ON *H*-EPIMORPHISMS AND CO-*H*-SEQUENCES IN TWO-SIDED HARADA RINGS

YOSHITOMO BABA

ABSTRACT. In [8] M. Harada studied a left artinian ring R such that every non-small left R-module contains a non-zero injective submodule. And in [13] K. Oshiro called the ring a left Harada ring (abbreviated left H-ring). We can see many results on left Harada rings in [6] and many equivalent conditions in [4, Theorem B]. In this paper, to characterize two-sided Harada rings, we intruduce new concepts "co-H-sequence" and "H-epimorphism" and study them.

In §1 we define a H-epimorphism, a co-H-sequence and a w-H-epimorphism. In §2 we characterize H-epimorphisms and left co-H-sequences of two-sided Harada rings using well-indexed set of left Harada ring. In Lemma 2.1 we show that a left (resp. right) H-epimorphism induces the inverse right (resp. left) H-epimorphism. In Theorem 2.2, using Lemma 2.1, we characterize left (right) H-epimorphisms. In Corollary 2.3 we characterize left co-H-sequences by a well-indexed set of left Harada ring. And in Example 2.4 we given a simple example of left co-H-sequences in a Nakayama ring. In §3 we consider a w-H-epimorphism. In Lemma 3.1 we consider a left H-epimorphism with the codomain the Jacobson radical of the first term of some left co-H-sequence. And in Lemma 3.2 we further consider the left (right) H-epimorphism in Lemma 3.1. In Lemma 3.3 we consider w-H-epimorphisms.

1. Definitions

Let R be a basic artinian ring. A ring R is called a *left Harada ring* or a *left H-ring* if, for any primitive idempotent e of R, there exists a primitive idempotent f_e of R with $E(T(_RRe)) \cong _RRf_e/S_{n_e}(_RRf_e)$ for some $n_e \in \mathbb{N}$.

By, for instance, [4, Theorem B (5),(6),(14) and the proof of $(6) \Rightarrow (5)$], the following are equivalent:

- (a) R is a left Harada ring.
- (b) There exist a basic set $\{e_{i,j}\}_{i=1,j=1}^{m \ n(i)}$ of orthogonal primitive idempotents of R and a set $\{f_i\}_{i=1}^{m}$ of primitive idempotents of R such

Mathematics Subject Classification. 16P20.

Key words and phrases. Harada ring, Artinian ring.

This work was supported by JSPS KAKENHI Grant Number JP17K05202.

that $E(T(_{R}Re_{i,j})) \cong {_{R}Rf_i}/{S_{j-1}}(_{R}Rf_i)$ for each i = 1, 2, ..., m and j = 1, 2, ..., n(i).

(c) There exists a basic set $\{e_{i,j}\}_{i=1,j=1}^{m\ n(i)}$ of orthogonal primitive idempotents of R such that $e_{i,1}R_R$ is injective and $e_{i,j}R_R \cong e_{i,1}J_R^{j-1}$ for each $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n(i)$.

We may consider the sets

$$\{e_{i,j}\}_{i=1,j=1}^{m \ n(i)}$$

in (b), (c) coincide and call it a well-indexed set of left Harada ring or a left well-indexed set.

Further, for primitive idempotents e, f of R, we call

is an *i*-pair if both $S(eR_R) \cong T(fR_R)$ and $S(RRf) \cong T(RRe)$ hold. And, since $\{e_{i,1}R\}_{i=1}^m$ is a basic set of indecomposable projective injective right *R*-modules, for each i = 1, 2, ..., m, there exists $e_{\sigma(i),\rho(i)} \in \{e_{i,j}\}_{i=1,j=1}^m n(i)$ such that $(e_{i,1}R, Re_{\sigma(i),\rho(i)})$ is an *i*-pair by [7, Theorem 3.1], where σ, ρ : $\{1, 2, ..., m\} \to \mathbb{N}$ are mappings.

Unless otherwise stated, throughout this paper, we let R be a basic twosided Harada ring, let $\{e_{i,j}\}_{i=1,j=1}^{m}$ be its well-indexed set of left Harada ring, let σ , ρ be mappings above, and, for each $i = 1, 2, \ldots, m$ and each $j = 2, 3, \ldots, n(i)$, let

$$\theta_{i,j}: e_{i,j}R_R \to e_{i,j-1}J_R$$

be an R-isomorphism.

Let R be an artinian ring, let $\{e_i\}_{i=1}^n$ be a complete set of orthogonal primitive idempotents of R and let $\{f_i\}_{i=1}^k \subseteq \{e_i\}_{i=1}^n$. A sequence f_1R, f_2R, \ldots, f_kR is called a *right co-H-sequence* of R if the following (CHS1), (CHS2), (CHS3) hold.

- (CHS1) For each i = 1, 2, ..., k 1, there exists an *R*-isomorphism $\xi_i : f_i R_R \to f_{i+1} J_R$.
- (CHS2) The last term $f_k R_R$ is injective.
- (CHS3) f_1R, f_2R, \ldots, f_kR is the longest sequence among the sequences which satisfy both (CHS1) and (CHS2), i.e., there does not exist an *R*-isomorphism: $fR_R \to f_1J_R$, where $f \in \{e_i\}_{i=1}^n$.

Similarly, we define a *left co-H-sequence* Rf_1, Rf_2, \ldots, Rf_k of R.

Obviously, for each $i = 1, 2, \ldots, m$

$$e_{i,n(i)}R_R, e_{i,n(i)-1}R_R, \ldots, e_{i,1}R_R$$

is a right co-*H*-sequence of *R*. And, for an artinian ring R', it is a left Harada ring if and only if there exists a basic set $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$ of orthogonal primitive idempotents of R' such that $e_{i,n(i)}R'$, $e_{i,n(i)-1}R'$, ..., $e_{i,1}R'$ is a right co-*H*-sequence of R' for all i = 1, 2, ..., m.

From the definition of a left Harada ring, the following lemma holds:

Lemma 1.1. For a left Harada ring R' and primitive idempotents f_1, f_2, \ldots, f_k of R', the following are equivalent.

- (a) $f_1R', f_2R', \ldots, f_kR'$ is a right co-H-sequence.
- (b) f₁R', f₂R', ..., f_kR' satisfies (CHS1) and the following (CHS3'):
 (CHS3') f₁R', f₂R', ..., f_kR' is the longest sequence among sequences which satisfy (CHS1).

In this paper, using a well-indexed set $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$ of left Harada ring, we characterize left co-*H*-sequences of *R*, i.e., we give the structure of *R* as a right Harada ring.

