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ARITHMETIC OF POSITIVE INTEGERS HAVING PRIME

SUMS OF COMPLEMENTARY DIVISORS

Kenichi Shimizu

Abstract. We study a class of integers called SP numbers (Sum Prime
numbers). An SP number is by definition a positive integer d that gives
rise to a prime number (a + b)/gcd(4, 1 + d) from every factorization
d = ab. We also discuss properties of SP numbers in relations with
arithmetic of imaginary quadratic fields (least split primes, exponents
of ideal class groups). Further we point out that special cases of SP
numbers provide the problems of distribution of prime numbers (twin
primes, Sophi-Germain primes, quadratic progressions). Finally, we con-
sider the problem whether there exist infinitely many SP numbers.

1. Introduction

The aim of this paper is to investigate a class of integers considered in
Shimizu and Goto [6]. Our motivation was to generalize relationship among
the well known phenomena that x2 + x + 41 =primes for x = 0, 1, · · · , 39,
that the class number of Q(

√
−163) is one and that 163 is an SP number.

Let d be a positive integer with 4 ∤ d. Then, it is easy to see that, for every
factorization d = ab (a, b ≥ 1), the sum a + b is divisible by the greatest
common divisor (4, 1+ d), that is, (4, 1+ d) = 1, 2 or 4 according as d ≡ 2, 1
or 3 (mod 4). Taking this into consideration, we shall say that d is an SP
number (Sum Prime number) if (a+b)/(4, 1+d) is a prime number for every
factorization d = ab.

For example, 30 (≡ 2 mod 4) is an SP number: for the factorizations
30 = 1 ·30 = 2 ·15 = 3 ·10 = 5 ·6, each sum of two divisors is always a prime
number, that is, 1 + 30 = 31, 2 + 15 = 17, 3 + 10 = 13 and 5 + 6 = 11.

In this paper, we give a sufficient condition for a square-free integer d to
be an SP number. Let qD be the least prime number that splits completely
in the imaginary quadratic field Q(

√
−d) with the discriminant −D, where

D = 4d or D = d if d ≡ 1, 2 (mod 4) or d ≡ 3 (mod 4), respectively. We
show the following theorem.

Theorem 3.1. Suppose d ̸= 1, 3. If qD >
√

(1 + d)/(4, 1 + d), then d is an
SP number.

We also study in Section 4 special cases of SP numbers related to prime
distribution. For example, an SP number 2p with p an odd prime produces
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a triple of primes {p, p+2, 2p+1} (twin and Sophi-Germain primes), and an
SP number p2 is related to a quadratic progression for an odd prime number
p.

Finally in Section 5, we investigate the following conjecture.

Conjecture 5.1. There exist infinitely many SP numbers.

For a prime number p, denote by S(p) the set of SP numbers d taking the
prime value p = (a+ b)/(4, 1+d) for a factorization d = ab. Then the above
Conjecture 5.1 will be shown to be equivalent to the following conjecture.

Conjecture 5.3. There exist infinitely many prime numbers p such that
S(p) ̸= ∅.

Recently, topics related to SP numbers are discussed in very interesting
papers [1] and [3].

2. Preliminary results

First, let us list the SP numbers less than 500.
The twenty-one SP numbers ≡ 2 (mod 4) are:
2, 6, 10, 22, 30, 42, 58, 70, 78, 82, 102, 130, 190, 210, 310, 330, 358, 382,

442, 462, 478.
The thirty-six SP numbers ≡ 1 (mod 4) are:
5, 9, 13, 21, 25, 33, 37, 57, 61, 73, 85, 93, 105, 121, 133, 145, 157, 165,

177, 193, 205, 213, 217, 253, 273, 277, 313, 345, 357, 361, 385, 393, 397, 421,
445, 457.

The twenty-four SP numbers ≡ 3 (mod 4) are:
7, 11, 19, 27, 43, 51, 67, 75, 91, 115, 123, 147, 163, 187, 211, 235, 267,

283, 331, 355, 403, 427, 435, 451.

Next, we remark some properties of SP numbers with square factors.

Proposition 2.1. Suppose that d is a positive integer satisfying d = k2m
for integers k > 1 and m ≥ 1.

