4. Let e € A be an idempotent such that e ¢ L and eMe C L.
Then we have matriz rings

ele eM i el'e e(A/L)
(A/L)e A an Me A
which are Gorenstein R-orders.
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TILTING AND CLUSTER TILTING FOR QUOTIENT SINGULARITIES

OSAMU IYAMA AND RYO TAKAHASHI

1. INTRODUCTION
This note is a report of [IT]." Our aim is to discuss tilting theoretic aspect of Cohen-
Macaulay modules. Tilting theory is a generalization of Morita theory, and

o Morita theory realizes abelian categories as module categories of rings, while
o tilting theory realizes triangulated categories as derived categories of rings.

The representation theory of Cohen-Macaulay modules was initiated by the school of
Auslander (see the book [Y]). Recently there is development in this theory stimulated by
the connection with

e cluster tilting theory e.g. [BIKR, KR, KMV, Iy, IR, IY],
e tilting theory e.g. [A, KST1, KST2, LP, UJ.
The key role is played by the stable category defined as follows:

Definition 1.1. Let R = @izo R; be a commutative graded k-algebra. We denote by
CMZ%(R)
the category of graded Cohen-Macaulay R-modules. We denote by
CM¥(R)
the stable category of CMZ(R), i.e.
e CM%(R) has the same objects as CMZ(R),
e The morphism set is given by
Hom®(X, Y) := Hom(X, Y)/P(X,Y),
where Hom%(X,Y) consists of graded homomorphisms and P(X, Y') consists of
graded homomorphisms which factor through graded free R-modules.
During the Conference this category is discussed by other people from a lot of viewpoint:

o Hopkins-Neeman type results motivated by homotopy theory [Tr, YY],
e representation theory of Cohen-Macaulay modules [Bur, Ii],

e geometry of resolutions of singularities [Bur],

e mirror symmetry [Ta].

Let us recall two of the most fundamental properties of CM%(R).

Theorem 1.2. Assume that R is a Gorenstein isolated singularity.
(1) [H, Buc] CMZ(R) forms a triangulated category,

1The detailed version of this paper will be submitted for publication elsewhere.
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(2) [AR] CM%(R) satisfies Auslander-Reiten-Serre duality, i.e. there ezists a functo-
r1al isomorphism

Hom(X, Y) = D Hom%(Y, X (a)ld  1])

for any X,Y € CMZ%(R), where d is the Krull dimension of R and a is the a-
invariant of R (i.e. w =~ R(a) in CM%(R)).

The aim of this note is to give an example of the following question, which is also
studied by a lot of authors, e.g. [A, KST1, KST2, LP, U].

Question 1.3. Find R such that the category CMZ(R) is triangle equivalent to the derived
category of a Ting.

An important notion to approach this Question is the following:

Definition 1.4. Let 7 be a triangulated category. We say that an object U € 7 is tilting
if
e Hom7(U,U[n]) = 0 for any n # 0,
e T is a unique triangulated subcategory of 7 containing U and closed under direct
summands.

One can easily check that, for any ring A, the homotopy category
KP®(proj A)

of bounded complexes of finitely generated projective A-modules has a tilting object

The importance of the notion of tilting objects comes from the following Morita-
Rickard-type Theorem showing a certain converse of the above statement.

Theorem 1.5. [Ke] Let U be a tilting object in an algebraic triangulated category 7.
Then T is triangle equivalent to K®(proj Endr(U)) up to direct summands.

A triangulated category is called algebraic [Kr] if it is triangle equivalent to the stable
category of a Frobenius category [H]. For example our triangulated category 7 = CMZ(R)
is algebraic.

2. OUR RESULTS
Now we are ready to state our results. Let
S =k[zy, -, z4]

be a polynomial algebra over a field k of characteristic 0. We regard S as a Z-graded
k-algebra by putting degz; = 1 for any i. Let G be a finite subgroup of SL4(k) acting on
k¥\{0} freely.. Since the action of G on S preserves the grading, the invariant subalgebra

R:.=S¢

forms a Z-graded k-subalgebra of S. Since R is Gorenstein, we have a triangulated
category CMZ(R). The following is our main result.
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Theorem 2.1. [IT| The R-module

d
U:= @[Qg-k(i)]CM
=1
is a tilting object of CMZ(R), where Qg is the kernel of the graded free cover and [—]om
is the mazimal direct summand which is a Cohen-Macaulay R-module.

We also give an explicit description of End%(U). Let

E=@Ei:=@/\v

i>0 i20
be the exterior algebra of the dual vector space V := Homy(S1, k) of the degree 1 part S;
of S. We denote by E(@ the k-algebra defined by

Eo By -+ Eya
E(d) — 0 EO “ee Ed_z
0 0 --- E
The action of G on V determine an action of G on E(@, and we denote by
G x E9

the skew group algebra, i.e. GxE@ = kG®,E® as a k-vector space and the multiplication
is given by

(9®a)(g®a) =99 ®a’d
for any g,¢' € G and a,a’ € E@. Let

1
e:=1——Zg€G*E(d)
#G geG
be an idempotent.
Theorem 2.2. [IT] We have an isomorphism End%(U) ~ e(G x E®)e.
By Theorems 1.5, 2.1 and 2.2 we have the following result.