Let $\{e_i\}_{i=1}^n$ be a complete set of orthogonal primitive idempotents of Rand let $\{f_i\}_{i=1}^{j+1} \subseteq \{e_i\}_{i=1}^n$, where $f_1, f_2, \ldots, f_{j+1}$ are mutually distinct. Then we call $\varphi : f_1 R_R \to f_2 J_R$ (resp. $_R R f_1 \to _R J f_2$) a right (resp. left) Hepimorphism if φ is a non-zero R-epimorphism with $J \cdot \text{Ker } \varphi = 0$ (resp. Ker $\varphi \cdot J = 0$). And we call $\varphi : f_1 R_R \to f_{j+1} J_R^j$ (resp. $_R R f_1 \to _R J^j f_{j+1}$) a right (resp. left) weak H-epimorphism (or simply a right (resp. left) w-Hepimorphism) if there exist right (resp. left) H-epimorphisms $\varphi_i : f_i R_R \to f_{i+1} J_R$ ($i = 1, 2, \ldots, j$) with $\varphi = \varphi_j \varphi_{j-1} \cdots \varphi_1$ (resp. $\varphi_i : _R R f_i \to _R J f_{i+1}$ ($i = 1, 2, \ldots, j$) with $\varphi = \varphi_1 \varphi_2 \cdots \varphi_j$).

For $a \in R$, we write the left (resp. right) multiplication map by a

$$(a)_L \ (\text{resp. } (a)_R)$$

And, for primitive idempotents e, f and g, we use the following terminologies.

• If both $S(_{eRe}eRf)$ and $S(eRf_{fRf})$ are simple, we call (eR, Rf) is a colocal pair following [12] and [11]. And then $S(_{eRe}eRf) = S(eRf_{fRf})$ holds. We abbreviate it to

$$S(eRf)$$
.

• We put

$$R(e) \stackrel{put}{:=} eRe$$

2. H-epimorphisms and left co-H-sequences of two-sided HARADA RINGS

First we give basic results.

Lemma A.

- (I) For any i = 1, 2, ..., m and any j = 1, 2, ..., n(i), the following hold. (1) $_{R}Re_{\sigma(i),\rho(i)}/S_{j-1}(_{R}Re_{\sigma(i),\rho(i)}) \cong E(T(_{R}Re_{i,j})).$ So $S_{n(i)}(_{R}Re_{\sigma(i),\rho(i)})$ is uniserial (2) $S_j(RRe_{\sigma(i),\rho(i)}) = \bigoplus_{k=1}^j S(e_{i,k}R_R).$ (3) $S(e_{ij}R_R) \cong T(e_{\sigma(i),\rho(i)}R_R)$ and $S(e_{i,j}R_R) = S(e_{i,j}R_R) e_{\sigma(i),\rho(i)} =$ $S(e_{i,j}Re_{\sigma(i),\rho(i)})$ (4) Suppose that $T(e_{i,1}J_R^{n(i)}) \oplus T(e_{k,l}R_R)$. Then l = 1. (5) $S(R_R) \cong \bigoplus_{i=1}^m T(e_{\sigma(i),\rho(i)}R_R)^{n(i)}$. (II) Let

$$Rf_1, Rf_2, \ldots, Rf_{n'}$$

be a left co-*H*-sequence of *R* and let $(e_{i,1}R, Rf_{n'})$ be an *i*-pair, where $f_1, f_2, \ldots, f_{n'}$ are primitive idempotents of R. Then, for any p = $1, 2, \ldots, n'$, the following hold.

- (1) $e_{i,1}R_R/S_{p-1}(e_{i,1}R_R) \cong E(T(f_{n'-p+1}R_R))$. So $S_{n'}(e_{i,1}R_R)$ is uniserial.
- (2) $S_p(e_{i,1}R_R) = \bigoplus_{k=n'-n+1}^{n'} S(_RRf_k).$
- (3) $S(_{R}Rf_{p}) \cong T(_{R}Re_{i,1})$ and $S(_{R}Rf_{p}) = e_{i,1}S(_{R}Rf_{p}) = S(e_{i,1}Rf_{p}).$ So, in particular, if $S(Re_{k,l}) \cong T(Re_{s,t})$ for some $e_{k,l}$ and $e_{s,t}$, then t = 1 and $S(_R R e_{k,l}) = e_{s,1} S(_R R e_{k,l}) = S(e_{s,1} R e_{k,l})$.
- (4) Suppose that $T({}_{R}J^{n'}f_{n'}) \oplus T({}_{R}Rg)$, where g is a primitive idempotent of R. Then $_RRg$ is injective.
- (5) For each i = 1, 2, ..., m, we let $Rf_{i,1}, Rf_{i,2}, ..., Rf_{i,n'_i} = Re_{\sigma(i),\rho(i)}$ be a left co-*H*-sequence with the last term $Re_{\sigma(i),\rho(i)}$. Then $S(RR) = \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{n'_i} S(RRf_{i,j}).$ So $S(RR) \cong \bigoplus_{i=1}^{m} T(RRe_{i,1})^{n'_i}.$

Proof.

- (I)(1) By |6, Lemma 3.3.1|.
 - (2) By [14, Proposition 3.5(1)].
 - (3) By [3, Theorem 1], $S(e_{i,j}R_R) \cong T(e_{\sigma(i),\rho(i)}R_R)$ and $S(_{R(e_{i,j})}e_{i,j}Re_{\sigma(i),\rho(i)})$ is simple. So the statements follow from, for instance, [3, Lemma 1(2),(3) since R is a basic ring.

- (4) There exists $\varphi : e_{k,l}R_R \to e_{i,1}J_R^{n(i)}$ with $\operatorname{Im} \varphi \not\subseteq e_{i,1}J^{n(i)+1}$ by the assumption. Suppose that $l \neq 1$. There exists $\tilde{\varphi} : e_{k,l-1}R_R \to e_{i,1}R_R$ with $\tilde{\varphi}\theta_{k,l} = \varphi$ since $e_{i,1}R_R$ is injective. Then, because $\operatorname{Im} \varphi \subseteq e_{i,1}J^{n(i)}$ and $\operatorname{Im} \varphi \not\subseteq e_{i,1}J^{n(i)+1}$, $\operatorname{Im} \tilde{\varphi} \subseteq e_{i,1}J^{n(i)-1}$ and $\operatorname{Im} \tilde{\varphi} \not\subseteq e_{i,1}J^{n(i)-1}$. So $T(e_{k,l-1}R_R) \cong T(e_{i,1}J_R^{n(i)-1})$ since $e_{i,1}R_R/e_{i,1}J^{n(i)}$ is uniserial by the definition of $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$. On the other hand, $T(e_{i,1}J_R^{n(i)-1}) \cong T(e_{i,n(i)}R_R)$ by the definition of $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$. Therefore (k, l) = (i, n(i) + 1). But $e_{i,n(i)+1}$ does not exist, a contradiction.
- (5) By the equivalent condition (c) given in the definition of a left Harada ring.
- (II) By left-right symmetric argument of (I), we see that (1),(2),(4),(5)and the first half of (3) hold. We only show the second half of (3). We assume that $S(_RRe_{k,l}) \cong T(_RRe_{s,t})$ for some $e_{k,l}$ and $e_{s,t}$. Then t = 1, i.e., $e_{s,t}R_R$ is injective, by (II)(5). And $S(_RRe_{k,l}) \cong$ $S(_RRe_{\sigma(s),\rho(s)})$. Now we consider a left co-H-sequence with the last term $Re_{\sigma(s),\rho(s)}$. And we may assume that $Re_{k,l}$ is a term of the left co-H-sequence. Hence $S(_RRe_{k,l}) = e_{s,1}S(_RRe_{k,l}) = S(e_{s,1}Re_{k,l})$ by the first half.