(1) If d ≡ 2 (mod 4), then d is not an SP number.
(2) If d ≡ 1 (mod 4) is an SP number, then m = 1 and k is an odd

prime number.
(3) If d ≡ 3 (mod 4) is an SP number, then m = 3 and k is an odd

prime number.

Proof. (1) An integer k+km = (1+m)k is not a prime number since k > 1.
Thus d = k2m is not an SP number.

(2) Since d is an SP number, an integer (k + km)/2 = k · (1 + m)/2 is
a prime number. By k > 1, it follows that k is an odd prime number and
(1 +m)/2 = 1, namely, m = 1.
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(3) Since d is an SP number, an integer (k + km)/4 = k · (1 +m)/4 is a
prime number. Thus k is an odd prime number and (1+m)/4 = 1, namely,
m = 3. □

As for square-free SP numbers, we note the following

Proposition 2.2. Suppose d > 3. If d ≡ 3 (mod 4) is a square-free SP
number, then d = 7 or d ≡ 3 (mod 8).

Proof. Let d = ab ≡ 3 (mod 4). Then we may assume that a ≡ 1 (mod
4) and b ≡ 3 (mod 4). Put a = 4k + 1 and b = 4l + 3, where k and l are
non-negative integers satisfying (k, l) ̸= (0, 0).

Since d is an SP number, (a + b)/4 = k + l + 1 is a prime number. If
k+ l+1 = 2, then (k, l) = (1, 0) or (k, l) = (0, 1). If (k, l) = (1, 0), then
d = 15, which is not an SP number. If (k, l) = (0, 1), then d = 7, which
is an SP number. If k + l + 1 is an odd prime number, then k + l is even.
Since ab = (4k + 1)(4l + 3) = 16kl + 4{2k + (k + l)}+ 3, we get d = ab ≡ 3
(mod 8). □

3. SP numbers and imaginary quadratic fields

In this section we shall discuss SP numbers in relation with arithmetic
of the imaginary quadratic fields. Assume that d is a square-free positive
integer throughout this section.

Denote by Q(
√
−d) the imaginary quadratic field with the discriminant

−D, where

D =

{
4d if d ≡ 1, 2 (mod 4);
d if d ≡ 3 (mod 4).

(3.1)

Let ω =
√
−d or ω = (1 +

√
−d)/2 according as d ≡ 1, 2 or d ≡ 3

(mod 4). Define fD(x) by

fD(x) := N(x+ ω) =

{
x2 + d if d ≡ 1, 2 (mod 4);
x2 + x+ (1 + d)/4 if d ≡ 3 (mod 4),

where N(x + ω) is the norm of x + ω. A prime number p is called a split

prime of Q(
√
−d) if

(
−D

p

)
= 1, a ramified prime if

(
−D

p

)
= 0 and an

inert prime if

(
−D

p

)
= −1, where

(
−D

p

)
is the Kronecker symbol. Let

qD be the least split prime of Q(
√
−d). We give a sufficient condition for d

to be an SP number.
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Theorem 3.1. Suppose d ̸= 1, 3. If qD >
√
(1 + d)/(4, 1 + d), then d is an

SP number.

For the proof of Theorem 3.1 we show the following lemmas.

Lemma 3.2. The prime divisors of fD(x) are only split primes or ramified
primes of Q(

√
−d).

Proof. Assume that p is an inert prime and that p | fD(x). Then we have
p | (x + ω)(x + ω′), where x + ω′ is the conjugate of x + ω. Since (p) is a
prime in Q(

√
−d), p divides x+ ω or x+ ω′, which is a contradiction. □

Lemma 3.3. Suppose d ̸= 1, 3. If d = ab (a ≥ 1, b ≥ 1), then (a+b)/(4, 1+
d) is divisible only by split primes in Q(

√
−d).

Proof. Since d ̸= 1, 3, it holds that (a+ b)/(4, 1 + d) > 1.
We claim that (a+ b)/(4, 1+d) divides fD(x) for some integer x, because

fD(a) = a(a + b), fD(a) = 2a · (a + b)/2 or fD((a − 1)/2) = a · (a + b)/4
according as d ≡ 2, 1 or 3 (mod 4). Hence the prime divisors of (a+b)/(4, 1+
d) are split primes or ramified primes by Lemma 3.2.

