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BEREZIN-WEYL QUANTIZATION OF HEISENBERG

MOTION GROUPS

To the memory of my father, Alfred Cahen

Benjamin Cahen

Abstract. We introduce a Schrödinger model for the generic represen-
tations of a Heisenberg motion group and we construct adapted Weyl
correspondences for these representations by adapting the method in-
troduced in [ B. Cahen, Weyl quantization for semidirect products, Dif-
ferential Geom. Appl. 25 (2007), 177-190].

1. Introduction

In [12] and [13], we introduced the notion of adapted Weyl correspondence
as a direct generalization of the usual Weyl quantization [1], [27].

Let G be a connected Lie group with Lie algebra g and let π be a unitary
irreducible representation of G on a Hilbert space H. Assume that π is as-
sociated with a coadjoint orbit O ⊂ g∗ of G by the Kirillov-Kostant method
of orbits [34], [35]. The following definition for the notion of adapted Weyl
correspondence is taken from [15] (see also [30], [2] and [3]).

Definition 1. An adapted Weyl correspondence is an isomorphism W from
a vector space A of complex-valued smooth functions on the orbit O (called
symbols) onto a vector space B of (not necessarily bounded) linear operators
on H satisfying the following properties:

(1) the elements of B preserve a fixed dense domain D of H;
(2) the constant function 1 belongs to A, the identity operator IH be-

longs to B and W(1) = IH;
(3) A ∈ B and B ∈ B implies AB ∈ B;
(4) for each f in A the complex conjugate f̄ of f belongs to A and the

adjoint of W(f) is an extension of W(f̄);
(5) the elements of D are C∞-vectors for the representation π, the func-

tions X̃ (X ∈ g) defined on O by X̃(ξ) = ⟨ξ,X⟩ are in A and we

have W(iX̃) v = dπ(X)v for each X ∈ g and each v ∈ D.
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We have constructed adapted Weyl correspondences in different situa-
tions, especially for unitary representations of semidirect products of the
form V ⋊K where K is a semi-simple Lie group acting linearly on a vector
space V [15], [17]. Note that adapted Weyl correspondences have various
applications in harmonic analysis and deformation theory as, for instance,
the construction of covariant star-products on coadjoint orbits [12] and the
study of contractions of Lie group unitary representations [26], [14], [20].

Note also that the notion of adapted Weyl correspondence is close to
that of Stratonovich-Weyl correspondence [41], [28], [29]. Roughly speaking,
Stratonovich-Weyl correspondences do not require to satisfy (5) of Definition
1 but they have to be unitary and G-equivariant [28]. We refer to [18] for a
short discussion of the advantages and disadvantages of these two methods
of quantization (see also [22]).

Let us consider the typical case of the (2n + 1)-dimensional Heisenberg
group G0. Each non-degenerate unitary irreducible representation of G0

has two usual realizations: the Schrödinger realization on L2(Rn) and the
Bargmann-Fock realization on the Fock space [27], [42], an intertwining
operator between these realizations being the Segal-Bargmann transform
[27], [25]. In the setting of the orbit method, the Schrödinger realization can
be obtained from a real polarization of the corresponding coadjoint orbit of
G0 and the Bargmann-Fock realization from a totally complex polarization
[6], [11]. Moreover, the usual Weyl correspondence provides an adaptedWeyl
correspondence for the Schrödinger realization [5], [45]. It is also known
that this adapted Weyl correspondence is related, by the Segal-Bargmann
transform, to the unitary part of the polar decomposition of the Berezin
quantization map associated with the Bargmann-Fock realization [37], [36].

In [19] and [23], we made similar considerations for the generic repre-
sentations of the real diamond group and of Heisenberg motion groups. In
these cases, the generic coadjoint orbits of G don’t necessarily admit real
polarization and the corresponding representations are usually obtained as
holomorphically induced representations on Bargmann-Fock spaces. We can
nonetheless obtain ’Schrödinger realizations’ of these representations from
Bargmann-Fock realizations by conjugation with the Segal-Bargmann trans-
form.

Let G be a Heisenberg motion group, that is, the semidirect product of
the Heisenberg group G0 by a connected compact subgroup K of the unitary
group U(n). Such groups play an important role in the theory of Gelfand
pairs, since the study of a Gelfand pair of the form (K0, N), where K0 is a
compact Lie group acting by automorphisms on a nilpotent Lie group N ,
can be reduced to that of the form (K0,Hn), see in particular [7] and [8].
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In the present paper, we exploit some results of [23] in order to con-
struct an adapted Weyl correspondence for each generic representation π of
G. More precisely, we consider a Schrödinger model for π as in [23], that
is, a realization of π in the Hilbert space L2(Rn) ⊗ V where V is a finite
dimensional complex vector space which carries an irreductible unitary rep-
resentation ρ of K. Then we introduce the map W := W0 ⊗ s−1 where
W0 is the usual Weyl correspondence and s is the Berezin calculus associ-
ated with V , and we show that W is G-equivariant. Moreover, we compute
W−1(dπ(X)) for X ∈ g and we conclude that if K ⊂ SU(n) then W induces
an adapted Weyl correspondence for π.

