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TERWILLIGER ALGEBRAS OF SOME GROUP

ASSOCIATION SCHEMES

Nur Hamid and Manabu Oura

Abstract. The Terwilliger algebra plays an important role in the the-
ory of association schemes. The present paper gives the explicit struc-
tures of the Terwilliger algebras of the group association schemes of the
finite groups PSL(2, 7), A6, and S6.

1. Introduction

Association schemes enable us to study combinatorial problems in a
unified way. We refer to [2, 6] for the foundations of association schemes.
In a series of papers [10, 11, 12], Terwilliger introduced a new method,
the so-called Terwilliger algebra, to investigate the commutative association
schemes. Since then there have been many investigations on Terwilliger
algebras (cf. [8, 7]). It is very important to know the explicit structure of
the Terwilliger algebra. The cases of the group association schemes of S5

and A5 were studied in [1] along the line of the work [3]. In the present
paper we determine the structures of the Terwilliger algebras of the group
association schemes of the finite groups PSL(2, 7), A6, and S6.

The computations were done with Magma [5] and SageMath [9].

2. Preliminaries

We begin with the definition of a group association scheme.

Definition 1. Let G be a finite group and C0 = {e}, C1, . . . , Cd the
conjugacy classes of G, where e is the identity of G. Define the relations
Ri(i = 0, 1, . . . , d) on G by

(x, y) ∈ Ri ⇐⇒ yx−1 ∈ Ci.

Then X(G) = (G, {Ri}0≤i≤d) forms a commutative association scheme of
class d called the group association scheme of G.

We associate the matrix Ai of the relation Ri as

(Ai)x,y :=

{
1 if (x, y) ∈ Ri,

0 otherwise.
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Then we have

AiAj =

d∑
k=0

pkijAk

and A0, . . . , Ad generate the so-called Bose-Mesner algebra A. The
intersection numbers pkij of the group association scheme X(G) are given
by

|{(x, y) ∈ Ci × Cj |xy = z, z ∈ Ck}|.
The algebra A has a second basis E0, . . . , Ed of primitive idempotents, and

Ei ◦ Ej =
1

|G|
qkijEk,

where ◦ denotes Hadamard (entry-wise) multiplication. For each i =
0, . . . , d, let E∗

i and A∗
i be the diagonal matrices of size |G| × |G| which are

defined as follows.

(E∗
i )x,x :=

{
1, if x ∈ Ci

0, if x /∈ Ci
(x ∈ G) ,

(A∗
i )x,x := |G|(Ei)e,x (x ∈ G).

Then E∗
0 , . . . , E

∗
d form a basis for the dual Bose-Mesner algebra A∗. The

intersection numbers provide information for our structural results to follow.
We refer to the following relations [10].

E∗
i AjE

∗
k = 0 ⇔ pkij = 0 (0 ≤ i, j, k ≤ d),

EiA
∗
jEk = 0 ⇔ qkij = 0 (0 ≤ i, j, k ≤ d).

We need to fix the ordering of the conjugacy classes. The following table
gives the representatives and the orders of conjugacy classes.

(1) PSL(2, 7)
C0 C1 C2

rep. (1) (357)(468) (2354786)
|Ci| : 1 56 24

C3 C4 C5

rep. (2465837) (12)(34)(58)(67) (1235)(4876)
|Ci| : 24 21 42

(2) A6

C0 C1 C2 C3 C4

rep. (1) (12)(34) (123) (123)(456) (1234)(56)
|Ci| 1 45 40 40 90

C5 C6

rep. (12345) (12346)
|Ci| 72 72
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(3) S6

C0 C1 C2 C3

rep. (1) (12) (12)(34) (12)(34)(56)
|Ci| 1 15 45 15

C4 C5 C6 C7

rep. (123) (123)(45) (123)(456) (1234)
40 120 40 90
C8 C9 C10

(1234)(56) (12345) (123456)
90 144 120

Finally we give the definition of the Terwilliger algebra of the group
association scheme. We shall denote by Mk the ring of k × k matrices
over the complex number C.

Definition 2. Let G be a finite group. The Terwilliger algebra T (G) of the
group association scheme X(G) is a sub-algebra of M|G| generated by A and
A∗.

Since T (G) is closed under the conjugate-transpose, T (G) is semi-simple.
In the next section, we investigate the Terwilliger algebras of the group
association schemes of PSL(2, 7), A6 and S6.

3. Results

In [1], Balmaceda and Oura gave the structures of the Terwilliger algebra
of the group association schemes of S5 and A5. Following their method, we
determine the Terwilliger algebras for the cases PSL(2, 7), A6, and S6.

Theorem 3.1. The dimensions of T (PSL(2, 7)), A6 and T (S6) are given
as follows.

dimT (PSL(2, 7)) = 165,

dimT (A6) = 336,

dimT (S6) = 758.