Further we show that (a+b)/(4, 1+d) is not divisible by ramified primes.
Assume that (a + b)/(4, 1 + d) is divisible by a ramified prime p. When
d ≡ 1 (mod 4), the ramified prime p = 2 does not divide (a + b)/(4, 1 +
d) = (a + b)/2. Thus we can assume that p | d. If p | a, then p | b by
p | {(a + b)/(4, 1 + d)}, which is a contradiction since d is a square-free
integer by assumption in this section. By the same way p | b also derives a
contradiction. Thus (a+ b)/(4, 1 + d) is divisible only by split primes. □
Proof of Theorem 3.1.

Assume that d is not an SP number. Then (a + b)/(4, 1 + d) is not a
prime number for some factorization d = ab. By Lemma 3.3, the prime
divisors of (a + b)/(4, 1 + d) are only split primes in Q(

√
−d). Hence we

get q2D ≤ (a + b)/(4, 1 + d) ≤ (1 + d)/(4, 1 + d), and consequently qD ≤√
(1 + d)/(4, 1 + d). Therefore qD >

√
(1 + d)/(4, 1 + d) implies that d is

an SP number. □
Let eD be the exponent of the class group of Q(

√
−d), which is the least

positive integer n such that an is principal for any ideal a in Q(
√
−d).

Shimizu and Goto [6] gave the following sufficient condition for a square-
free positive integer d to be an SP number.

Theorem 3.4. Suppose d ̸= 1, 3.
(1) If d ≡ 1, 2 (mod 4), then eD ≤ 2 implies that d is an SP number.
(2) If d ≡ 3 (mod 4) and (1 + d)/4 is not a square, then eD ≤ 2 implies

that d is an SP number.
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In [5], H. Möller stated the same result as a property of an imaginary qua-
dratic field with eD ≤ 2 without the notion of SP numbers. Some conditions
for eD ≤ 2 are considered in [7] and [8].

Note that only sixty-five imaginary quadratic fields Q(
√
−d) with eD ≤ 2

are known and that at most one possible such unknown could exist in the
range of |D| > 5460 (cf.[2] Table 5, [9] Theorem 1).

Example. When |D| = 5460 = 4 · 1365, d = 1365 is the SP number
and gives rise to eight prime numbers by 1365 = 3 · 5 · 7 · 13 ≡ 1 (mod 4):
(1+1365)/2 = 683, (3+5 · 7 · 13)/2 = 229, (5+3 · 7 · 13)/2 = 139, (7+3 · 5 ·
13)/2 = 101, (13+ 3 · 5 · 7)/2 = 59, (3 · 5+ 7 · 13)/2 = 53, (3 · 7+ 5 · 13)/2 =
43, (3 · 13 + 5 · 7)/2 = 37.

We compare the condition qD >
√

(1 + d)/(4, 1 + d) with the condition
eD ≤ 2.

Theorem 3.5. (cf.[5], [8]) (1) If d ≡ 2 (mod 4), then eD ≤ 2 if and only if
qD >

√
1 + d.

(2) If d ≡ 1 (mod 4), then eD ≤ 2 implies qD >
√
(1 + d)/2.

(3) If d ≡ 3 (mod 4), then eD ≤ 2 implies qD ≥
√

(1 + d)/4. The equality
holds if and only if (1 + d)/4 is a square.

Proof. See [5] (p.184, Lemma 4) and [8] (p.264, Corollary 4.3). □

Theorem 3.5 (1) derives that there exist only finitely many SP numbers
d ≡ 2 (mod 4) satisfying qD >

√
1 + d. If d ≡ 1 (mod 4), then the converse

of Theorem 3.5 (2) does not hold for d =73, 193, 205, 217, 553 and 697, and
there exist no other such integers d less than 108. Hence, for d > 697, we
predict that eD ≤ 2 is equivalent to qD >

√
(1 + d)/2. If d ≡ 3 (mod 4),

then the converse of Theorem 3.5 (3) is unknown at the time of writing this
paper, but appears to be true.

Thus it seems that there exist only finitely many imaginary quadratic
fields Q(

√
−d) satisfying qD >

√
(1 + d)/(4, 1 + d).