Note that, in [38], a Schrödinger model and a generalized Segal-Bargmann
transform for the scalar highest weight representations of an Hermitian Lie
group of tube type were introduced and studied (see also [32]). Then one
can hope for futher generalizations of our construction to quasi-Hermitian
Lie groups.

This paper is organized as follows. In Sections 2-4, we review some facts
about the Fock model and the Schrödinger model of the unitary irreducible
representations of an Heisenberg group and about the Weyl correspondence.
In Section 5, we introduce the Heisenberg motion groups and their uni-
tary irreducible representations in the Fock model and in the Schrödinger
model. Section 6 is devoted to the Berezin calculus corresponding to the
Fock model of these representations. The construction of the adapted Weyl
correspondence for π is done in Sections 7-8, as described above.

2. Representations of the Heisenberg group

In this section, we review some known facts about the the Schrödinger
model and the Fock model of the unitary irreducible (non-degenerated) rep-
resentations of the Heisenberg group. We follow the presentation of [19] (see
also [27] and [25]).

For each z, w ∈ Cn, we denote zw :=
∑n

k=1 zkwk and we consider the
symplectic form ω on C2n defined by

ω((z, w), (z′, w′)) =
i

2
(zw′ − z′w).

for z, w, z′, w′ ∈ Cn.
Let G0 be the (2n + 1)-dimensional Heisenberg group consisting of all

elements of the form ((z, z̄), c) where z ∈ Cn and c ∈ R. The multiplication
of G0 is given by

((z, z̄), c) · ((z′, z̄′), c′) = ((z + z′, z̄ + z̄′), c+ c′ + 1
2ω((z, z̄), (z

′, z̄′))).

Let g0 be the Lie algebra of G0 and gc0 its complexification. We write
the elements of gc0 as ((a, b), c) where a, b ∈ Cn and c ∈ C. Then the Lie
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brackets of gc0 are given by

[((a, b), c), ((a′, b′), c′)] = ((0, 0), ω((a, b), (a′, b′))).

Fix a real number λ > 0 and denote by Oλ the orbit of the element
ξλ : ((a, ā), c) → λc of g∗0 under the coadjoint action of G0 (the case λ < 0
can be treated similarly). By the Stone-von Neumann theorem, there exists
a unique (up to unitary equivalence) unitary irreducible representation of G0

whose restriction to the center of G0 is the character ((0, 0), c) → eiλc [27],
[42]. Then this representation is associated with Oλ by the Kirillov-Kostant
method of orbits [34], [35]. More precisely, if we choose the real polarization
at ξλ to be {((ib,−ib), c) : b ∈ Rn, c ∈ R} then we obtain the Schrödinger
representation σ0 realized on L2(Rn) as

(σ0((z0, z̄0), c0)f)(x) = eiλ(c0−y0x+
1
2
x0y0)f(x− x0),

where z0 = x0 + iy0, x0, y0 ∈ Rn [27], [42].
On the other hand, if we choose the complex polarization at ξλ to be

{((0, w), c) : w ∈ Cn, c ∈ C} then we obtain the Bargmann-Fock represen-
tation π0 defined as follows [27].

Let F0 be the Hilbert space of holomorphic functions F on Cn such that

∥F∥2F0
:=

∫
Cn

|F (z)|2 e−|z|2/2λ dµλ(z) < +∞

where dµλ(z) := (2πλ)−n dx dy. Here z = x+ iy with x and y in Rn. Then
π0 is the representation of G0 on F0 given by

(π0(g0)F )(z) = exp
(
iλc0 +

1
2 iz̄0z −

λ
4 |z0|

2
)
F (z + iλz0)

where g = ((z0, z̄0), c0) ∈ G0 and z ∈ Cn.
We consider the action of K on G0 defined by

k · ((z0, z̄0), c0) := ((kz0, kz0), c0).

Let τ be the representation of K on F0 defined by (τ(k)F )(z) := F (k−1z).
Note that, for each k ∈ K and g0 ∈ G0, we have

π0(k · g0) = τ(k)π0(g0)τ(k)
−1.