Proof. We compute a set of linearly independent elements among E∗
i AjE

∗
k

and E∗
i AjE

∗
k · E∗

kAlE
∗
m = E∗

i AjE
∗
kAlE

∗
m. By direct calculation we can

see that any form E∗
i Ai1E

∗
j · E∗

jAi2E
∗
k · E∗

kAi3E
∗
l linearly depends on the

E∗
i Ai4E

∗
l ’s and the E∗

i Ai5E
∗
k1

· E∗
k1
Ai6E

∗
l ’s. Therefore the products of more

than two elements of the form E∗
i AjE

∗
k give no new elements of a basis.

1 □
1This answers a question raised by Prof.Terwilliger. Indeed our original argument had

a gap. He informed us the reference [4]. Our result dimT (S6) = 758 is violated to
Conjecture 3.5.
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We provide the matrices below to show how many elements of a basis
occur. As these matrices are symmetric, we omit the entries below diagonal.
These matrices are indexed by the conjugacy classes in the order assumed
earlier. The entries of matrices indicate the dimension of each position.
For example, the entry 6 in the (C2, C2)-position for the group PSL(2, 7)
comes from the dimension of subspace that is the product of entry E∗

2AiE
∗
j

and E∗
kAlE

∗
2 . The dimension coming from E∗

2AiE
∗
2 is 5 and the product of

E∗
2AiE

∗
j and E∗

kAlE
∗
2 has dimension 6.

PSL(2, 7) :


1 1 1 1 1 1

13 7 7 5 10
6 6 3 6

6 3 6
4 5

9



A6 :



1 1 1 1 1 1 1
9 5 5 9 7 7

8 8 9 8 8
8 9 8 8

16 13 13
12 12

12



S6 :



1 1 1 1 1 1 1 1 1 1 1
3 3 4 4 5 3 2 4 2 3

6 4 6 9 8 2 6 4 6
8 8 8 7 4 8 4 8

12 13 13 4 12 6 13
19 16 3 13 6 12

23 3 13 8 16
3 4 3 5

12 6 13
6 9

19


We denote by Z(T (G)) the center of the Terwilliger algebra T (G) of a

finite group G.

Lemma 3.2. The dimensions of Z(T (G)) for G = PSL(2, 7), A6, S6 are
given as follows.

dimZ(T (PSL(2, 7))) = 7,

dimZ(T (A6)) = 10,
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dimZ(T (S6)) = 14.

Proof. The result is obtained by determining a basis for the center. We
solve a linear equation system {xiy = yxi} ranging over all elements xi in
the basis of T (G) and y =

∑
cjbj , where bj are the basis elements of T (G)

and cj is any scalar. □
Let {ei : 1 ≤ i ≤ s} be a basis of Z(T (G)). Then we have eiej =

∑
tkijek

and put Bi := (tkij) for 1 ≤ i ≤ s. Since these matrices mutually commute,

they are simultaneously diagonalizable. We shall denote by v1(i), . . . , vs(i)
the diagonal entries of the diagonalized matrix of Bi and define the matrix
M by Mij := vi(j). Then we get the primitive central idempotents ε1, . . . , εs
by

(ε1, . . . , εs) = (e1, . . . , es)M
−1.

Theorem 3.3. The degrees of the irreducible complex representations af-
forded by every idempotent are given below.

T (PSL(2, 7)) εi ε1 ε2 ε3 ε4 ε5 ε6 ε7
deg εi 1 2 3 3 5 6 9

T (A6) εi ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8
deg εi 1 3 3 4 4 6 6 7
εi ε9 ε10
deg 8 10

T (S6) εi ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8
deg εi 1 1 1 3 3 4 6 7

ε9 ε10 ε11 ε12 ε13 ε14
8 8 9 9 11 15

Proof. This is because that T (G)εi ∼= Mdi and that d2i = dimT (G)εi equals
the number of linearly independent elements in the set {xjεi}, where xj are
the basis elements of T . □

Theorems 3.1 and 3.3 are combined as

165 =12 + 22 + 32 + 32 + 52 + 62 + 92,

336 =12 + 32 + 32 + 42 + 42 + 62 + 62 + 72 + 82 + 102,

758 =12 + 12 + 12 + 32 + 32 + 42 + 62 + 72 + 82 + 82 + 92 + 92 + 112 + 152.

The degrees of irreducible complex representations afforded by every
primitive central idempotents enable us to get the following structure
theorem.

Corollary 3.4. We have that

T (PSL(2, 7)) ∼=M1 ⊕M2 ⊕M3 ⊕M3 ⊕M5 ⊕M6 ⊕M9,
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T (A6) ∼=M1 ⊕M3 ⊕M3 ⊕M4 ⊕M4 ⊕M6 ⊕M6 ⊕M7 ⊕M8

⊕M10,

T (S6) ∼=M1 ⊕M1 ⊕M1 ⊕M3 ⊕M3 ⊕M4 ⊕M6 ⊕M7 ⊕M8

⊕M8 ⊕M9 ⊕M9 ⊕M11 ⊕M15.
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