Corollary 2.3. There exists a triangle equivalence
CMZ(R) ~ K®(proje(G * E@)e).
The key ingredient of the proof comes from cluster tilting theory. We denote by CM(R)
the category of (ungraded) maximal Cohen-Macaulay R-modules.
Proposition 2.4. [Iy] S is a (d — 1)-cluster tilting R-module, i.e. we have
addS = {X € OM(R) | Exty(S,X)=0 forany 0<i<d—1}
= {X € CM(R) | Exti(X,S)=0 forany 0<i<d—1}.

Using this we can calculate the vanishing of selfextensions of U. For the case of d = 2
the above equality means CM(R) = add S, which is a classical result due to Herzog and
Auslander [Y].
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MAXIMAL COHEN-MACAULAY MODULES OVER
QUOTIENT SURFACE SINGULARITIES

IGOR BURBAN

ABSTRACT. In this note I discuss a relationship between the McKay Correspondence for two-
dimensional quotient singularities and the theory of maximal Cohen-Macaulay modules.

1. MCKAY’S OBSERVATION

Let G C SL3(C) be a finite group. Then one can attach to it the following pair of combinatorial
objects.

First object. By Maschke’s theorem, the category of finite dimensional representations of G over
the field C is semi-simple. Let {Vo, ,..., Vn} be the set of the isomorphy classes of the irreducible
representations of G, where Vp = C is the trivial representation, and W = C? be the fundamental
representation of G induced by the embedding G C SLy(C). For any 0 < i < n, we set m; =
dimg(V;). For any 0 < ¢ < n we have decompositions

n
vecw =
j=0

One can show that a;; = 0 and a;; = aj; for all 0 < 4,5 < n.

Definition 1. The McKay graph MK(G) of a finite group G C SL;(C) is defined as follows.

(1) The set of vertices of MK(G) is {0,1,...,n}.
(2) For any 0 <4 # j <n the vertex i is connected with the vertex j by a;; arrows.
(3) The vertex ¢ has “weight” m;.

Second object. Let A = C[z,y]€ be the quotient singularity defined by G, X = Spec(A), 0 € X
the closed point of X and X © X a minimal resolution of singularities. Let E = 771(0) be the
exceptional divisor of the resolution. It is well-known that F is a tree of projective lines.

In 1978 John McKay made [8] the following striking

Observation. Let G C SLz(C) be a finite subgroup. Then we have:

(1) The number of the irreducible components of E is equal to the number of non-trivial
irreducible representations of G.

(2) Let MK(G)' = MK(G) \ {0} be the graph obtained from MK(G) by excluding the vertex 0
and all arrows connected with it. Then MK(G)' is isomorphic to the dual intersection graph
g of the curve E. In other words, there exists a labeling of the irreducible components
E;, ..., E, such that for any 1 <i# j < n we have:

a5 = #(Ez al Ej) = Cjj.

(3) The cycle Z = i m;[Ei] € Hy(X,Z) is the fundamental cycle of the resolution X. This
i=1

can be expressed in plain words as follows. For any 1 < i < n let ¢c;; ;= —2 = E? be the
self-intersection index of E; and C = (c;;) € Mat,xn(Z) be the intersection matriz of E.
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2 IGOR BURBAN

Then Z is the smallest vector ! = (ly,ls,...,l,) with non-negative integral entries such
that

(e D)o = (0L <0
for all 1 <¢ < n, where e; = (0,...,0,1,0,...0) is the i-th basic vector of Z™.

Example 2. Let Z/(n+ 1)Z = G = (g) C SL(C) be a cyclic subgroup of order n + 1 generated
by the element <
_(&€ 0
g= < 0 {—1 ) )

where ¢ is a primitive (n + 1)-st root of 1. Then we have:

e G has n + 1 irreducible representations {Vp, V1,...,V,,}, where all V; = C and the action
of g is given by the multiplication with €8, It is easy to see that W = V; @ V,, and the
McKay’s graph MK(G) is a cycle

e Next, we have:

A = C[z,y]° = C[z", zy,y" '] = Cu, v, w]/(vw — v™*1)

is a simple surface singularity of type A,. It is well-known that the exceptional divisor of
a minimal resolution of singularities of Spec(A) is a chain of n projective lines. Hence, the
intersection matrix of the exceptional divisor is just

-2 1 0 ... 0
1 -2 1 ... 0
C= 0 ., ., -, :
0o ... 1 -2 1
0 0 1 -2

It is easy to show that in this case the fundamental cycle Z is equal to 2 [Ei]=(1,1,...,1),in a
=
full accordance with McKay’s observation.

Ezplanation. McKay himself has verified his observation using Klein’s classification of finite sub-
groups in SL2(C) by a tedious case-by-case analysis [8). It turns out, however, that the McKay
correspondence can be explained in a more conceptual way by introducing the third intermediate
object: the stable category of the mazimal Cohen-Macaulay A-modules CM(A). Namely, there
exist natural bijections
MK(G)" < ind(CM(A)) = T'g,

where ind (CM(A)) is the set of the isomorphy classes of indecomposable objects in CM(A). The
statement about the fundamental cycle and the dimensions of irreducible representations of G' can
be derived using the Auslander-Reiten theory of the category CM(A).

2. ALGEBRAIC MCKAY CORRESPONDENCE

Let G C SL3(C) be a finite subgroup. Then the ring of invariants A = C[z,y]€ is a normal
surface singularity. Recall the following standard facts about Cohen-Macaulay modules over surface
singularities.

