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BLOWUP AND GLOBAL EXISTENCE OF A SOLUTION

TO A SEMILINEAR REACTION-DIFFUSION SYSTEM

WITH THE FRACTIONAL LAPLACIAN

Tomoyuki Kakehi and Yoshihito Oshita

Abstract. In this paper, we deal with the semilinear reaction diffusion
system with the fractional Laplacian.

(0.1)
ut + (−∆)αu = vp, vt + (−∆)αv = uq, x ∈ Rn, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ Rn,
where p, q > 1 and 0 < α < 1. We study the existence of a global
in time solution, the blowup of a solution, and the life span of the
blowup solution to the above reaction-diffusion system for sufficiently
small initial data.

1. Introduction

Let us first start with the semilinear reaction diffusion system

(1.1)





ut −∆u = vp, x ∈ Rn, t > 0,

vt −∆v = uq, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,
v(0, x) = v0(x), x ∈ Rn,

where p, q > 1, n ≥ 1, and where u0 and v0 are nonnegative bounded
functions.

As is easily seen by the contraction argument, the solution of (1.1) exists
locally in time. Here we define a blowup time and a blowup solution as
follows. Let us write the solution of (1.1) as (u(t), v(t)) and let
(1.2)
T ∗ = sup{T > 0 | sup

0<t<T
||u(t)||L∞ <∞, and sup

0<t<T
||v(t)||L∞ <∞ }.

We call T ∗ a blowup time and (u, v) = (u(t), v(t)) a blowup solution if
T ∗ < ∞. On the other hand, we call (u, v) = (u(t), v(t)) a global in time
solution if T ∗ = ∞. The problem of blowup and global existence for the
above system has been extensively studied by a lot of people. For example,
Escobedo and Herrero gave the following result.

Theorem 1.1 (Escobedo and Herrero, [2]).
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(I) Suppose that
max{p, q}+ 1

pq − 1
<
n

2
.

Let

(1.3) u0 ∈ Lα1(Rn) ∩ L∞(Rn), v0 ∈ Lα2(Rn) ∩ L∞(Rn),

where α1 =
n(pq − 1)

2(p+ 1)
, α2 =

n(pq − 1)

2(q + 1)
. If both ||u0||Lα1 and

||v0||Lα2 are sufficiently small, then there exists a unique global
in time solution of (1.1).

(II) Suppose that
max{p, q}+ 1

pq − 1
≥ n

2
.

Then the solution (u, v) of (1.1) with any non-trivial inticial data
blows up in a finite time.

In this paper, we consider the semilinear reaction diffusion system with
the fractional Laplacian

(1.4)





ut + (−∆)αu = vp, x ∈ Rn, t > 0,

vt + (−∆)αv = uq, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,
v(0, x) = v0(x), x ∈ Rn,

where p, q > 1, n ≥ 1, 0 < α < 1, and where u0 and v0 are nonnegative
bounded functions. Here in (1.4), the fractional Laplacian (−∆)α is defined
by
(1.5)

(−∆)αu(x) = Cn,α p.v.

∫

Rn

u(x+ y)− u(x)

|y|n+2α
dy, Cn,α =

α22αΓ(n2 + α)

π
n
2 Γ(1− α)

.

for a bounded C2 function u whose first and second order derivatives are
also bounded. We note that if u belongs to the Sobolev space H2α(Rn) of
order 2α, then (−∆)αu is defined by

(−∆)αu(x) = (2π)−n
∫

Rn
eix·ξ|ξ|2αû(ξ) dξ,

where û denotes the Fourier transform of u. In the same manner as in the
case of (1.1), we define a blowup time and a blowup solution of (1.4). The
exponent α in (1.4) is expected to measure the effect of diffusion. So our
interest lies in the following problem:

“How does the exponent α of the fractional Laplacian in (1.4) affect the
blowup and the global existence for (1.4)?”
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For example, if α is small, then the diffusion term (−∆)αu is expected
to become weak and therefore, the corresponding blowup time is expected
to become shorter. Surprisingly, it turns out that the effect of diffusion
becomes stronger. Let us first state our result on the global in time solution
of (1.4).

Theorem 1.2 (Global existence). We assume that p, q > 1 and that

(1.6)
max{p, q}+ 1

pq − 1
<

n

2α
.