As in [27], Chapter 1, [31], Section 6 or [25], Section 1.3, we can verify
that the Segal-Bargmann transform B0 : L

2(Rn) → F0 defined by

B0(f)(z) = (λ/π)n/4
∫
Rn

e(1/4λ)z
2+ixz−(λ/2)x2

f(x) dx

is a (unitary) intertwining operator between σ0 and π0, that is, for each
g0 ∈ G0, one has σ0(g0) = B−1

0 π0(g0)B0.
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3. Berezin calculus for Heisenberg groups

We first recall the definition of the Berezin calculus. For each z ∈ Cn, we
consider the ’coherent state’ ez(w) := exp(z̄w/2λ). Then we have F (z) =
⟨F, ez⟩F0 for each F ∈ F0 where ⟨·, ·⟩F0 denotes the scalar product on F0.

Let C0 be the space of all operators (not necessarily bounded) A0 on F0

whose domain contains ez for each z ∈ Cn. Then the Berezin symbol of
A0 ∈ C0 is the function S0(A0) defined on Cn by

S0(A0)(z) :=
⟨A0 ez , ez⟩F0

⟨ez , ez⟩F0

.

Let us consider the action of G0 on Cn defined by g0 · z := z − iλz0
where g0 = ((z0, z̄0), c0). For each function F on Cn (non necessarily in
F0) and each g0 ∈ G0, we denote by L0

g0F the function on Cn defined by

(L0
g0F )(z) = F (g−1

0 ·z). Then we have the following properties of S0, see for
instance [19].

Proposition 3.1. (1) Each A0 ∈ C0 is determined by S0(A0);

(2) For each A0 ∈ C0 and each z ∈ Cn, we have S0(A∗
0)(z) = S0(A0)(z);

(3) We have S0(IF0) = 1;
(4) The map S0 is G0-equivariant with respect to G0, that is, for each

A0 ∈ C0, g0 ∈ G0 and z ∈ Cn, we have π0(g0)
−1A0π0(g0) ∈ C0 and

S0(A0)(g0 · z) = S0(π0(g0)
−1A0π0(g0))(z)

or, equivalently,

L0
g0S

0(A0) = S0(π0(g0)A0π0(g0)
−1);

(5) The map S0 is a bounded operator from the space L2(F0) of all
Hilbert-Schmidt operators on F0 (endowed with the Hilbert-Schmidt
norm) to L2(Cn, µλ) which is one-to-one and has dense range.

Let us recall that the Berezin transform is then the operator B0 on
L2(Cn, µλ) defined by B0 = S0(S0)∗. Thus we can verify that

B0(F )(z) =

∫
Cn

F (w) e|z−w|2/2λ dµλ(w),

see [9], [10], [43], [40] for instance. Also, it is well-known that we have
B0 = exp(λ∆/2) where ∆ = 4

∑n
k=1 ∂

2/∂zk∂z̄k, see [43], [36].
Let U0 be the unitary part in the polar decomposition of S0 (seen as a

bounded operator from L2(F0) to L2(Cn, µλ)), that is, U0 := (B0)−1/2S0.
As a particular case of [18], Proposition 6.1, we have the following result.

Proposition 3.2. U0 is G0-equivariant with respect to π0, that is, for each
A0 ∈ L2(F0) and g0 ∈ G0, we have
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L0
g0U

0(A0) = U0(π0(g0)A0π0(g0)
−1).

For each k ∈ K and each function F on Cn (not necessarily in F0) we
denote by lkF the function on Cn defined by (lkF )(z) := F (k−1z). Then we
have the following result.

Proposition 3.3. For each k ∈ K and A0 operator on F0, we have

S0(τ(k)A0τ(k)
−1) = lkS

0(A0)

and, similarly,

U0(τ(k)A0τ(k)
−1) = lkU

0(A0).

Proof. For the first assertion, note that for each z, w ∈ Cn and k ∈ K, we
have

(τ(k)ez)(w) = ez(k
−1w) = exp(z̄(k−1w)/2λ)

= exp((kz)w/2λ) = ekz(w)

hence τ(k)ez = ekz. This implies that

S0(A0)(k
−1z) =

⟨A0 ek−1z , ek−1z⟩F0

⟨ek−1z , ek−1z⟩F0

=
⟨A0 τ(k)

−1ez , τ(k)
−1ez⟩F0

⟨ez , ez⟩F0

=
⟨τ(k)A0 τ(k)

−1ez , ez⟩F0

⟨ez , ez⟩F0

= S0(τ(k)A0τ(k)
−1)(z).

Now we prove the second assertion. First note that, by using the integral

formula for B0, we see that B0-hence B−1/2
0 - commute with lk for each k ∈

K. Then, denoting by Iτ(k) the operator A0 → τ(k)A0τ(k)
−1 on L2(F0),

we can reformulate the first assertion as S0Iτ(k) = lkS
0 for each k ∈ K.