Theorem 3. Let (A, m) be a local Noetherian ring of Krull dimension two.
e A is normal if and only if it is Cohen-Macaulay and regular in codimension one.
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COHEN-MACAULAY MODULES OVER SURFACE SINGULARITIES 3

e Assume A to be Cohen-Macaulay. Then for any mazimal Cohen-Macaulay module M and
any Noetherian module N the module Hom 4 (N, M) is mazimal Cohen-Macaulay.

o Assume additionally that A is Gorenstein in codimension one (for instance, A is a normal
singularity). Then a Noetherian module M 1is mazimal Cohen-Macaulay if and only if
it is reflezive. Moreover, the functor M +— M"Y is left adjoint to the forgetful functor
CM(A) — A — mod.

e Let (A,m) C (B,n) be a finite extension of Cohen-Macaulay surface singularities, which
are Gorenstein in codimension one. Then for any Noetherian B-module M we have an
isomorphism of A-modules MVV4 = MVVE,

e Let A be regular. Then any mazimal Cohen-Macaulay module over A is free.

For a proof one may consult 3, Section 3] and references therein.

The following theorem of Herzog [7] was the starting point of an extensive study of maximal
Cohen-Macaulay modules over surface singularities.

Theorem 4. Let k be an algebraically closed field, G C GLa(k) be a finite subgroup such that
ged(|G], char(k)) = 1, R = k[z,y] and A = R®. Then we have: CM(A) = adda(R). In other
words, any mazimal Cohen-Macaulay module over A is isomorphic to a direct sum of direct sum-
mands- of R viewed as an A-module.

Proof. The embedding 7 : A — R has a left inverse p : R — A given by the Reinold’s operator
1 .
plr) = = S o)
Gl &%

It is easy to see that the map p is A-linear. Hence, we have an isomorphism R = A @ A’ in the
category of A—modules. Next, for any Noetherian A-module M we have:

ReaM=2Mo (A ®4M).
If M is maximal Cohen-Macaulay over A then there exists a positive integer ¢ such that
RI=(R®s M)A 2 (R®s M)"VA =X Mo (A ®4 M)VVA.
Hence, M is a direct summand of R! as stated. O
From Herzog’s result we get the following corollary.
Corollary 5. Let A = End4(R). Then the functor
Homa(R, —) : CM(A) = add4(R) — pro(A)

15 an equivalence of categories, where pro(A) is the category of the finitely generated projective right
A-modules.

The following result is due to Auslander [2].

Theorem 6. Let k be an algebraically closed field and G C GLz(k) be a small finite subgroup
such that ged (|G|, char(k)) = 1 (note that any subgroup in SLy(k) s automatically small). Let
R =k[z,y] and A= RS. Then the algebra homomorphism

6:R+G — Enda(R), tlg] N (r — tg(r))
1s an isomorphism of algebras.

As a corollary, we obtain the following “algebraic” version of the McKay Correspondence, which
is due to Auslander [2], see also [10].

Theorem 7. Let k be an algebraically closed field and G C GLa(k) be a small finite subgroup such
that ged (|G|, char(k)) = 1, R = k[z,y] and A= RC.
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(1) The functor pro(R x G) — CM(A) assigning to a projective module P its A-submodule of
invariants PC, is an equivalence of categories quasi-inverse to the functor

Hom4(R, —) : CM(A) — pro(R x G).

(2) Since we have an isomorphism R G/rad(R* G) = k[G], a bijection between the projective
and the semi-simple right R+ G-modules P — P/rad(P) yields a bijection between the iso-
morphy classes of irreducible representations of the group G and indecomposable projective
right modules over R+G. IfV is an irreducible representation of G, then the corresponding
projective R ¥ G-module is just R ®x V, where the action of an element tlg) € R+ G on a
simple tensor r @ h € R®y V is given by:

tlg] o (r ® h) = tg(r) ® gh.

(3) The correspondence between the irreductble representations of G and the indecomposable
mazimal Cohen-Macaulay modules over A is given by the functor

Rep(G) 3 V - (R®: V) € CM(4).
In the notations of the above theorem, consider the Koszul resolution of the trivial representation
Vo = k of the group G, viewed as an R * G-module:
0 R A2 (W) -5 R W -SR-S k-0
where a(p® (L ® fa— 28 f1)) =pfi® fa—pf2® fi, Blg® f) = qf and $(t) = 1(0,0).

Remark 8. Let V be a non-trivial irreducible k[G]-module. Then its minimal free projective
resolution in the category of R * G—modules is

(1) 0—- R®r (NP(W)®k V) — R W, V) — RV —V —0.

Since the functor of taking G-invariants is exact, we obtain a short exact sequence of Cohen-
Macaulay A-modules

(2) 0 (Rok (W) @ V) — (Rex W e V) — (RerV)® -0,
which is precisely the Auslander-Reiten sequence sequence ending at the indecomposable Cohen-
Macaulay module (R ® V)G, see [2] and [10].

Corollary 9. If G is a finite subgroup of SLz(k) then we have: A?W = V, = k. Hence, the
Auslander-Reiten quiver of the category CM(A) is obtained from the McKay’ graph MK(G) by
“doubling” all the arrows.

Example 10. Let Z/(n+1)Z = G C SLy(C) be as in Example 2, A = C[z,y] and {Vp, V1, ..., Va}
be the set of the isomorphy classes of irreducible representations of G, where V; = C and g- 1 = ¢t
for 0 < i < n. Then the corresponding indecomposable Cohen-Macaulay A-modules are

Clz,y) 2 I, == (C[[xy]l®k1/z {Za”a:y‘a”ec z—;:lmodn} 0<i<n.
i,j=0

The following result is due to Auslander [2].