Now we give an important lemma which gives the relationshop between left H-epimorphisms and right H-epimorphisms.

Lemma 2.1.

(I) Suppose that $\zeta : {}_{R}Re_{i,j} \to {}_{R}Je_{k,l}$ is a left *H*-epimorphism. Then the left multiplication map

$$\xi \stackrel{put}{:=} ((e_{i,j})\zeta)_L : e_{k,l}R_R \to e_{i,j}J_R$$

by $(e_{i,j})\zeta$ is a right *H*-epimorphism.

Further, we put $I_k \stackrel{put}{:=} \{ (p,q) \mid S(_RRe_{p,q}) \cong T(_RRe_{k,1}) \}$ and let $Rf_1, Rf_2, \ldots, Rf_{n'} = Re_{\sigma(k),\rho(k)}$ be a left co-*H*-sequence with the last term $Re_{\sigma(k),\rho(k)}$, where $\{ f_1, f_2, \ldots, f_{n'} \} \subseteq \{ e_{i,j} \}_{i=1,j=1}^{m-n(i)}$ (then, since *R* is a right Harada ring, $\{ f_1, f_2, \ldots, f_{n'} \} = \{ e_{p,q} \}_{(p,q) \in I_k}$). ξ satisfies the following conditions (1), (2), (3).

(1) Ker
$$\xi = e_{k,l} S(RR) = \begin{cases} \oplus_{(p,q) \in I_k} S(RRe_{p,q}) \neq 0 & \text{(if } l = 1) \\ 0 & \text{(if } l \neq 1) \end{cases}$$

- (2) (i) Suppose that $e_{k,l}R_R$ is injective, i.e., l = 1. Then the following (x), (y), (z) hold.
 - (x) For each $(p,q) \in I_k$, $S(_RRe_{p,q}) = e_{k,1} S(_RRe_{p,q}) = S(e_{k,1}Re_{p,q}).$
 - (y) Ker $\xi = \bigoplus_{i=1}^{n'} S({}_{R}Rf_{i}) = S_{n'}(e_{k,1}R_{R})$ and it is uniserial as a right *R*-module.

(z)
$$j = n(i)$$
, i.e., $\xi : e_{k,1}R_R \to e_{i,n(i)}J_R$

- (*ii*) Suppose that $e_{k,l}R_R$ is not injective, i.e., $l \neq 1$. Then (k,l) = (i,j+1) and j < n(i), i.e., $\xi : e_{i,j+1}R_R \to e_{i,j}J_R$.
- (3) For any $e_{s,t}$, the restriction map of ξ

$$\xi_{s,t} \stackrel{put}{:=} \xi|_{e_{k,l}Re_{s,t}} : e_{k,l}Re_{s,t} \to e_{i,j}Je_{s,t}$$

is a right $R(e_{s,t})$ -epimorphism with

$$\begin{cases} \operatorname{Ker} \xi_{s,t} = \\ \begin{cases} S(e_{k,1}Re_{s,t}) \begin{pmatrix} \text{if } S(_{R}Re_{s,t}) \cong T(_{R}Re_{k,l}), \\ \text{i.e., } l = 1 \text{ and } (e_{k,1}R, E(_{R}Re_{s,t})) \text{ is an } i\text{-pair} \end{pmatrix} \\ \\ 0 & \begin{pmatrix} \text{if } S(_{R}Re_{s,t}) \ncong T(_{R}Re_{k,l}), \\ \text{i.e., either } l \neq 1 \text{ or } (e_{k,1}R, E(_{R}Re_{s,t})) \text{ is not an } i\text{-pair} \end{pmatrix} \end{cases}$$

(II) Suppose that $\xi : e_{i,j}R_R \to e_{k,l}J_R$ is a right *H*-epimorphism. Then the right multiplication map

 $\zeta \stackrel{put}{:=} (\xi(e_{i,j}))_R : {}_RRe_{k,l} \to {}_RJe_{i,j} ,$

by $\xi(e_{i,j})$ is a left *H*-epimorphism. Further, if $_RRe_{k,l}$ is injective, we let $(e_{p,1}R, Re_{k,l})$ be an *i*-pair. ζ satisfies the following conditions (1),(2),(3),(4).

(1) Ker
$$\zeta = S(R_R) e_{k,l} = \begin{cases} \bigoplus_{q=1}^{n(p)} S(e_{p,q}R_R) \neq 0 & \text{(if } _RRe_{k,l} \text{ is injective}) \\ 0 & \text{(if } _RRe_{k,l} \text{ is not injective}) \end{cases}$$

- (2) Suppose that $_{R}Re_{k,l}$ is injective. Then the following (x), (y) hold.
 - (x) For each q = 1, 2, ..., n(p), $S(e_{p,q}R_R) = S(e_{p,q}R_R) e_{k,l} = S(e_{p,q}Re_{k,l})$.
 - (y) Ker $\zeta = S_{n(p)}(RRe_{k,l})$ and it is uniserial as a left *R*-module.
- (3) For any $e_{s,t}$, the restriction map of ζ $\zeta_{s,t} \stackrel{put}{:=} \zeta|_{e_{s,t}Re_{k,l}} : e_{s,t}Re_{k,l} \to e_{s,t}Je_{i,j}$

is a left
$$R(e_{s,t})$$
-epimorphism with
Ker $\zeta_{s,t} =$

$$\begin{cases}
S(e_{s,t}Re_{k,l}) & (\text{if } S(e_{s,1}R_R) \cong T(e_{k,l}R_R), \text{ i.e., } (e_{s,1}R, Re_{k,l}) \\
& \text{is an } i\text{-pair} \\
0 & (\text{if } S(e_{s,1}R_R) \ncong T(e_{k,l}R_R))
\end{cases}$$
(4) For any $i = 1, 2, ..., m$, $_RRe_{i,n(i)}/J^{n(i)}e_{i,n(i)}$ is uniserial.