Consequently we have

U0Iτ(k) = B−1/2
0 S0Iτ(k) = B−1/2

0 lkS
0 = lkB

−1/2
0 S0 = lkU

0,

hence the result. □

4. Weyl correspondence for Heisenberg groups

In this section, we introduce the usual Weyl correspondence and review
some of its properties.
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The Weyl correspondence W0 on R2n is usually defined as follows. For
each f in the Schwartz space S(R2n), let W0(f) be the operator on L2(Rn)
defined by

W0(f)φ(p) = (2π)−n
∫
R2n

eisq f(p+ (1/2)s, q)φ(p+ s) ds dq.

The Weyl calculus can be extended to much larger classes of symbols (see
for instance [33]). In particular, if f(p, q) = u(p)qα where u ∈ C∞(Rn) then
we have

(4.1) W0(f)φ(p) =

(
i
∂

∂s

)α

(u(p+ (1/2)s)φ(p+ s))
∣∣∣
s=0

,

see [44].
Now, we transfer the action of G0 on Cn introduced in Section 3 to R2n

by means of the map j : (p, q) → q − λip, that is, we consider the action of
G0 on R2n defined by

g0 · (p, q) := j−1(g0 · (p, q)) = (p+ x0, q + λy0)

where g0 = ((z0, z̄0), c0) and z0 = x0 + iy0 with x0, y0 ∈ Rn. Then we have
the following result.

Proposition 4.1. [19] Let Ψλ : R2n → g∗0 be the map defined by

⟨Ψλ(p, q), X⟩ := Re((q − λip)ā) + λc

for each X = ((a, ā), c) ∈ g0. Then

(1) For each X ∈ g0 and each (p, q) ∈ R2n, we have

W−1
0 (dσ0(X))(p, q) = i⟨Ψλ(p, q), X⟩.

(2) For each g0 ∈ G0 and each (p, q) ∈ R2n, we have Ψλ(g0 · (p, q)) =
Ad∗(g0)Ψλ(p, q).

(3) The map Ψλ is a diffeomorphism from R2n onto Oλ.

Let L2(L
2(Rn)) be the Hilbert space of all Hilbert-Schmidt operators on

L2(Rn). Then W0 induces a unitary operator from L2(R2n) onto L2(L
2(Rn))

[27].

For each g0 ∈ G0 and each function f on R2n, we denote by L̃0
g0f the

function on R2n defined by L̃0
g0f(p, q) = f(g−1

0 · (p, q)). Then we have the
following result.

Proposition 4.2. [27], [36], [19] W0 is G0-equivariant with respect to σ0,
that is, for each g0 ∈ G0 and each f ∈ L2(R2n), we have

W0(L̃
0
g0f) = σ0(g0)W0(f)σ0(g0)

−1.
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Equivalently, W−1
0 is G0-equivariant with respect to σ0, that is, for each

g0 ∈ G0 and each A0 ∈ L2(L
2(Rn)), we have

W−1
0 (σ0(g0)A0σ0(g0)

−1) = L̃0
g0W

−1
0 (A0).

We can then obtain an adapted Weyl correspondence for σ0 as follows.
Let A be the space of all functions f on Oλ such that (f ◦ Ψλ)(p, q) is a
smooth function which is polynomial in the variable q. Let B be the space
of all differential operators on Rn with coefficients in C∞(Rn). Then from
Proposition 4.1 and Proposition 4.2 we can deduce the following result.

Proposition 4.3. [19] The map W0 : A → B defined by W0(f) := W0(f ◦
Ψλ) is an adapted Weyl correspondence which is G0-equivariant with respect
to σ0 .

Finally, note that W0 (hence W0) can be related to U0 (see Section 3) as
follows. Let IB0 be the unitary map from L2(L

2(Rn)) onto L2(F0) defined
by IB0(A) = B0AB−1

0 and let J be the map from L2(Cn, µλ) onto L2(R2n)
defined by J(F ) = F ◦ j. Then we have the following proposition.

Proposition 4.4. [36], [40] We have U0IB0 = (W0J)
−1.

5. Heisenberg motion groups

LetK be a closed subgroup of U(n). RecallK acts on G0 by k·((z, z̄), c) =
((kz, k̄z), c), see Section 2. Then we can form the semidirect product G :=
G0 ⋊ K with respect to this action. The group G is called a Heisenberg
motion group. The elements of G can be written as ((z, z̄), c, k) where
z ∈ Cn, c ∈ R, k ∈ K and the multiplication of G is given by

((z, z̄), c, k)·((z′, z̄′), c′, k′)
= ((z, z̄) + (kz′, k̄z′), c+ c′ + 1

2ω((z, z̄), (kz
′, k̄z′)), kk′).

Let k and g be the Lie algebras of K and G. The Lie brackets of g are
given by

[((w, w̄), c, A),((w′, w̄′), c′, A′)]

= ((Aw′ −A′w, Āw′ − Ā′w), ω((w, w̄), (w′, w̄′)), [A,A′]).