In addition, we assume that the initial data (u0, v0) satisfies

(1.7) 0 ≤ u0(x), v0(x) ≤ δ0 (1 + |x|)−n−2α,
where δ0 is a positive constant. Then the following (I) and (II) hold.

(I) The global in time solution to the semilinear system with the frac-
tional Laplacian (1.4) exists if δ0 is sufficiently small.

(II) Let us write the global in time solution of (1.4) as (u(t), v(t)). Then
(u(t), v(t)) satisfies

||u(t)||L∞ ≤ C(1 + t)
− p+1
pq−1 , ||v(t)||L∞ ≤ C(1 + t)

− q+1
pq−1

for some constant C > 0.

For the details, see Theorem 5.2 and Corollary 5.1 in Section 5.
In the above theorem, we assume a stronger condition on the initial data

of (1.4) than that on the initial data of Escobedo and Herrero [2]. Instead,
we obtain a time decay of the global in time solution of (1.4). Next, we will
state our result on the blowup solution of (1.4).

Theorem 1.3 (Blowup). We assume that p, q > 1 and that

(1.8)
max{p, q}+ 1

pq − 1
≥ n

2α
.

Then the solution to the semilinear reaction diffusion system with the frac-
tional Laplacian (1.4) blows up in a finite time for any nontrivial initial
data.

For the details, see Theorem 6.1 in Section 6.
Thus Theorems 1.2 and 1.3 can be regarded as a generalization of the

result by Escobedo and Herrero [2]. In addition, we would like to emphasize
the following.

Remark 1.1. We assume that u0 and v0 satisfy the condition (1.7) for suf-

ficiently small δ0 > 0. Let (u(1)(t), v(1)(t)) and (u(α)(t), v(α)(t)) be the so-
lution of (1.1) and the solution of (1.4) with the same initial data (u0, v0),
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respectively. Next, let us take any p > 1 and q > 1 such that

max{p, q}+ 1

pq − 1
≥ n

2
.

Then (u(1)(t), v(1)(t)) blows up in a finite time, due to Theorem 1.1. How-
ever, if we take sufficiently small α > 0 such that

max{p, q}+ 1

pq − 1
<

n

2α
,

then (u(α)(t), v(α)(t)) becomes a global in time solution, due to Theorem
1.2. As a result, we see that if α becomes smaller then the effect of diffusion
becomes stronger.

Finally, we go into the problem of life span for the blowup solution of
(1.1). For example, Huang, Mochizuki and Mukai proved the following.

Theorem 1.4 (Huang, Mochizuki and Mukai [6]). Suppose that q ≥ p ≥ 1,

and pq > 1. Let (u0, v0) = (λ
1
q+1ϕ, λ

1
p+1ψ). Here ϕ and ψ satisfy

(1.9)

lim sup
|x|→∞

|x|
a

2(q+1) ϕ(x) <∞,

lim sup
|x|→∞

|x|
a

2(p+1) ψ(x) <∞, lim inf
|x|→∞

|x|
a

2(p+1) ψ(x) > 0

for some a ∈ Rn. Let

(1.10) a∗ :=
2(p+ 1)(q + 1)

pq − 1
.

If 0 ≤ a ≤ min{a∗, n(p+ 1)}, then the blowup time T ∗λ satisfies

(1.11) T ∗λ ∼ λ−
2

a∗−a , as λ→ 0.

In the above theorem, the authors assume that the initial data satisfies
the slow decay condition. However, in the case where the initial data decays
faster near |x| =∞, few results are known about the life span. For example,
Kobayashi [8] assumes that the initial data has exponential decay near |x| =
∞, and gives an optimal estimate for the life span. (For the details, see
Theorem 1 (ii) of [8].)

In the case of (1.4), we give an optimal estimate of the life span under
the assumption that the initial data has a certain polynomial decay. Our
third main result is the following.

Theorem 1.5 (Life span). Let 1 ≤ p < 1 + 2α
n , 1 ≤ q < 1 + 2α

n , pq > 1,
and put

(1.12) µ∗ :=
p+ 1

pq − 1
− n

2α
, ν∗ :=

q + 1

pq − 1
− n

2α
.
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We also assume that

(1.13) u0(x) = λµ
∗
ϕ(x), v0(x) = λν

∗
ψ(x),

where λ is a small positive parameter and ϕ, ψ are continuous functions on
Rn such that

(1.14) 0 ≤ ϕ(x), ψ(x) ≤ C(1 + |x|)−n−2α

for some constant C > 0. Then the blowup time T ∗λ of the solution to (1.4)
with initial data (1.13) satisfies

(1.15) T ∗λ ∼
1

λ
as λ→ 0.