Proof. (I) First we show that
$$\xi$$
 is surjective. Take any $e_{s,t}$. Since R is a right Harada ring, $E(Re_{s,t}) \cong Re_{u,v}$ for some $e_{u,v}$, there exists an R -isomorphism $\iota : {}_{R}Re_{s,t} \to {}_{R}J^{n}e_{u,v}$, where $n \in \mathbb{N}$, and ${}_{R}Re_{u,v}/J^{n+1}e_{u,v}$ is uniserial. Then, for any $\gamma \in e_{i,j}Je_{s,t}$, we can

$$(\gamma)_R : \operatorname{Re}_{i,j}/\operatorname{Ker} \zeta \to \operatorname{Re}_{s,t}$$

define the right multiplication map

by γ since ζ is a left H-epimorphism. Therefore we consider the diagram

where $\overline{\zeta}$ is an *R*-monomorphism naturally induced from ζ . And we have $\psi : Re_{k,l} \to Re_{u,v}$ with $\overline{\zeta} \psi = (\gamma)_R \iota$ since $_RRe_{u,v}$ is injective. Then $J \operatorname{Im} \psi = (Je_{k,l})\psi = (\operatorname{Im} \overline{\zeta})\psi = \operatorname{Im}(\overline{\zeta}\psi) = \operatorname{Im}((\gamma)_R \iota) \subseteq J^{n+1}e_{u,v}$. So $\operatorname{Im} \psi \subseteq J^n e_{u,v}$ because $_RRe_{u,v}/J^{n+1}e_{u,v}$ is uniserial. Therefore there exists $\beta \in e_{k,l}Re_{s,t}$ with $\overline{\zeta}(\beta)_R = (\gamma)_R$. So

$$\xi(\beta) = ((e_{i,j})\zeta)_L(\beta) = (\overline{e_{i,j}})\overline{\zeta} \ (\beta)_R = (\overline{e_{i,j}}) \ (\gamma)_R = \gamma \,.$$

Hence Im $\xi \supseteq e_{i,j} J e_{s,t}$ for any $e_{s,t}$. We see that Im $\xi = e_{i,j} J$.

Next we show that (1),(2),(3). From (1), we see that ξ is a right *H*-epimorphism.

(1) For any $a \in \text{Ker } \xi$ ($\subset e_{k,l}R$), $0 = R(e_{i,j})\zeta a = Je_{k,l}a = Ja$ since ζ is surjective. So $a \in S(RR)$. Hence $\text{Ker } \xi = e_{k,l}S(RR)$. And, by Lemma A (II)(5),

$$e_{k,l} S(RR) = \begin{cases} \oplus_{i=1}^{n'} S(RRf_i) & (\text{ if } l = 1) \\ 0 & (\text{ if } l \neq 1) \end{cases}$$

since $Rf_1, Rf_2, \ldots, Rf_{n'} = Re_{\sigma(k),\rho(k)}$ is a left co-*H*-sequence with the last term $Re_{\sigma(k),\rho(k)}$. So the statement follows since $\{f_1, f_2, \ldots, f_{n'}\} = \{e_{p,q}\}_{(p,q)\in I_k}$.

- (2) (i) (x) Since $(p,q) \in I_k$, $S(_RRe_{p,q}) \cong T(_RRe_{k,1})$. So the statement holds by the second half of Lemma A (II)(3).
 - (y) Ker $\xi = \bigoplus_{i=1}^{n'} S(RRf_i)$ by the proof of (1). The remainder follows from Lemma A (II)(1),(2).
 - (z) Assume that $j \in \{1, 2, ..., n(i) 1\}$. Then $e_{i,j}J_R$ is projective by the definition of a well-indexed set $\{e_{i,j}\}_{i=1,j=1}^{m}$ of left Harada ring. So $e_{k,l} = e_{i,j+1}$ and ξ is an *R*-isomorphism because ξ is an *R*-epimorphism. But, since l = 1, Ker $\xi \neq 0$ by (1), a contradiction. Hence j = n(i).
 - (*ii*) Let $l \neq 1$. Then $\xi : e_{k,l}R_R \to e_{i,j}J_R$ is an *R*-isomorphism by (1). So (k,l) = (i,j+1) and j < n(i) by the definition of a well-indexed set $\{e_{i,j}\}_{i=1,j=1}^{m}$ of left Harada ring.
- (3) By (1), (2)(*i*)(*x*). (We only note that, if $S(_RRe_{s,t}) \cong T(_RRe_{k,l})$, then l = 1 by Lemma A (II)(5).)
- (II) We see that ζ is a left *H*-epimorphism and (1),(2),(3) hold by the same way as in (I).
 - (4) For each i = 1, 2, ..., m and j = 2, 3, ..., n(i), we put $\xi \stackrel{put}{:=} \theta_{i,j} : e_{i,j}R_R \to e_{i,j-1}J_R$. And there exists a left *R*-epimorphism $\zeta \stackrel{put}{:=} (\xi(e_{i,j}))_R : {}_RRe_{i,j-1} \to {}_RJe_{i,j}$. So ${}_RRe_{i,n(i)}/J^{n(i)}e_{i,n(i)}$ is uniserial.

Using Lemma 2.1, we characterize left (right) H-epimorphisms.

Theorem 2.2.

- (I) Suppose that $\zeta : {}_{R}Re_{i,j} \to {}_{R}Je_{k,l}$ is a left *H*-epimorphism. And, if ${}_{R}Re_{i,j}$ is injective, we let $(e_{p,1}R, Re_{i,j})$ be an *i*-pair. Then the following hold.
 - (1) (i) Suppose that $e_{k,l}R_R$ is injective, i.e., l = 1. Then j = n(i), i.e., $\zeta : {}_{R}Re_{i,n(i)} \rightarrow {}_{R}Je_{k,1}$.
 - (*ii*) Suppose that $e_{k,l}R_R$ is not injective, i.e., $l \neq 1$. Then (k,l) = (i,j+1) (j < n(i)), i.e., $\zeta : {}_{R}Re_{i,j} \rightarrow {}_{R}Je_{i,j+1}$.

(2) (i) Ker
$$\zeta = S(R_R) e_{i,j} =$$

$$\begin{cases}
\oplus_{q=1}^{n(p)} S(e_{p,q}R_R) = S_{n(p)}(RRe_{i,j}) \neq 0 \\
\text{and it is uniserial as a left } R\text{-module} \\
0 \\
(if _RRe_{i,j} \text{ is not injective})
\end{cases}$$

(ii) If $_RRe_{i,j}$ is injective, then, for each q = 1, 2, ..., n(p), $S(e_{p,q}R_R) = S(e_{p,q}R_R) e_{i,j} = S(e_{p,q}Re_{i,j})$.