Now, we give the formulas for the adjoint and coadjoint actions of G.
Let g = ((z0, z̄0), c0, k0) ∈ G where z0 ∈ Cn, c0 ∈ R, k0 ∈ K and X =

((w, w̄), c, A) ∈ g where w ∈ Cn, c ∈ R and A ∈ k. We can easily verify that

Ad(g)X =
d

dt
(g exp(tX)g−1)|t=0 = ((w′, w̄′), c′,Ad(k0)A)

where w′ := k0w − (Ad(k0)A)z0 and

c′ := c+ ω
(
(z0, z̄0), (k0w, ¯k0w)

)
− 1

2ω
(
(z0, z̄0), (Ad(k0)A)z0,Ad(k0)A)z0)

)
.
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Now, let us denote by ξ = ((u, ū), d, ϕ), where u ∈ Cn, d ∈ R and ϕ ∈ k∗,
the element of g∗ defined by

⟨ξ, ((w, w̄), c, A)⟩ = ω((u, ū), (w, w̄)) + dc+ ⟨ϕ,A⟩.

Also, for u, v ∈ Cn, we denote by (v, v̄)× (u, ū) the element of k∗ defined by

⟨(v, v̄)× (u, ū), A⟩ := ω((u, ū), (Av, Āv))

for A ∈ k. Then, from the formula for the adjoint action of G, we deduce
that, for each ξ = ((u, ū), d, ϕ) ∈ g∗ and g = ((z0, z̄0), c0, k0) ∈ G, we have

Ad∗(g)ξ

=
(
(k0u− dz0, k0u− dz0), d,Ad

∗(k0)ϕ+ (z0, z̄0)× (k0u− d
2z0, k0u− d

2z0)
)
.

From this, we see that if a coadjoint orbit ofG contains a point ((u, ū), d, ϕ)
with d ̸= 0 then it also contains a point of the form ((0, 0), d, ϕ0). Such an
orbit is called generic.

We consider the unitary irreducible representations of G associated with
the integral generic orbits. These representations are called generic and we
can realize them in Fock spaces as holomorphic induced representations by
using the general method of [39], Chapter XII.

More precisely, let us consider a unitary irreducible representation ρ of K
on a (finite-dimensional) complex vector space V and let us fix an element
ξ0 = ((0, 0), d, ϕ0) of g

∗. We assume that d ̸= 0 and that the orbit o(ϕ0) of
ϕ0 for the coadjoint action of K is associated with ρ as in [21] and [46].

Let K̃ be the subgroup of G defined by K̃ := {((0, 0), c, k) : c ∈ R, k ∈
K} and let ρ̃ be the representation of K̃ on V defined by ρ̃((0, 0), c, k) =
eiλcρ(k) for each c ∈ R and k ∈ K. Then we can easily verify that the rep-
resentation π of G which is holomorphically induced from ρ̃ can be realized
in the Hilbert space F of all holomorphic functions f : Cn → V such that

∥f∥2F :=

∫
Cn

∥f(z)∥2V e−|z|2/2λ dµλ(z) < +∞

as

(π(g)f)(z) = exp
(
iλc0 +

1
2 iz̄0z −

λ
4 |z0|

2
)
ρ(k) f(k−1(z + iλz0))

where g = ((z0, z̄0), c0, k) ∈ G and z ∈ Cn.
Note that we have F = F0 ⊗ V . For f0 ∈ F0 and v ∈ V , we denote by

f0 ⊗ v the function z → f0(z)v. It is clear that

⟨f0 ⊗ v, f1 ⊗ w⟩F = ⟨f0, f1⟩F0⟨v, w⟩V
for each f0, f1 ∈ F0 and each v, w ∈ V . Moreover, if A0 is an operator of
F0 and A1 is an operator of V then we denote by A0 ⊗ A1 the operator of



28 B. CAHEN

F defined by (A0 ⊗ A1)(f0 ⊗ v) = A0f0 ⊗ A1v for each f0 ∈ F0 and each
v ∈ V . Then we have the decomposition formula

(5.1) π((z0, z̄0), c0, k) = π0((z0, z̄0), c0)τ(k)⊗ ρ(k)

for each z0 ∈ Cn, c0 ∈ R and k ∈ K. This is precisely Formula (3.18) in [7].
Now, we introduce the Schrödinger representations of G by extending

B0 to V -valued functions. More precisely, we consider the map B from
L2(Rn, V ) ∼= L2(Rn)⊗V to F ∼= F0 ⊗V defined by B := B0 ⊗ IV . Then we
have the integral formula

B(f)(z) = (λ/π)n/4
∫
Rn

e(1/4λ)z
2+ixz−(λ/2)x2

f(x) dx

for each f ∈ L2(Rn, V ).
This allows us to imitate the case of the Heisenberg groups and to define

the Schrödinger representation σ of G on L2(Rn, V ) by σ(g) := B−1π(g)B.
Similarly, for each k ∈ K we define the operator τ̃ of L2(Rn) by τ̃(k) :=

B−1
0 τ(k)B0. Then, from Equation 5.1 we immediately obtain the decompo-

sition formula

(5.2) σ(g) = σ0(g0)τ̃(k)⊗ ρ(k)

for each g0 ∈ G0, k ∈ K and g = (g0, k) ∈ G.