Theorem 11. Let (A,m) be a normal surface singularity with a canonical module K.
o Let w € Ext?(k, K) = k be a generator and

3) 0—K—D—>A—k—0

be the corresponding extension class. Then the module D is mazimal Cohen-Macaulay.

o Let G C GLy(k) be a finite subgroup, R = k[z,y] and A = RS be the corresponding
quotient singularity. Then the sequence (3) is obtained from the sequence (1) by taking
G-invariants. In particular, we have: K = (R ®y A*°W)C (see [9]) and D = (R @, W)C.
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o For a non-regular indecomposable Cohen-Macaulay module M, the complez
(4) 0 — (K®@a M)V — (D@ M)V — M — 0

induced by the short ezact sequence (3), is ezact. Moreover, it is an Auslander-Reiten
sequence, ending at M.
o For G C SLy(k) holds: D = (Q4)VV, where QY is the module of Kdhler differentials of A.

3. GEOMETRIC MCKAY CORRESPONDENCE

Let G C SL3(C) be a finite subgroup, A = C[x,y]¢, X = Spec(4) and X 5 X be a minimal
resolution of singularities. Let E = 7~1(0) be the exceptional divisor of 7. The following facts are
well-known.

(1) E=FELU---UE, is a tree of projective lines.

(2) We have: Hz(X Z)=U},Z[E;)=Z"

(3) For any 1 < i < n there exists a unique element E} € Hg()? ,Z) such that Ef - E; = §;;
foralll <j<n.

The following result is due to Artin and Verdier [1], see also [6] and [4].

Theorem 12. Let M be a mazimal Cohen-Macaulay module over A and M = n*(M )/tor be the
corresponding torsion free sheaf on X. Then we have:

(1) The torsion free coherent sheaf M is locally free.
(2) The isomorphy class of M is uniquely determined by the pair

(tk(M), c1(M)) € Z4 x HY(X, Z).

(3) If M is indecomposable than either M = A or there exists 1 < i < n such that cl(ﬁ) =E}.
In that case we have: tk(M) = ¢;(M) - Z, where Z is the fundamental cycle of X.

Hence, combining the Theorem 11 and Theorem 12, we get a bijection between the set of
the isomorphy classes of non-trivial irreducible representations of G, the set of indecomposable
objects of the stable category of the maximal Cohen-Macaulay modules CM(A) and the set of the
irreducible components of the exceptional divisor E.

If V is a representation of G and M = (C[z,y] ® V)€ is the corresponding Cohen-Macaulay
module, then rk(M ) = dim¢ (V). Thus, the last part of Theorem 12 implies that the fundamental
cycle Z is equal to Y-, m;[E;], where m; = dim¢(V;) for 1 <i < m.

The following result is due to Esnault and Knérrer [5].
Theorem 13. Let V be a non-trivial irreducible representation of G, M = (Clz,y] ®c V)€ be the
corresponding indecomposable Cohen-Macaulay module, M= ﬂ*(M )/tor the corresponding vector

bundle on X and F the irreducible component of E such that c, (M )=F*. Let N = (M ®4Q4)VV
and N be the corresponding vector bundle on X. Then we have:

det(N) = det(M)®? ® O (F).

Using this result, the isomorphism of the McKay graph MK(G)’ and the dual intersection graph
T'g follows from Theorem 11 and Theorem 12.
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COHEN-MACAULAY TAME AND COUNTABLE
NON-ISOLATED SURFACE SINGULARITIES

IGOR BURBAN AND YURIY DROZD

ABSTRACT. This is a short report on our joint work in progress about a classification of the
maximal Cohen-Macaulay modules over certain non-isolated surface singularities.

Let k be an algebraically closed field of characteristic zero and (A4, m) a complete local Noetherian
Cohen-Macaulay k-algebra of Krull dimension two. The following result is due to Herzog [6],
Auslander [1] and Esnault [5], see also [3] and [11].

Theorem 1. The ring A has finite Cohen-Macaulay representation type (i.e. there exists only
finitely many indecomposable mazimal Cohen-Macaulay modules) if and only if A is a quotient
singularity (i.e. there exzists a finite group G C GLz(k) such that A = k[z,y]%).

In a work of Buchweitz, Greuel and Schreyer [2], the case of non-isolated hypersurface singularities
was considered.

Theorem 2. A non-isolated hypersurface singularity A = k[z,y, z]/(f) has discrete (or countable)
Cohen-Macaulay representation type (meaning that there are only countably many indecomposable
mazimal Cohen-Macaulay modules over A) if and only if A= k[z,y,2]/(zy) (A —singularity) or
A= k[z,y, 2]/(zy — 2%) (Doo-singularity).

The next theorem is due to Kahn [7] and Drozd, Greuel and Kashuba [4].

Theorem 3. Let (A,m) be a simply elliptic or a cusp surface singularity. Then the category of
the mazimal Cohen-Macaulay modules CM(A) is representation tame.

Remark 4. The only cases when a simply elliptic or a cusp singularity is a complete intersection,
are the following:
(1) Tp,q,r(A)-singularities given by the equation zP + y9 + 2" — Azyz, ‘l) + % + % < 1and
A € k*\ Dp q,r for a certain finite set of values Dj g ..
(2) Tp,q.r,t(A)-singularities given by two equations zP + y? = wv, u” + v* = Azy, where
p,q,7,t > 2, max(p,q,r,t) >3 and X € k* \ Dy g s

This work grew up from an attempt to answer the following questions.