(II) Suppose that $\xi : e_{i,j}R_R \to e_{k,l}J_R$ is a right *H*-epimorphism. And, if $e_{i,j}R_R$ is injective, we put $I_i := \{ (p,q) \mid S(_RRe_{p,q}) \cong T(_RRe_{i,1}) \}$ and let n' be the number of elements in I_i . Then the following hold.

- (1) (i) Suppose that $e_{i,j}R_R$ is injective, i.e., j = 1. Then l = n(k), i.e., $\xi : e_{i,1}R_R \to e_{k,n(k)}J_R$.
 - (*ii*) Suppose that $e_{i,j}R_R$ is not injective, i.e., $j \ge 2$. Then (k,l) = (i,j-1) (l < n(k)), i.e., $\xi : e_{i,j}R_R \to e_{i,j-1}J_R$.

(2) (i) Ker
$$\xi = e_{i,j} S({}_R R) =$$

$$\begin{cases} \bigoplus_{(p,q)\in I_i} e_{i,1} S({}_R R e_{p,q}) = S_{n'}(e_{i,1} R_R) \neq 0 \\ \text{and it is uniserial as a right } R \text{-module} \\ 0 \end{cases} \quad (\text{if } j = 1) \\ (\text{if } j \neq 1) \end{cases}$$

(*ii*) If $e_{i,j}R_R$ is injective, i.e., j = 1, then, for each $(p,q) \in I_i$, $S(_RRe_{p,q}) = e_{i,1}S(_RRe_{p,q}) = S(e_{i,1}Re_{p,q})$.

Proof.

(I) (1) By Lemma 2.1 (I) (1), (2)(i)(z), (ii), we can define a right *H*-epimorphism

 $\xi \stackrel{put}{:=} ((e_{i,j})\zeta)_L : e_{k,l}R_R \to e_{i,j}J_R$ which satisfies the following.

- (i') Suppose that $e_{k,l}R_R$ is injective, i.e., l = 1. Then j = n(i), i.e., $\xi : e_{k,1}R_R \to e_{i,n(i)}J_R$.
- (*ii'*) Suppose that $e_{k,l}R_R$ is not injective, i.e., $l \neq 1$. Then (k,l) = (i, j+1) (j < n(i)), i.e., $\xi : e_{i,j+1}R_R \to e_{i,j}J_R$ and it is a right *R*-isomorphism.

Using Lemma 2.1 (II) for the ξ , either the following (i) or (ii) holds.

(i) $e_{k,l}R_R$ is injective, i.e. l = 1, j = n(i) and $\zeta = (((e_{i,n(i)})\zeta)_L(e_{k,1}))_R = (\xi(e_{k,1}))_R : {}_RRe_{i,n(i)} \to {}_RJe_{k,1}.$

- (*ii*) $e_{k,l}R_R$ is not injective, i.e., $l \neq 1$, (k,l) = (i, j+1) and $\zeta = (((e_{i,j})\zeta)_L(e_{i,j+1}))_R = (\xi(e_{i,j+1}))_R : {}_RRe_{i,j} \rightarrow {}_RJe_{i,j+1}.$
- (2) Since $\zeta = (((e_{i,j})\zeta)_L(e_{k,l}))_R$, the statements follow from Lemma 2.1 (II) (1), (2).
- (II) (1) By Lemma 2.1 (II), we can define a left *H*-epimorphism $\zeta \stackrel{put}{:=} (\xi(e_{i,j}))_R : {}_RRe_{k,l} \to {}_RJe_{i,j}.$ So, using Lemma 2.1 (I) (1), (2)(*i*)(*z*), (*ii*) for the ζ , the statements hold.
 - (2) Since $\xi = ((e_{k,l})(\xi(e_{i,j}))_R)_L$, the statements follow from Lemma 2.1 (I) (1), (2)(i)(x), (y).

By the definition of a well-indexed set $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$ of left Harada ring, $e_{i,n(i)}R, e_{i,n(i)-1}R, \dots, e_{i,1}R$ $(i = 1, 2, \dots, m)$

are right co-*H*-sequences of *R*. And, from Theorem 2.2, we obtain the following characterization left co-*H*-sequences of *R* using the same set $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$.

Corollary 2.3. Every left co-*H*-sequence of *R* is of the form $Re_{i_1,s}, Re_{i_1,s+1}, \ldots, Re_{i_1,n(i_1)}, Re_{i_2,1}, Re_{i_2,2}, \ldots, Re_{i_2,n(i_2)}, Re_{i_3,1}, \ldots, Re_{i_u,t},$ where $1 \le i_1, i_2, \ldots, i_u \le m, 1 \le s \le n(i_1)$ and $1 \le t \le n(i_u)$.

Proof. By Theorem 2.2(I)(1).

Example 2.4. Let R be a basic indecomposable Nakayama ring with a complete set $\{g_i\}_{i=1}^7$ of orthogonal primitive idempotents which satisfies

- (i) $T(g_i J_R) \cong T(g_{i+1} R_R)$ for any i = 1, 2, ..., 6, and
- (ii) $c(g_1R_R) = 10$, $c(g_2R_R) = 9$, $c(g_3R_R) = 10$, $c(g_4R_R) = 9$, $c(g_5R_R) = 11$, $c(g_6R_R) = 10$, $c(g_7R_R) = 9$, where c(M) means the composition length of an R-module M.

We put

 $\begin{array}{l} e_{1,1} \stackrel{put}{:=} g_1, \ e_{1,2} \stackrel{put}{:=} g_2, \ e_{2,1} \stackrel{put}{:=} g_3, \ e_{2,2} \stackrel{put}{:=} g_4, \ e_{3,1} \stackrel{put}{:=} g_5, \ e_{3,2} \stackrel{put}{:=} g_6, \ e_{3,3} \stackrel{put}{:=} g_7. \\ And \{ e_{1,1}, \ e_{1,2}, \ e_{2,1}, \ e_{2,2}, \ e_{3,1}, \ e_{3,2}, \ e_{3,3} \} \ is \ a \ left \ well-indexed \ set \ of \ R \\ and \\ (e_{1,1}R, Re_{2,1}), \ (e_{2,1}R, Re_{3,1}), \ (e_{3,1}R, Re_{1,1}) \end{array}$

are *i*-pairs and

$$\begin{array}{ll} Re_{1,2}, & Re_{2,1} \\ Re_{2,2}, & Re_{3,1} \\ Re_{3,2}, & Re_{3,3}, & Re_{1,1} \end{array}$$

are left co-H-sequences.