In SP numbers listed in Section 2 up to 500, the following square-free SP
numbers d do not satisfy qD >

√
(1 + d)/(4, 1 + d):

d =82, 310, 358, 382, 442 and 478 ≡ 2 (mod 4);
d =61, 145, 157, 213, 277, 313, 393, 397, 421, 445 and 457 ≡ 1 (mod 4);
d =211, 283, 331, 355 and 451 ≡ 3 (mod 4).

There are also many SP numbers more than 500 that do not satisfy qD >√
(1 + d)/(4, 1 + d). In Section 5, we will discuss the conjecture that infin-

itely many SP numbers should exist.

Finally, we pose the following conjectures about necessary conditions for
SP numbers. Let tD denote the number of distinct prime divisors of D.
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Conjecture 3.6. If d is an SP number, then tD ≤ qD.

Conjecture 3.6 holds for all SP numbers less than 106.
We expect qD in the above may be replaced with a constant as in the

following

Conjecture 3.7. If d is an SP number with D as in (3.1), then{
tD ≤ 5 (d ≡ 2, 3 mod 4);
tD ≤ 6 (d ≡ 1 mod 4).

Conjecture 3.7 holds for all SP numbers less than 109.

4. Special cases of SP numbers

In this section we study special cases of SP numbers, which are related
to the problem of distribution of prime numbers.

(I) For an odd prime number p, if 2p ≡ 2 (mod 4) is an SP number, then
{p, 2+p, 1+2p} is a triple of prime numbers. In particular, p and 2+p are
twin primes, and p is a Sophi-Germain prime since {p, 1 + 2p} is a prime
pair.

(II) For odd prime numbers p1 and p2 (p1 < p2), if p1p2 ≡ 1 (mod 4)
is an SP number, then we have four prime numbers of the form {p1, (p1 +
p2)/2, p2, (1 + p1p2)/2}. In particular, {p1, (p1 + p2)/2, p2} is a triple of
prime numbers in an arithmetical progression.

As stated in Proposition 2.1, if an SP number d is divisible by a square,
then d = p2 or 3p2 for an odd prime number p.

(III) If p2 is an SP number for an odd prime number p, then {p, (1+p2)/2}
is a prime pair. Putting p = 2n+1, we get a prime pair {2n+1, 2n2+2n+1}.

(IV) If 3p2 is an SP number for an odd prime number p, then {p, (3 +
p2)/4, (1+3p2)/4} is a triple of prime numbers. Putting p = 2n+1, we get
a triple of prime numbers {2n+ 1, n2 + n+ 1, 3n2 + 3n+ 1}.

5. The number of SP numbers

Finally we discuss the number of SP numbers.
The following table gives the number of SP numbers less than 10n (2 ≤

n ≤ 7).
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n SP numbers

100 31
1000 123

10000 532
100000 2728

1000000 15402
10000000 98294

We pose the following:

Conjecture 5.1. There exist infinitely many SP numbers.

We have good grounds for believing that Conjecture 5.1 holds. First, as
stated in Section 4, if 2p is an SP number for an odd prime number p, then
2 + p and 1 + 2p are both prime numbers. Conversely, if 2 + p and 1 + 2p
are both prime numbers, then 2p is an SP number. It is conjectured that
there exist infinitely many triples of prime numbers {p, 2+ p, 1+ 2p} (see,
e.g., [1]). Thus we predict that there exist infinitely many SP numbers 2p.
Second, we believe Conjecture 5.1 for the reason that Theorem 5.4 holds
below.

For a prime number p, denote by S(p) the set of SP numbers d taking the
prime value p = (a + b)/(4, 1 + d) for a factorization d = ab. For example,
S(7) = {6, 10, 13, 27, 33, 75, 115, 147, 187} by the following table.

SP numbers p = a+ b

6 = 1 · 6 7 = 1 + 6
10 = 2 · 5 7 = 2 + 5

SP numbers p = (a+ b)/2

13 = 1 · 13 7 = (1 + 13)/2
33 = 3 · 11 7 = (3 + 11)/2

SP numbers p = (a+ b)/4

27 = 1 · 27 7 = (1 + 27)/4
75 = 3 · 25 7 = (3 + 25)/4
115 = 5 · 23 7 = (5 + 23)/4
147 = 7 · 21 7 = (7 + 21)/4
187 = 11 · 17 7 = (11 + 17)/4

It is easy to see that S(p) is a finite set for every prime number p. We
pose the following conjecture.