Question 5. Let (A, m) be a non-isolated Cohen-Macaulay surface singularity.

(1) Assume that A has countable Cohen-Macaulay representation type. Is it true that there
exists a finite group G of ring automorphisms of B such that A= BS, where B is

klz,y, 2/ (zy) or k[z,y,2]/(z%y — 2°)?
(2) Can A have tame Cohen-Macaulay representation type?
It turns out that the answer on the first question (posed in 1987 by F.-O. Schreyer in [9]) is
negative, whereas the answer on the second question is positive. In other words, we show there
exist wide classes of non-isolated . Cohen-Macaulay surface singularities of countable and tame

Cohen-Macaulay representation type. The key role of our approach is plaid by the following
construction.

Let (A, m) be a reduced complete Cohen-Macaulay k-algebra of Krull dimension two, which is
not an isolated singularity, and let R be its normalization. Then R is again complete and the ring
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extension A C R is finite. Moreover, the ring R is isomorphic to the product of a finite number of
normal local rings:

R (Rl,l‘ll) X (Rl,l‘ll) XX (Rt,l‘lt).
By a theorem of Serre, all rings R; are automatically Cohen-Macaulay.

Let I = ann(R/A) = Hom4(R, A) be the conductor ideal. Note that I is also an ideal in R,
denote A = A/I and R = R/I. Observe that I is Cohen-Macaulay, both as A- and R-module.
Moreover, V(I) C Spec(A) is exactly the locus where the ring A is not normal. It is not difficult
to show that both rings A and R have Krull dimension one and are Cohen-Macaulay (but not
necessary reduced). Let Q(A) and Q(R) be the corresponding total rings of fractions, then the
inclusion A — R induces an inclusion Q(4) — Q(R).

For a maximal Cohen-Macaulay A-module M, let RX4 M = (R®4 M)VV be the corresponding
maximal Cohen-Macaulay module over R. It is not difficult to see that the canonical morphism

O - Q(R) ®4 M = Q(R) ®q(a) (Q(A) ®4 M) — Q(R) ®r (R®4 M) — Q(R) ®r (RR4 M)
is an epimorphism. Moreover, one can show that the canonical morphism

v - Q(A) ®a M — Q(R) @4 M 2 Q(R) 8k (RRa M)
is a monomorphism in the category of Q(A)-modules.
Definition 6. In the notations of this section, consider the following category of triples Tri(A). Its
objects are triples (M ,V,8), where M is a maximal Cohen-Macaulay R-module, V is a Noetherian
Q(A)-module and 6 : Q(R) ®q(z)V — Q(R)®r M is an epimorphism of Q(R)-modules such that
the induced morphism of Q(A)-modules

V= QR)®gua V —— QR ®r M

is an monomorphism. A morphism between two triples (M ,V,0) and (]TI ", V', 0') is given by a
pair (F, f), where F : M —» M ’ is a morphism of R-modules and f : V — V' is a morphism of
Q@(A)-modules such that the following diagram

Q(R)®qua) V — > Q(R)®r M

wl lmp

Q(R) ®gay V/ — > Q(R) ®r M’
is commutative in the category of Q(R)-modules.

The definition is motivated by the following theorem.

Theorem 7. Let k be an algebraically closed field and (A,m) be a reduced complete non-isolated
Cohen-Macaulay surface singularity. Then the functor F : CM(A) — Tri(A), mapping a mazimal
Cohen-Macaulay module M to the triple (RBa M, Q(A)®4M,0)), is an equivalence of categories.

Moreover, the full subcategory CM"(A) consisting of the mazrimal Cohen-Macaulay modules
which are locally free on the punctured spectrum of A, is equivalent to the full subcategory Tri"(A)
consisting of those triples (ﬁ , V,0) for which the morphism 6 is an isomorphism.

We illustrate our approach by the following example. Let A = k[z,y,z]/(z® + ¥ — zy2). Its
normalization R is k[u,v], where u = % and v = xz_z—y Next, I = (z,y)A = (wv)R is the
conductor ideal, hence A = A/I = k[z], whereas R = k[u,v]. The canonical map A — R maps z
to u +v. We have: Q(A) = k((z)) and Q(R) = k((u)) x k((v)).

Let (H, V,6) be an object of Tri(A). Since R is regular, we have: M = R™ for some integer
m > 1. Next, V is just a vector space over the field k((z)), hence V = k((2))" for some n > 1.
Hence, the gluing map 8 is given by a pair of matrices of full row rank and the same size:

0 = (6u, 0v) € Matmxn (K((1))) X Matmxn (k((v)))-
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The transformation rule is

(1) (Bu,6,) = (S760,T, S;16,T),

where S1 € GL(m, k[u]), Sz € GL(m,k[v]) are such that $(0) = S3(0) and T € GL(n, k((2))).
The canonical form of an indecomposable pair (6,,6,) is one of the following.

Continuous series. Let I,t > 1 be positive integers, w = ((m1,m1),..., (ms,ny)) € (Z2)! be a
“non-periodic sequence” such that min(m;,n;) =1 for all 1 <i <t and X € k*. Then we have the
corresponding canonical form:

w0 0 - 0 0 w2, 0 ... 0

0 w™2L, 0 0 0 0 "L 0 0

(2) .= : : . . : 6y = : : : :
0 0 ... wmMm-1 0 0 0 S

0 0o ... 0 um™ VLI (A) 0 0 ... 0

The triple (R, k((2))%, (6u,0y)) defines an indecomposable maximal Cohen-Macaulay module
M (w,1, A), which is locally free of rank ¢! on the punctured spectrum of A. Moreover, any inde-
composable maximal Cohen-Macaulay module which is locally free on the punctured spectrum, is
described by a triple of the above form.