3. w-H-epimorphisms

In section 2, we characterize H-epimorphisms in Theorem 2.2 and left co-H-sequences by a well-indexed set $\{e_{i,j}\}_{i=1,j=1}^{m}$ of left Harada ring as a corollary (Corollary 2.3). In this section, we characterize w-H-epimorphisms.

Lemma 3.1. Let $Rf_1, Rf_2, \ldots, Rf_{n'}$ be a left co-H-sequence and let $f_1 = e_{k,l}$.

- (1) Suppose that $l \ge 2$. Then we have a left *H*-epimorphism ζ' : $_{R}Re_{k,l-1} \rightarrow _{R}Jf_{1}$.
- (2) Suppose that l = 1. If there exists a left H-epimorphism ζ' : $_{R}Re_{i,j} \rightarrow _{R}Je_{k,1} = _{R}Jf_{1}$, then j = n(i), i.e., $\zeta' : _{R}Re_{i,n(i)} \rightarrow _{R}Jf_{1}$.

Proof.

- (1) By Lemma 2.1 (II), $(\theta_{k,l}(e_{k,l}))_R : {}_RRe_{k,l-1} \to {}_RJe_{k,l}$ is a left *H*-epimorphism.
- (2) By Theorem 2.2 (I)(1).

Now we further consider a left H-epimorphism the codomain of which is the Jacobson radical of the first term of some left co-H-sequence.

Lemma 3.2.

- (I) Let $Rf_1, Rf_2, \ldots, Rf_{n'}$ be a left co-*H*-sequence. And suppose that there exists a left *H*-epimorphism $\zeta' : {}_{R}Rf_0 \to {}_{R}Jf_1$. Then the following hold.
 - (0) Then $_{R}Rf_{0}$ is injective.

So we let $(e_{k,1}R, Rf_0)$ be an *i*-pair. Then the following hold.

- (1) Ker $\zeta' = S_{n(k)}({}_{R}Rf_{0})$.
- (2) $_{R}Rf_{0}/S_{j-1}(_{R}Rf_{0}) \cong E(T(_{R}Re_{k,j}))$ for any $j = 1, 2, \dots, n(k)$.
- (3) $S_{n(k)+1}(RRf_0)$ is uniserial as a left *R*-module.

Further we let $(e_{l,1}R, Rf_{n'})$ be an *i*-pair. Then the following hold.

(4)
$$S(_R R f_0 / S_{n(k)+j-1}(_R R f_0)) \cong T(_R R e_{l,j})$$
 for any $j = 1, 2, \dots, n(l)$.

- (II) Suppose that $\xi': e_{l,1}R_R \to e_{k,n(k)}J_R$ is a right *H*-epimorphism and we let both $Rg_1, Rg_2, \ldots, Rg_{n_l} = Re_{\sigma(l),\rho(l)}$ and $Rh_1, Rh_2, \ldots, Rh_{n_k} = Re_{\sigma(k),\rho(k)}$ be left co-*H*-sequences. Then the following hold.
 - (1) Ker $\xi' = S_{n_l}(e_{l,1}R_R)$.
 - (2) $e_{l,1}R/S_{j-1}(e_{l,1}R_R) \cong E(T(g_{n_l-j+1}R_R))$ for any $j = 1, 2, \dots, n_l$.
 - (3) $S_{n_l+1}(e_{l,1}R_R)$ is uniserial as a right *R*-module.
 - (4) $S(e_{l,1}R_R/S_{n_l+j-1}(e_{l,1}R_R)) \cong T(h_{n_k-j+1}R_R)$ for any $j = 1, 2, \dots, n_k$.

Proof.

- (I) (0) By (CHS3) in the definition of a left co-*H*-sequence and Theorem 2.2 (I)(2)(i).
 - (1) By Theorem 2.2(I)(2)(i).
 - (2) By Lemma A(I)(1).
 - (3) $S_{n(k)}({}_{R}Rf_{0})$ is uniserial by Lemma A (I)(1). And $S_{n(k)+1}({}_{R}Rf_{0})/S_{n(k)}({}_{R}Rf_{0})$ is simple by (i) since ${}_{R}Rf_{1}$ is colocal.
 - (4) By (1), $_{R}Rf_{0}/S_{n(k)}(_{R}Rf_{0}) \cong _{R}Jf_{1} \cong _{R}J^{n'}f_{n'}$. And, for any $j = 1, 2, ..., n(l), S(_{R}Rf_{n'}/S_{j-1}(_{R}Rf_{n'})) \cong T(_{R}Re_{l,j})$ by Lemma A (I)(1) since $(e_{l,1}R, Rf_{n'})$ is an *i*-pair. So the statement holds.
- (II) We see by the same way as in (I).

_	-	-	í.
			L
			L

Next we consider colocal pairs in two-sided Harada rings.

Lemma 3.3. Let $Rf_1, Rf_2, \ldots, Rf_{n'}$ be a left co-*H*-sequence and let $(e_{l,1}R, Rf_{n'})$ be an *i*-pair. Then the following hold.

- (I) (0) $S(e_{l,j}Rf_s)$ is defined for any j = 1, 2, ..., n(l) and any s = 1, 2, ..., n'.
 - (1) Suppose that there exists a left H-epimorphism $\zeta' : {}_{R}Rg_{n''} \rightarrow {}_{R}Jf_{1}$ and we let $Rg_{1}, Rg_{2}, \ldots, Rg_{n''}$ be a left co-H-sequence. Then $S(e_{l,j}Rg_{t})$ is defined for any $j = 1, 2, \ldots, n(l)$ and any $t = 1, 2, \ldots, n''$.

- (2) We further suppose that there exists a left H-epimorphism ζ'' : $_{R}Rh_{n'''} \rightarrow _{R}Jg_{1}$ and we let $Rh_{1}, Rh_{2}, \ldots, Rh_{n'''}$ be a left co-Hsequence. Then $S(e_{l,j}Rh_{u})$ is defined for any $j = 1, 2, \ldots, n(l)$ and any $u = 1, 2, \ldots, n'''$.
- (II) (1) Suppose that there exists a right *H*-epimorphism $\xi' : e_{l',1}R_R \rightarrow e_{l,n(l)}J_R$. Then $S(e_{l',t}Rf_j)$ is defined for any t = 1, 2, ..., n(l')and any j = 1, 2, ..., n'.
 - (2) We further suppose that there exists a right H-epimorphism $\xi'': e_{l'',1}R_R \to e_{l',n(l')}J_R$. Then $S(e_{l'',u}Rf_j)$ is defined for any u = 1, 2, ..., n(l'') and any j = 1, 2, ..., n'.

Proof.