In the above theorem, we note that µ∗ > 0 and ν∗ > 0. So as λ→ 0, the
initial data also converges to 0. For the details, see Theorem 7.1 in Section
7.

Our paper is organized as follows. In Section 2, we will give a brief
summary of the asymptotic behavior of the fundamental solution W (α)(t, x)
to the linear parabolic equation ut + (−∆)αu = 0. Section 3 is devoted to
the comparison theorem. Here we point out that it is a nontrivial problem
to prove a comparison theorem in the case of (1.4). It is basically due to
the fact that (−∆)α is no longer a local operator. In Section 4, we prove
that the solution to the system of the integral equations arising from (1.4)
becomes a strong solution to (1.4) under the assumption that 1

2 < α < 1.
In Section 5 and 6, we prove Theorem 1.2 and Theorem 1.3, respectively.
In Section 7, we deal with the problem of life span for (1.4) for small initial
data.

2. Asymptotic Property of W (α)(t, x) revisited

In this section, we give a brief summary on asymptotic properties of the
function W (α)(t, x) defined by the following Fourier integral:

(2.1) W (α)(t, x) = (2π)−n
∫

Rn
e−t|ξ|

2α
eiξ·xdξ, t > 0, x ∈ Rn.

We see easily that W (α)(t, x) is the fundamental solution to the parabolic
pseudodifferential equation

(2.2) ∂tu(t, x) + (−∆)αu(t, x) = 0,

in the sense that the solution u of the Cauchy problem

(2.3)

{
∂tu(t, x) + (−∆)αu(t, x) = 0

u(0, x) = u0(x) ∈ L∞(Rn)
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is written as

(2.4) u(t, x) =

∫

Rn
W (α)(t, x− y)u0(y) dy.

The asymptotic behavior of W (α)(t, x) is explicitly given in Kakehi and Sakai
[11]. We will summarize the results of Section 2 in [11] here.

Let

(2.5) w(α)(x) = W (α)(1, x) = (2π)−n
∫

Rn
e−|ξ|

2α
eiξ·xdξ.

Then, we have

W (α)(t, x) = t−
n
2αw(α)(t−

1
2αx).(2.6)

So, it suffices to calculate the asymptotic expansion of w(α)(x) as |x| → ∞
in order to know the asymptotic behavior of W (α)(t, x).

Let us first state several results on the asymptotic expansion of w(α)(x)
near |x| = +∞. Note that the asymptotic expansion

f(x) ∼
∞∑

j=1

aj |x|−n−2jα as |x| → +∞

means that for each N ∈ N, there holds

f(x) =
N∑

j=1

aj |x|−n−2jα +O(|x|−n−2(N+1)α) as |x| → +∞ .

Theorem 2.1. We define constants aj (j = 1, 2, · · · ) by

(2.7) aj =
(−1)j−122αj

j!π
n
2
+1

sin(παj) Γ(1 + αj) Γ(
n

2
+ αj).

(I) w(α)(x) has the asymptotic expansion:

(2.8) w(α)(x) ∼
∞∑

j=1

aj |x|−n−2jα as |x| → +∞ .

(II) For each multi-index γ, the derivative ∂γxw(α) of w(α) has the asymp-
totic expansion:

(2.9) ∂γxw
(α)(x) ∼

∞∑

j=1

aj ∂
γ
x(|x|−n−2αj) as |x| → +∞.

In addition to the above theorem, we have the following.
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Theorem 2.2. For β > 0, (−∆)βw(α) has the asymptotic expansion:

(2.10) (−∆)βw(α)(x) ∼
∞∑

j=1

bj |x|−n−2αj−2β as |x| → +∞.

Here the constants bj (j = 1, 2, · · · ) in (2.10) are given by

(2.11) bj =
(−1)j−122αj+2β

j!π
n
2
+1

sin(παj + πβ) Γ(1 + αj + β) Γ(
n

2
+ αj + β).

Remark 2.1. For the proofs of the above two theorems, see Kakehi and Sakai
[11], Section 2.

The following two corollaries are a direct consequence of Theorem 2.1 and
Theorem 2.2.