6. Berezin correspondence for Heisenberg motion groups

In this section, we introduced the Berezin correspondence S associated
with π and show that S is G-equivariant.

Recall that the Berezin calculus on o(ϕ0) associates with each operator
A1 on V a complex-valued function s(A1) on the orbit o(ϕ0) which is called
the symbol of the operator A1 (see [9]). We denote by Sy(o(ϕ0)) the space
of all such symbols. Moreover, for each k ∈ K and each function u on o(ϕ0),

we denote by l̃ku the function on o(ϕ0) defined by l̃ku(ϕ) = u(Ad∗(k)−1ϕ).
The following properties of the Berezin calculus are well-known, see [4],

[12], [24] and [46].

Proposition 6.1. (1) The map A1 → s(A1) is injective.

(2) For each operator A1 on V , we have s(A∗
1) = s(A1).

(3) For each operator A1 on V , k ∈ K and ϕ ∈ o(ϕ0), we have

s(A1)(Ad
∗(k)ϕ) = s(ρ(k)−1A1ρ(k))(ϕ)

and, equivalently, for each operator A1 on V and each k ∈ K, we
have

s(ρ(k)A1ρ(k)
−1) = l̃ks(A1).
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(4) For X ∈ k and ϕ ∈ o(ϕ0), we have s(dρ(X))(ϕ) = i⟨ϕ,X⟩.

In particular, we see that s is an adapted Weyl transform on o(ϕ0) in the
sense of Definition 1.

Now, S is defined as follows. For each operator A0 on F0 and each
operator A1 on V , we set S(A0⊗A1) := S0(A0)⊗s(A1) and then we extend
S by linearity to operators on F .

Consider the action of G on Cn × o(ϕ0) defined by g · (z, ϕ) = (g ·
z,Ad∗(k)−1ϕ) where g = (g0, k) ∈ G. Then, for each g ∈ G and each
function F on Cn × o(ϕ0), we denote by LgF the function on Cn × o(ϕ0)
defined by LgF (z, ϕ) := F (g−1 · (z, ϕ)).

Proposition 6.2. The map S is G-equivariant with respect to π, that is,
for each operator A on F and each g ∈ G, we have S(π(g)−1Aπ(g)) =
Lg−1S(A).

Proof. It is sufficient to consider the case where A = A0⊗A1 for A0 operator
on F0 and A1 operator on V .

Let g = (g0, k) ∈ G. By Equation 5.1, we have

π(g)−1Aπ(g) = τ(k)−1π0(g0)
−1A0π0(g0)τ(k)⊗ ρ(k)−1A1ρ(k).

Then, by using Proposition 3.1, Proposition 3.3 and Proposition 6.1, we
get

S(π(g)−1Aπ(g)) = S0(τ(k)−1π0(g0)
−1A0π0(g0)τ(k))⊗ s(ρ(k)−1A1ρ(k))

= lk−1S0(π0(g0)
−1A0π0(g0))⊗ l̃k−1s(A1)

= lk−1L0
g−1
0
(S0(A0))⊗ l̃k−1s(A1).

This implies that

S(π(g)−1Aπ(g))(z, ϕ) = S0(A0)(kz − iλz0)s(A1)(Ad∗(k)ϕ)

= (S0(A0)⊗ s(A1))(g · z,Ad∗(k)ϕ)

for each (z, ϕ) ∈ Cn × o(ϕ0). This gives the desired result. □

7. Weyl correspondence for Heisenberg motion groups

In this section, we first introduce the Berezin-Weyl correspondence, in the
spirit of [15].

Recall that the Berezin calculus s is an isomorphism from End(V ) onto
Sy(o(φ0)), see Section 6. We say that a complex-valued smooth function
f : (p, q, ϕ) → f(p, q, ϕ) is a symbol on R2n × o(ϕ0) if for each (p, q) ∈ R2n

the function f(p, q, ·) : ϕ → f(p, q, ϕ) is in Sy(o(ϕ0)). In this case, we

denote f̂(p, q) := s−1(f(p, q, ·)). A symbol f on R2n × o(ϕ0) is called an

S-symbol if the function f̂ belongs to the Schwartz space S(R2n,End(V ))
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of rapidly decreasing smooth functions on R2n with values in End(V ). We
define similarly the notion of L2-symbol. For each S-symbol on R2n×o(φ0),
we define the operator W (f) on the Hilbert space L2(Rn, V ) = L2(Rn)⊗ V
by

W (f)φ(p) = (2π)−n
∫
R2n

eitq f̂(p+ (1/2)t, q)φ(p+ t) dt dq.