Discrete series. Indecomposable Cohen-Macaulay A-modules which are not locally free on the
punctured spectrum, are described by a single discrete parameter w = (mo, (m1,m1), ..., (Mg, ne),
nt_,.l), where mg = ny41 = 1 and min(m;,n;) = 1 for all 1 <4 < t. Consider the matrices 6, (w)
and 0, (w) of the size (£ + 1) x (t + 2) defined as follows:

u™ 0 o ... 0 0 v™ 0 ... 0

0 wvm 0 ... O 0 0 o™ ... 0

3) 0, = . . . . . and 6, = 0
0 0 ... u™ 0 0 0 0 ... y™mH

In the case t = 0, we set 6, = (1 0) and 6, = (0 1). The triple (R, k((2))"*?, (6u,6,)) defines
an indecomposable Cohen-Macaulay A-module N (w) of rank ¢+ 1, which is not locally free on the
punctured spectrum. Moreover, any indecomposable maximal Cohen-Macaulay A-module, which
is not locally free on the punctured spectrum, is isomorphic to some N (w).

Our classification allows to deduce the following result.

Proposition 8. For the ring A = k[z,y,2]/(z® + y? — zyz) the the category of mazimal Cohen-
Macualy modules over A is representation tame. Moreover, the mazimal Cohen-Macaulay A-
modules of rank one are the following.

(1) There exists ezactly one such module N = N (1(,)1), which is not locally free on the
punctured spectrum. We have the following A-module isomorphisms: N = I = R.

(2) The rank one mazimal Cohen-Macaulay A-modules, which are locally free on the punctured
spectrum, have the following shape:

M((lym)yA) = Iy, and M((m’1)71:)‘) = Jm, A

wherem > 1, X € k*, Iy » = (2™, yz™ "1 + ANzz — y)™) C A and Jpm, » = (z™, 9™ +
Az™l(zz — y)) C A.

Using the technique of matrix problems and Theorem 7 one can show the following result.
Theorem 9. For any t € Zo, let R = Ry := k[z1, 1] X k[z2,y2] X - - X k[z:, ;] and
A=A :={(p1,p2,...,Pt) [pi(O,z) =pi41(2,0) for all0<i<t-1} CR.

Then A a non-isolated Cohen-Macaulay surface singularity of discrete Cohen-Macaulay represen-
tation type. Moreover, any indecomposable mazimal Cohen-Macaulay modules is isomorphic to an
ideal in A.
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Remark 10. Let A = A; be as in Theorem 9. Then the affine scheme Spec(A) has ¢ irreducible
components. On the other hand, the schemes Spec(AS) and Spec(DX ) have at most two irreducible
components. Hence, for ¢ > 3 the ring A; can not be isomorphic to the ring of invariants of the ring
Ao or Do, with respect to a finite group action. This provides a negative answer on Schreyer’s
question.

Theorem 11. Let (A, m) be a degenerate cusp in the sense of [10]. Then the category CM(A) is
representation tame.

Remark 12. Degenerate cusps which are complete intersections are the following rings
(1) k2,9, 21/ (&P + y? + 2" — zyz), where max(p,q,r) = oo,
(2) k[z,y,u,v]/(zP + y? — uv,u” + v* — zy), where max(p, g,7,t) = oco.

Corollary 13. The non-reduced curve singularity A = k[z,y]/(xy)? has tame Cohen-Macaulay
representation type.

Proof. By Knorrer’s correspondence [8], the category CM(A) has the same representation type as
CM(B), where B is the surface singularity k[z,y, z]/(z?y* + 22). It remains to note that

klz,y, 2/ (z°y* + 2°) = klz,y, 2]/ (zy + 2)° ~ 2zy2 = klu, v, w]/(u* — wvw)

is a degenerate cusp (it is a Thooco-singularity), which is representation tame by Theorem 11.
Hence, CM(A) is representation tame, too. O
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KOSZUL HOMOLOGY AND SYZYGIES OF VERONESE
SUBALGEBRAS

TIM ROMER

The results presented in the following are joint work with Winfried
Bruns and Aldo Conca and will appear in [2].

Let K be a field. Green and Lazarsfeld [5, 6] defined the property
N, for a graded ring as follows. A finitely generated N-graded K-
algebra R = @,y Ri satisfies property Ny if R is generated in degree
1. In the following we will always assume that this is the case. Then
R can be presented as a quotient R = S/I where S is a standard
graded polynomial ring and I C S is a graded ideal. Let 87;(R) =
dimg Tory (R, K) be the graded Betti numbers of R as an S-module.
We are interested in the following property:

Definition 1.1. The K-algebra R satisfies property N, for some p > 0
if B5(R)=0forj>i+1and1<i<p.
Example 1.2.

(1) The property N; is equivalent to say that R is defined by
quadrics, i.e. if we write R = S/I for a graded ideal I con-
taining no linear forms, then I is generated by homogeneous
polynomials of degree 2.

(2) The property N, for p > 1 means that R = S/I is defined by
quadrics and that the minimal graded free resolutions of R is
of the form

i Fppn > S(=p+ 1) = ... 5 8(=2)"* 5 S 5 R—0.

If R satisfies N, for some p > 1, then R satisfies IV for every 1 <
p’ < p. This motivates the following definition.