- (I) (0) $S(e_{l,1}Rf_s)$ is defined by Lemma A (II)(3). So $S(e_{l,j}Rf_{s,R(f_s)})$ is simple since $e_{l,j}R_R \cong e_{l,1}J_R^{j-1}$. On the other hand, $S(_{R(e_{l,j})}e_{l,j}Rf_{n'})$ is defined by Lemma A (I)(3). So $S(_{R(e_{l,j})}e_{l,j}Rf_s)$ is simple since $_RRf_s \cong _RJ^{n'-s}f_{n'}$. Hence $S(e_{l,j}Rf_s)$ is defined.
 - (1) First we consider the case $_{R}Rg_{n''} \cong _{R}Rf_{n'}$. Then $g_s = f_s$. So the statement holds from (0).

Next we consider the case $_{R}Rg_{n''} \cong _{R}Rf_{n'}$. Let $(e_{k,1}R, Rg_{n''})$ be an *i*-pair. Then

$$r_{Rg_{n''}}(e_{l,j}R) = S_{n(k)+j-1}(Rg_{n''})$$

and

$$S(Rg_{n''}/r_{Rg_{n''}}(e_{l,j}R)) \cong T(RRe_{l,j})$$

by Lemma 3.2(I)(2),(4). So

$$_{R}Rg_{n''}/r_{Rg_{n''}}(e_{l,j}R) \cong _{R}J^{n'}f_{n'}/S_{j-1}(_{R}Rf_{n'})$$

and

 $E(RRg_{n''}/r_{Rg_{n''}}(e_{l,j}R)) \cong RRf_{n'}/S_{j-1}(RRf_{n'})$

by Lemma 3.2 (I)(1) and Lemma A (I)(1) since $Rf_1, Rf_2, \ldots, Rf_{n'}$ is a left co-*H*-sequence. Therefore

$$_{R}Rg_{t}/r_{R}g_{t}(e_{l,j}R) \cong _{R}J^{n'+(n''-t)}f_{n'}/S_{j-1}(_{R}Rf_{n'})$$

and

$$E(_{R}Rg_{t}/r_{Rg_{t}}(e_{l,j}R)) \cong _{R}Rf_{n'}/S_{j-1}(_{R}Rf_{n'})$$

since $Rg_1, Rg_2, \ldots, Rg_{n''}$ is a left co-*H*-sequence. So $_RRg_t/r_{Rg_t}(e_{l,j}R)$ is quasi-injective. Hence $S(e_{l,j}Rg_t)$ is defined by [5, Corollary 1.6].

(2) If $_{R}Rh_{n'''} \cong _{R}Rf_{n'}$, the statement holds from (0). So we assume that $_{R}Rh_{n'''} \not\cong _{R}Rf_{n'}$. Let $(e_{k',1}R, Rh_{n'''})$ be an *i*-pair. Then

the follong (i), (ii), (iii), (iv), (v), (vi) hold by Lemma 3.2 (I)(1),(2),(4) and Lemma A (I)(1).

(i) $r_{Rh_{n'''}}(e_{l,j}R) = S_{n(k')+n(k)+j-1}(RRh_{n'''})$ (ii) $S(RRh_{n'''}/r_{Rh_{n'''}}(e_{l,j}R)) \cong T(RRe_{l,j})$ (iii) $RRh_{n'''}/r_{Rh_{n'''}}(e_{l,j}R) \cong RJ^{n'+n''}f_{n'}/S_{j-1}(RRf_{n'})$ (iv) $E(RRh_{n'''}/r_{Rh_{n'''}}(e_{l,j}R)) \cong RRf_{n'}/S_{j-1}(RRf_{n'})$ (v) $RRh_{u}/r_{Rh_{u}}(e_{l,j}R) \cong RJ^{n'+n''+(n'''-u)}f_{n'}/S_{j-1}(RRf_{n'})$ (vi) $E(RRh_{u}/r_{Rh_{u}}(e_{l,j}R)) \cong RRf_{n'}/S_{j-1}(RRf_{n'})$

So $_{R}Rh_{u}/r_{Rh_{u}}(e_{l,j}R)$ is quasi-injective and $S(e_{l,j}Rh_{u})$ is defined by [5, Corollary 1.6].

(II) We see by the left-right symmetrical argument of (I).

Using Lemma 3.3, last we generalize Lemma 2.1 to w-H-epimorphisms.

Proposition 3.4. Let $f_1, f_2, \ldots, f_{u+1}$ be distinct elements in $\{e_{i,j}\}_{i=1,j=1}^{m n(i)}$. Suppose that

$$\zeta \stackrel{put}{:=} \zeta_1 \zeta_2 \cdots \zeta_u : {}_R R f_1 \to {}_R J^u f_{u+1}$$

is a left w-H-epimorphism, where $\zeta_i : {}_RRf_i \to {}_RJf_{i+1}$ is a left H-epimorphism for i = 1, 2, ..., u. For each i = 1, 2, ..., u, we consider a right H-epimorphism

 $\xi_i \stackrel{put}{:=} ((f_i)\zeta_i)_L : f_{i+1}R \to f_i J$

given in Lemma 2.1 (I). And we put

$$\xi \stackrel{put}{:=} ((f_1)\zeta)_L : f_{u+1}R \to f_1J^u \,.$$

Further we put

 $X \stackrel{put}{:=} \{ i \in \{ 2, 3, \dots, u+1 \} \mid f_i R_R \text{ is injective } \}.$

And, for each $i \in X$, put $I_i \stackrel{put}{:=} \{ (p,q) \mid S(_RRe_{p,q}) \cong T(_RRf_i) \}$, let (f_iR, Rg_i) be an *i*-pair, let n'_i be the length of a left co-*H*-sequence with the last term Rg_i and put $n' \stackrel{put}{:=} \sum_{i \in X} n'_i$. Then the following hold.

- (1) ξ is a right *w*-*H*-epimorphism with $\xi = \xi_1 \xi_2 \cdots \xi_u$.
- (2) Ker $\xi = \bigoplus_{i \in X} \bigoplus_{(p,q) \in I_i} S(f_{u+1}Re_{p,q}) = S_{n'}(f_{u+1}R_R)$ and it is uniserial as a right *R*-module.

We note that the left-right symmetric statement of (I) also holds for a right w-H-epimorphism $\xi := \xi_1 \xi_2 \cdots \xi_u : f_{u+1}R_R \to f_1 J_R^u$, where $\xi_i : f_{i+1}R_R \to f_i J_R$ is a right H-epimorphism for $i = 1, 2, \ldots, u$.