Note that W can be extended to much larger classes of symbols in the
same way as W0, see Section 4. It is also clear that we have

W (f0 ⊗ f1) = W0(f0)⊗ s−1(f1)

for each f0 ∈ S(Rn) and f1 ∈ Sy(o(ϕ0)).
Now, we consider the action of G on R2n × o(ϕ0) defined by

g · (p, q, ϕ) := (g0 · (p, q),Ad∗(k)ϕ)

for each g = (g0, k) ∈ G and each (p, q, ϕ) ∈ R2n × o(ϕ0). Then, for each

function f on R2n × o(ϕ0), we denote by L̃gf the function defined on R2n ×
o(ϕ0) by L̃gf(p, q, ϕ) := f(g−1 · (p, q, ϕ)).

Proposition 7.1. The map W−1 is G-equivariant with respect to σ, that
is, we have W−1(σ(g)−1Aσ(g)) = L̃g−1(W−1(A)) for each g ∈ G and each

Hilbert-Schmidt operator A on L2(Rn, V ).
Equivalently, W is G-equivariant with respect to σ, that is, for each g ∈ G

and each L2-symbol f , we have σ(g)−1W (f)σ(g) = W (Lg−1f).

Proof. The proof is based on the equivariance of s and U0. As usual, we
can assume, without loss of generality, that A = A0 ⊗ A1 with A0 operator
on L2(Rn) and A1 operator on V .

Let g = (g0, k) ∈ G. Then, by Equation 5.2, we have

W−1(σ(g)−1Aσ(g))

= (W−1
0 ⊗ s)

(
τ̃(k)−1σ0(g0)

−1A0σ0(g0)τ̃(k))⊗ ρ(k)−1A1ρ(k)
)

= W−1
0

(
τ̃(k)−1σ0(g0)

−1A0σ0(g0)τ̃(k)
)
⊗ s(ρ(k)−1A1ρ(k)).

But, by using successively Proposition 4.4, the second assertion of Propo-
sition 3.3 and Proposition 3.2, we can write

W−1
0

(
τ̃(k)−1σ0(g0)

−1A0σ0(g0)τ̃(k)
)

= (JU0IB0)
(
τ̃(k)−1σ0(g0)

−1A0σ0(g0)τ̃(k)
)

= JU0
(
τ(k)−1B0σ0(g0)

−1A0σ0(g0)B
−1
0 τ(k)

)
= (Jlk−1U0)

(
π0(g0)

−1B0A0B
−1
0 π0(g0)

)
= (Jlk−1L0

g−1
0
U0IB0)(A0)



BEREZIN-WEYL QUANTIZATION OF HEISENBERG MOTION GROUPS 31

which implies that

W−1
0

(
τ̃(k)−1σ0(g0)

−1A0σ0(g0)τ̃(k)
)
(p, q)

= (lk−1L0
g−1
0
U0IB0)(A0)(j(p, q))

= U0IB0(A0)(g0 · (k · j(p, q)))
= JU0IB0(A0)(j

−1(g0 · (k · j(p, q)))
= W−1

0 (A0)(g · (p, q)).

On the other hand, by (3) of Proposition 6.1, we have

s(ρ(k)−1A1ρ(k))(ϕ) = s(A1)(Ad
∗(k)ϕ).

Then we can conclude that

W−1(σ(g)−1Aσ(g)) = L̃g(W
−1
0 (A0)⊗ s(A1))

= L̃g(W
−1
0 ⊗ s)(A0 ⊗A1) = L̃gW

−1(A).

Thus we have proved the first assertion of the proposition. The second
assertion immediately follows. □

8. Adapted Weyl correspondences

In this section, we first compute W−1(dσ(X)) for X ∈ g. We have the
following result.

Proposition 8.1. [23]

(1) For each X = (X0, A) with X0 ∈ g0 and A ∈ k, we have

dσ(X) = (dσ0(X0) + dτ̃(A))⊗ IV + IF0 ⊗ dρ(A).

(2) For each A = (akl) ∈ k, we have

dτ̃(A) =
1

2λ

∑
k,l

akl
∂2

∂pk∂pl
+
1

2

∑
k,l

akl

(
pk

∂

∂pl
− pl

∂

∂pk

)
−λ

2
p(Ap)+

1

2
Tr(A).

Note that (1) is a simple consequence of Equation 5.2. From this propo-
sition, we can deduce the following result.