Definition 1.3. Let R be a standard graded K-algebra. We define
the Green-Lazarsfeld index index(R) of R to be

index(R) = sup{p > 0 : R satisfies N, }.

Determining index(R) in general seems to be a difficult problem.
Here we focus on the case of a Veronese subring

RO =@ Ri,d>1

ieN
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of a standard graded K-algebra R. Observe that we consider R as a
standard graded K-algebra with homogeneous component of degree 1
equal to Ri.. Already the case of a polynomial ring S = K[X,..., Xy]
is interesting.

Example 1.4. If n <2 or ¢ < 2, then 5 is a determinantal ring. In
this case the minimal free resolution of S( is well-known and one is
able to determine the Green-Lazarsfeld index.

At first assume that n = 2. Then the minimal free graded resolution
of S© is given by the Eagon-Northcott complex which implies that
index(S©) = oo.

Next we consider the case ¢ = 2. The resolution of S? in charac-
teristic 0 is known by work of Jozefiak, Pragacz and Weyman [7]. We
get that index(S®) = 5 if n > 3 and index(S®?) = 00 if n < 3.

For n < 6 we get from results of Andersen [1] that index(S®) is
independent on char K. For n > 6 and char K = 5 she showed that
index(S®) = 4.

For n > 2 and ¢ > 2 the following is known:
(1) ¢ < index(S®) < 3¢ - 3.

The lower bound follows from results of Green [4] for any c and n.
Ottaviani and Paoletti [8] proved the upper bound in characteristic 0.
They also showed that index(S(®) = 3¢ — 3 for n = 3. Motivated by
these results they conjectured:

Conjecture 1.5. We have
index(S®) = 3¢ — 3 for every n > 3 and ¢ > 3.

For n = 4 and ¢ = 3 the conjecture is true by [8, Lemma 3.3]. See
also Eisenbud, Green, Hulek and Popescu [3] for related results. Rubei
9] proved that index(S®) > 4 if char K = 0.

One way to attack this problem is to study the Koszul complex
associated to the c-th power of the maximal ideal of S which is closely
related to the problems described so far. Let m the maximal graded
ideal of S. Let K(m°) denote the Koszul complex associated to m¢,
Zy(m®) the module of cycles of homological degree t and H;(m®) the
corresponding homology module. Let T be the symmetric algebra on
vector space S,. Then it is easy to see that:

Lemmal.6. Fori €N, j € Z and 0 < k < ¢ we have
;‘Z(S(c)) = dlmK Hi(mc)jc.
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Thus studying the N,-property of S is equivalent to study vanish-
ing theorems of H;(m¢, S). Considering Z;(m¢) carefully allowed us to
prove a result of Green [4, Theorem 2.2]:

Theorem1.7. We have:
H;(m®); = 0 for every j > ic+i+c.
In particular, on gets that S satisfies N,.

Moreover, a generalizations of this theorem is proved in [2] since we
can give upper bounds on the degrees of a minimal system of generators
of Z;(m®). Using the last two results and some further arguments allows
us to give a proof of one of our main results:

Theorem1.8. ([2]) We have:
(1) ¢+ 1 < index(S®) if char K =0 or > c + 1.
(2) If R=S/I for a graded ideal I C S, then

index(R®) > index(S®) for every ¢ > rateg(R).

In particular, if R is Koszul then index(R®)) > index(S®)) for
every c > 2,

Using an Avramov-Golod type of duality we can show Ottaviani and
Paoletti’s upper bound index(S (C)) < 3c— 3 in arbitrary characteristic.
It is also not difficult to prove that for n = 3 one has index(S@) = 3¢—3
independently of the characteristic. We refer to [2] for details and more
related results.
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GENERIC TROPICAL VARIETIES

TIM ROMER

The results presented in the following are joint work with Kirsten
Schmitz; see [10] and [11].

Tropical geometry is a relatively new area of mathematics and has
received a lot of attention in the recent years; see, e.g., [3, 5, 6, 7, 8, 12].
One of the possible approaches to tropical geometry is to associate a
combinatorial object to a projective algebraic variety which provides
a very useful method for studying problems in algebraic geometry and
related areas. For this let K be an algebraically closed field of charac-
teristic 0 with a non-archimedean valuation v: K — R U {oo} which
might be trivial. We think of the following two cases:

Example 1.1.
(i) The field of Puiseux-series

C((t®) = {Z Cat® 1 cq € R and {a : ¢4 # 0} is well-ordered}
has a non-archimedean valuation v given by |

’U(Z cat®) = min{a : ¢y # 0}.
(ii) For C the trivial valuation is also non-archimedean.

Assume for a moment that v is surjective and K is complete like in
the case of the field of Puiseux-series. The tropical variety T'(X) of an
algebraic variety X is the real-valued image of X under the valuation
map; see, e.g., [4, 9, 12]. More precisely:

Definition 1.2. Let I be a graded ideal in K[z1,...,z,]. The tropical
variety of [ is

T(I) = {v(p) : p € V(I) N (K*)"} C R™

One is for example interested to understand V(I) via the approxi-
mation T'(I). As said above, tropical geometry is a very active area of
research, but at the moment there are not too many results related to
commutative algebra.

In certain settings T'(X) has the structure of a polyhedral complex
as was observed, e.g., in [1, 9] and there is a practical characterization
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in terms of initial ideals given in [12] and [4, Theorem 4.2]. For this we
consider S = K{z1,...,%,). Let f = Z“ a,z* € S, w € R™. We set

in,(f) = Z a,zh
v(ay)+w-p=c
where ¢ = min{v(a,) + w - p : a, # 0}. The following theorem follows

from results of Speyer-Sturmfels [12] and Draisma [4, Theorem 4.2].