Conjecture 5.2. For every prime number p we have S(p) ̸= ∅.
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Conjecture 5.2 holds for all prime numbers less than 3 × 106. Even if
Conjecture 5.2 does not hold, it appears that there exist very few prime
numbers p such that S(p) = ∅. Thus we expect the following

Conjecture 5.3. There exist infinitely many prime numbers p such that
S(p) ̸= ∅.

We have the following theorem.

Theorem 5.4. Conjecture 5.1 is equivalent to Conjecture 5.3.

For the proof of Theorem 5.4, let us prepare two lemmas.
Let m(p) be the least SP number in S(p) if S(p) ̸= ∅. For example,

m(7) = 6.

Lemma 5.5. The inequality m(p) ≥ p − 1 holds for any prime number p
with S(p) ̸= ∅.

Proof. If d ∈ S(p), then there exists a factorization d = ab such that p =
(a+ b)/(4, 1 + d). Since p = (a+ b)/(4, 1 + d) ≤ (1 + d)/(4, 1 + d), it holds
p ≤ p(4, 1+d) ≤ 1+d, and consequently p ≤ 1+d, that is, d ≥ p−1. Hence
m(p) ≥ p− 1 holds. □

Let Pk be the set of prime numbers p satisfying S(p) ̸= ∅ and m(p) = k
for a positive integer k.

Lemma 5.6. The number of elements in Pk is finite for every positive
integer k.

Proof. By Lemma 5.5 we get k = m(p) ≥ p− 1. Thus p ≤ k + 1 holds, that
is, Pk is a finite set. □
Proof of Theorem 5.4.

We show that Conjecture 5.1 implies Conjecture 5.3. Suppose that there
exist infinitely many SP numbers. Since (1 + d)/(4, 1 + d) is the prime
number for every SP number d, we obtain d ∈ S((1 + d)/(4, 1 + d)). Hence
S((1 + d)/(4, 1 + d)) ̸= ∅ for every SP number d. Therefore there exist
infinitely many prime numbers p = (1 + d)/(4, 1 + d) such that S(p) ̸= ∅.

Conversely, we show that Conjecture 5.3 implies Conjecture 5.1. Suppose
that there exist infinitely many prime numbers {p1, p2, p3, · · · } such that
S(pi) ̸= ∅ (i = 1, 2, 3, · · · ). Then we can take the sequence of SP numbers
{m(p1), m(p2), m(p3), · · · }. If there exist only finitely many SP numbers,
then

m(pi1) = m(pi2) = m(pi3) = · · ·
holds for infinitely many prime numbers {pi1 , pi2 , pi3 · · · } that is a sub-
sequence of {p1, p2, p3, · · · }. This contradicts Lemma 5.6. Hence there
exist infinitely many SP numbers. □
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Consider factorizations of a positive integer d except for the trivial factor-
ization d = 1 · d. We claim that there exist infinitely many positive integers
d such that (a+ b)/(4, 1+ d) is a prime number for every non-trivial factor-
ization d = ab (a > 1, b > 1). It follows from the result of Green and Tao.
They give the following theorem.

Theorem (Green and Tao [4]). The prime numbers contain infinitely many
arithmetic progressions of length n for all n.

Thus for every positive integer n there exists an n-term arithmetic pro-
gression of prime numbers

p, p+ r, p+ 2r, p+ 3r, · · · , p+ (n− 1)r,(5.1)

where p is an odd prime number and r is an even integer. Suppose n ≥ 5
and let pi = p+ 2ir and pj = p+ 2jr for integers i and j satisfying 1 ≤ i <
j ≤ (n − 1)/2. Then (pi + pj)/2 = p + (i + j)r belongs to the arithmetical
progression (5.1) since 2 < i + j < n − 1. Thus (pi + pj)/2 is a prime
number and pipj = (p+2ir)(p+2jr) = p2 +2(i+ j)r+4ijr2 ≡ 1 (mod 4).
Hence d = pipj ≡ 1 (mod 4) gives rise to the prime number (pi + pj)/2
for the non-trivial factorization. We can take the distinct d = pipj for
the distinct positive integer n. Therefore there exist infinitely many such
positive integers d = pipj ≡ 1 (mod 4).
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