Proposition 8.2. For each X = ((a, ā), c, A) ∈ g and (p, q, ϕ) ∈ R2n×o(ϕ0),
we have

W−1(dσ(X))(p, q, φ) = iλc+
1

2
Tr(A) +

i

2

(
āj(p, q) + aj(p, q)

)
− 1

2λ
j(p, q)(Aj(p, q)) + s(dρ(A))(ϕ).
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Proof. Let X = ((a, ā), c, A) ∈ g. Consider the following symbols:

f1(p, q, ϕ) :=
i

2

(
āj(p, q) + aj(p, q)

)
f2(p, q, ϕ) :=− 1

2λ
j(p, q)(Aj(p, q))

f3(p, q, ϕ) :=s(dρ(A))(ϕ).

Then we have

f1(p, q, ϕ) =
i

2
(a+ ā)q − λ

2
(a− ā)p

and, by using Equation 4.1, we get

W (f1) = −λ

2
(a− ā)p− 1

2

n∑
k=1

(ak + āk)
∂

∂pk
.

Similarly, writing

f2(p, q, ϕ) = − 1

2λ

(
q(Aq) + λ2p(Ap) + λip(Aq)− λiq(Ap)

)
,

we get

W (f2) =
1

2λ

∑
k,l

akl
∂2

∂pk∂pl
− 1

2

∑
k,l

akl

(
pl

∂

∂pk
− pk

∂

∂pl

)
− λ

2
p(Ap).

On the other hand, by (4) of Proposition 6.1, we have (W (f3)φ)(p) =
(dρ(A)φ)(p) for each φ ∈ C∞

0 (Rn, V ). The result then follows by Propo-
sition 8.1. □

Note that, since k ⊂ u(n), for each A ∈ k and each (p, q) ∈ R2n, we have

j(p, q)Aj(p, q) ∈ iR and Tr(A) ∈ iR. Then, for (p, q, ϕ) ∈ Rn × o(ϕ0), the
map X → −iW−1(dσ(X))(p, q, ϕ) is a real-valued linear map on g. We
denote this map by Ψ(p, q, ϕ).

Proposition 8.3. (1) For each X ∈ k and each (p, q, ϕ) ∈ R2n × o(ϕ0),
we have

W−1(dσ(X))(p, q, ϕ) = i⟨Ψ(p, q, ϕ), X⟩.
Also, for each (p, q, ϕ) ∈ R2n × o(ϕ0), we have

Ψ(p, q, ϕ)

=

(
(−ij(p, q), ij(p, q)), λ,− i

2
Tr+(j(p, q), j(p, q))× (j(p, q), j(p, q)) + ϕ

)
.

(2) For each g ∈ G and each (p, q, ϕ) ∈ R2n × o(ϕ0), we have Ψ(g ·
(p, q, ϕ)) = Ad∗(g)Ψ(p, q, ϕ).

(3) Assume that K ⊂ SU(n). Then Ψ is a diffeomorphism from R2n ×
o(ϕ0) onto the coadjoint orbit O(ξ0) ⊂ g∗ of ξ0.
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Proof. (1) immediately follows from the definition of Ψ and (2) from the G-
equivariance of W−1. To prove (3), first note that we have Ψ(0, 0, ϕ0) = ξ0
since the hypothesis K ⊂ SU(n) implies that Tr(A) = 0 for each A ∈ k.
Then, by (2), we see that Ψ is a surjective map from Rn× o(ϕ0) onto O(ξ0).
On the other hand, by (1), Ψ is injective, hence bijective.

It remains to show that Ψ is regular. By (2) again, it is sufficient to verify
that Ψ is regular at (0, 0, ϕ0). But we have

(dΨ)(0,0,ϕ0)(u, v, ad
∗(A)ϕ0) = ((−i(v − iλu), i(v + iλu)), 0, ad∗(A)ϕ0)

for each (u, v) ∈ R2n and A ∈ k, hence the result. □
Finally, we obtain an adapted Weyl correspondence for σ by transferring

W to O(ξ0). We say that a smooth function f on O(ξ0) is a symbol on O(ξ0)
(respectively a P -symbol, an S-symbol) if f ◦Ψ is a symbol (respectively a
P -symbol, an S-symbol) for W . From the properties of W , we obtain the
following proposition.

Proposition 8.4. Let A be the space of P -symbols on O(ξ0) and let B be the
space of differential operators on Rn with coefficients in C∞(Rn, V ). Then
the map W : A → B that assigns to each f ∈ A the operator W (f ◦ Ψ) on
L2(Rn, V ) is an adapted Weyl correspondence in the sense of Definition 1.
Moreover, W is G-equivariant with respect to σ.
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