Theorem 1.3. Let L/K be a field extension of valued fields such that
L is algebraically closed, v(L) = R U {oo} and L is complete. Let
I C K[z1,...,%,) be a graded ideal. Then:
T(IL[z,...,z,))
= {w € R":in,(f) is not a monomial for every f € I}.

From now on we assume that K has a trivial valuation (e.g. C). For
a graded ideal I C S we define the tropical variety of I to be

T(I) = {w € R™ : in,(f) is not a monomial for every f € I}.

This is also called the constant coefficient case.
From the view point of commutative algebra one might ask what we
can say about algebraic properties of I knowing T'(I).

Example 1.4.

(i) If P C S is a graded monomial free prime ideal, then a result
of Bieri and Groves implies that dim .S/P = dim T'(P).
(ii) This can easily be extended since

T(I)=T(VT)=T((\ P)= | T(P).

It would be interesting to have more results in this direction, but not
too much is known.

A standard construction in commutative algebra is the one of a
Grobner fan. For this let I C S be a graded ideal and w € R™. We set

in, (1) = (in,(f) : f € I).
Now let Cfw] be the closure of
{w € R":in,(I) = in, (I)}.
Then it is known that C|w] is a finitely generated cone in R" and the
set of all such cones is a complete fan in R™ which is called the Grébner
fan GF(I) of I.

Bogart, Jensen, Speyer, Sturmfels and Thomas [2] observed that
T(I) has a natural fan structure. More precisely:
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Theorem 1.5. T'(I) is the subfan of GF(I) consisting of all cones C
such that ing(I) contains no monomial.

Usually one is interested in the maximal cones of GF(I) which cor-
respond to monomial initial ideals of /. Somehow the construction of
T(I) leads to the “opposite part” to these ideas. The conclusion is
that one can study T'(I) in the constant coefficient case as a subfan of
a well-known object in commutative algebra.

Remark 1.6. We have that
T((z1)) =0 and T((z1 + z2)) = R(1,1) # 0.

Algebraically the ideals (x;) and (z; + z2) are the same and differ only
by a coordinate transformation.

Thus we see that tropical varieties depend on the chosen coordinates.
One can avoid this as we will see. Like considering generic initial ideals
it is an interesting problem to consider tropical varieties generically. For
thislet g = (g;;) € GL,(K) and consider the K-algebra homomorphism

on S induced by
Z; —> Z i T;-
i=1

The question is to understand T'(gI) for g € GL,(K). (To avoid trivial
cases we always assume 0 < dim §/I < n.) Before studying T'(gI) one
can start to consider the Grébner fan GF(gI). Then we can prove:

Theorem 1.7. There exists a Zariski-open set § # U C GL,(K) and
a fan F such that

GF(g9I) = F as a fan for every g € U.
We write gGF(I) = F and call this the generic Grébner fan of I.

So one already knows that T(gI), g € U can only be one of the
finitely many subfans of gGF(I). The difficulty is now to show that
T(gI) is constant on a non-empty Zariski-open set.

One of our main result in [10] is:

Theorem 1.8. Let I C S be a graded ideal. Then there exists Zariski-
open set ) # U C GL,(K) and a subfan F of gGF(I) such that

T(gI) = F as a fan for every g € U.
We write gT(I) = F and call this the generic tropical variety of I.
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Note that this result also applies to ideals which contain monomials.

Surprisingly (at least for us) gT'(I) as a set does not contain more
information than we know from the result of Bieri and Groves. More
precisely, for A C [n] let

Ca={weR":w= mkin{wk} for all i € A}

and consider the induced fan W, in R*. Let W be the m-skeleton of
W,. We can prove that:

Theorem 1.9. ([10]) Let I C S be a graded ideal with 0 < dim S/I =
m < n. Then

gT(I) =W, as a set.

For example ¢gT(f) for f € S is independent of the degree of f, or
knowing ¢g7'(I) one can not decide whether I is prime or not. Thus
gT(I) as a set is not too interesting and one has to add some informa-
tion. It is easy to see that as fans: gT7'(I) = W} if dimS/I = 1 and
gT(I) = W2 if dim S/I = 2. Interestingly we can prove:

Theorem 1.10. ([11]) Let I C S be a graded ideal withdim I =m <n
and 0 < depth I =t. Then the following statements are equivalent:
(i) ¢T(I) = W5 as a fan;
(i) t>m— 1.

Thus we can decide whether I is Cohen-Macaulay or almost Cohen-
Macaulay knowing g7T'(I) as a fan (provided depth I > 0). The proof
of the result shows in particular, that W7 is the coarsest fan structure
on the set gT'(I) and gT'(I) always refines this structure. If depth <
dim I — 1 it is still possible to get some information on depth I, but
this is a little bit more technical.

There exists a definition of multiplicities in tropical geometry. For
this let C be a maximal cone of T'(I). Then the multiplicity m(C) of
C is defined as

> lenght((S/ inc(1))p)

where the sum is taken over all minimal primes of in¢(I) of maximal
dimension and which do not contain a monomial. We can prove:

Theorem 1.11. ([11]) Let I C S be a graded ideal with dim S/I = m
and let C be a mazimal cone of gT(I). Then

m(C) = m(I)
where m(I) is the multiplicity of I.
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