(1)
$$\begin{aligned} \xi(f_{u+1}) &= ((f_1)\zeta)_L(f_{u+1}) \\ &= ((f_1)\zeta_1\zeta_2\cdots\zeta_u)_L(f_{u+1}) \\ &= ((f_1)((f_1)\zeta_1)_R((f_2)\zeta_2)_R\cdots((f_u)\zeta_u)_R)_L(f_{u+1}) \\ &= f_1\cdot(f_1)\zeta_1\cdot(f_2)\zeta_2\cdots\cdot(f_u)\zeta_u\cdot f_{u+1} \\ &= ((f_1)\zeta_1)_L((f_2)\zeta_2)_L\cdots((f_u)\zeta_u)_L(f_{u+1}) \\ &= \xi_1\xi_2\cdots\xi_u(f_{u+1}). \end{aligned}$$

So $\xi = \xi_1 \xi_2 \cdots \xi_u$. Therefore ξ is a right *w*-*H*-epimorphism.

(2) If f_2R_R is not injective, i.e., $2 \notin X$, then $\operatorname{Ker} \xi_1 = 0$ by Lemma 2.1 (I)(1). If f_2R_R is injective, i.e., $2 \in X$, then

$$\operatorname{Ker} \xi_1 = \bigoplus_{(p,q) \in I_2} S(f_2 R e_{p,q}) = S_{n'_2}(f_2 R_R)$$

and it is uniserial as a right *R*-module by Lemma 2.1 (I)(1), (2)(i)(x), (y). Next, with respect f_2 and f_3 , we consider the following four cases.

- (i) If both f_2R_R and f_3R_R are not injective, i.e., $2,3 \notin X$, then $\xi_2^{-1}(\operatorname{Ker} \xi_1) = 0$ by Lemma 2.1 (I)(1).
- (*ii*) If f_2R_R is not injective and f_3R_R is injective, i.e., $2 \notin X$ and $3 \in X$, then

$$\xi_2^{-1}(\operatorname{Ker} \xi_1) = \xi_2^{-1}(0)$$

= $\oplus_{(p,q)\in I_3} S(f_3 Re_{p,q})$
= $S_{n'_3}(f_3 R_R)$

and it is uniserial as a right *R*-module by Lemma 2.1 (I)(1), (2)(i)(x), (y).

(*iii*) If f_2R_R is injective but f_3R_R is not injective, i.e., $2 \in X$ and $3 \notin X$, then

$$\xi_{2}^{-1}(\operatorname{Ker} \xi_{1}) = \xi_{2}^{-1}(\oplus_{(p,q)\in I_{2}}S(f_{2}Re_{p,q}))$$
$$= \oplus_{(p,q)\in I_{2}}S(f_{3}Re_{p,q}R(e_{p,q}))$$
$$= S_{n'_{2}}(f_{3}R_{R})$$

and it is uniserial as a right *R*-module by Lemma 2.1 (I)(1), (2)(*i*)(*x*), (*y*). Further $S(f_3Re_{p,q|R(e_{p,q})}) = S(f_3Re_{p,q})$ for any $(p,q) \in I_2$ by Lemma 3.3 (II)(1).

(*iv*) If both
$$f_2 R_R$$
 and $f_3 R_R$ are injective, i.e., $2, 3 \in X$, then
 $\xi_2^{-1}(\text{Ker }\xi_1)$
 $= \xi_2^{-1}(\oplus_{(p,q)\in I_2}S(f_2 Re_{p,q}))$
 $= (\oplus_{(p,q)\in I_2}S(f_3 Re_{p,q R(e_{p,q})})) \oplus (\oplus_{(p',q')\in I_3}S(f_3 Re_{p',q'}))$
 $= S_{n'_2+n'_3}(f_3 R_R)$

and it is uniserial as a right *R*-module by Lemma 2.1 (I)(1), (2)(*i*)(*x*), (*y*). Further $S(f_3Re_{p,q|R(e_{p,q})}) = S(f_3Re_{p,q})$ for any $(p,q) \in I_2$ by Lemma 3.3 (II)(1).

Inductively we obtain

 $\operatorname{Ker} \xi = \bigoplus_{i \in X} \bigoplus_{(p,q) \in I_i} S(f_{u+1}Re_{p,q}) = S_{n'}(f_{u+1}R_R)$ and it is uniserial as a right *R*-module.

References

- F. W. Anderson and K. R. Fuller, <u>Rings and categories of modules (second edition)</u>, Graduate Texts in Math. 13, Springer-Verlag (1991).
- [2] Y. Baba and K. Oshiro, On a theorem of Fuller, J. Algebra **154**, no. 1 (1993), 86–94.
- [3] Y. Baba, <u>Injectivity of quasi-projective modules</u>, projectivity of quasi-injective modules, and projective covers of injective modules, J. Algebra 155, no.2 (1993), 415–434.
- [4] Y. Baba and K. Iwase, On quasi-Harada rings, J. Algebra 185, no.2 (1996), 544–570.
- [5] Y. Baba, <u>On quasi-projective modules and quasi-injective modules</u>, Scientiae Mathematicae Japonicae, 63, no.1 (2006), 113–130.
- [6] Y. Baba and K. Oshiro, <u>Classical artinian rings and related topics</u>, World Scientific (2009).
- [7] K. R. Fuller, <u>On indecomposable injectives over artinian rings</u>, Pacific J. Math. 29 (1969), 115–135.
- [8] M. Harada, <u>Non-small modules and non-cosmall modules</u>, in "Ring Theory", Proceedings of 1978 Antwerp Conference (F. Van Oystaeyen, Ed.) Dekker, New York (1979), 669–690.
- [9] M. Harada, <u>Factor categories with applications to direct decomposition of modules</u>, Lecture Note in Pure and Appl. Math., Vol. 88, Dekker, New York, (1983).
- [10] M. Hoshino and T. Sumioka, <u>Injective pairs in perfect rings</u>, Osaka J. Math. 35 (1998), 501–508.
- [11] M. Hoshino and T. Sumioka, <u>Colocal pairs in perfect rings</u>, Osaka J. Math. **36** (1999), no.3 587-603.
- [12] M. Morimoto and T. Sumioka, <u>Generalizations of theorems of Fuller</u>, Osaka J. Math. 34 (1997), 689-701.
- [13] K. Oshiro, <u>Lifting modules</u>, extending modules and their applications to QF-rings, Hokkaido Math. J. **13** (1984), 310–338.
- [14] K. Oshiro, On Harada rings I, Math. J. Okayama Univ. **31** (1989), 161–178.

[15] R. Wisbause, <u>Foundations of Module and Ring Theory</u>, Gordon and Breach Science Publishers, (1991).

> Yoshitomo BABA Department of Mathematics Education Osaka Kyoiku University Osaka, 582-8582 Japan *e-mail address*: ybaba@cc.osaka-kyoiku.ac.jp

> > (Received October 24, 2019) (Accepted September 4, 2020)