Corollary 2.1. The fundamental solution W (α)(t, x) and its derivatives
have the following asymptotic expansions:

W (α)(t, x) ∼
∞∑

j=1

aj t
j |x|−n−2jα as |x| → +∞,

∂γxW
(α)(t, x) ∼

∞∑

j=1

aj t
j( ∂γx |x|−n−2jα ) as |x| → +∞,

(−∆)βW (α)(t, x) ∼
∞∑

j=1

bj t
j |x|−n−2αj−2β as |x| → +∞,

(2.12)

where the coefficients aj (j = 1, 2, · · · ) and bj (j = 1, 2, · · · ) are given re-
spectively by (2.7) and (2.11).

Corollary 2.2. There hold

w(α)(x) = O(|x|−n−2α),

∂xjw
(α)(x) = O(|x|−n−1−2α) for j (1 ≤ j ≤ n),

∂xj∂xkw
(α)(x) = O(|x|−n−2−2α) for j, k (1 ≤ j, k ≤ n),

(−∆)βw(α)(x) = O(|x|−n−2α−2β) for β > 0,

(2.13)

as |x| → +∞. In particular, w(α), ∂xjw
(α), ∂xj∂xkw

(α), and (−∆)βw(α) are
all integrable on Rn.

3. Comparison Theorem

In this section, we will show a comparison theorem for a semilinear reac-
tion diffusion system with the fractional Laplacian.

Let us start with the following theorem.
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Theorem 3.1. The following (i) and (ii) hold.

(i) W (α)(t, x) > 0 for t > 0 and for x ∈ Rn.

(ii) W (α)(t, x) is monotone decreasing with respect to |x|, that is,

W (α)(t, x) > W (α)(t, y) if |x| < |y|.

For the above theorem , see, for example, Kakehi and Sakai [11], Theorem
3.2.

By Corollary 2.2 combined with the above theorem, we have

Corollary 3.1. For each fixed t > 0, there exist positive constants C1 and
C2 such that

(3.1) C1(1+ |x|)−n−2α ≤ W (α)(t, x) ≤ C2 (1+ |x|)−n−2α for x ∈ Rn.

The positivity of the fundamental solution W (α)(t, x) plays an essential
role in the proof of our comparison theorem.

Let us consider the semilinear reaction diffusion system

(3.2)





ut + (−∆)αu = f(v), x ∈ Rn, t > 0,

vt + (−∆)αv = g(u), x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,
v(0, x) = v0(x), x ∈ Rn.

If α = 1 and (−∆)α = −∆, then it is easy to show a comparison theorem for
the above system (3.2) using the maximum principle for parabolic differential
equations. (See Protter and Weinberger [18].) However, if 0 < α < 1,
the usual maximum principle cannot be applied to (3.2), due to the fact
that (−∆)α is no longer a local operator. Instead, in order to obtain the
corresponding comparison theorem, we use the positivity of the fundamental
solution W (α)(t, x).

Now, we go into our comparison theorem.

Theorem 3.2. Let f and g be continuous functions on [0,∞) and
u0, v0, U0, V 0, U0, V 0 ∈ L1(Rn) ∩ L∞(Rn). Let u, v ∈ C((0, T );L1(Rn) ∩
L∞(Rn)) be nonnegative solutions to the following system of integral
equations:
(3.3){

u(t, x) = (W (α)(t, ·) ∗ u0)(x) +
∫ t
0 [W (α)(t− s, ·) ∗ f(v(s, ·))](x) ds,

v(t, x) = (W (α)(t, ·) ∗ v0)(x) +
∫ t
0 [W (α)(t− s, ·) ∗ g(u(s, ·))](x) ds.
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In addition, let nonnegative functions U, V , U, V ∈ C((0, T );L1(Rn) ∩
L∞(Rn)) satisfy the following inequalities:
(3.4){

U(t, x) ≥ (W (α)(t, ·) ∗ U0)(x) +
∫ t
0 [W (α)(t− s, ·) ∗ f(V (s, ·))](x) ds,

V (t, x) ≥ (W (α)(t, ·) ∗ V 0)(x) +
∫ t
0 [W (α)(t− s, ·) ∗ g(U(s, ·))](x) ds,

(3.5){
U(t, x) ≤ (W (α)(t, ·) ∗ U0)(x) +

∫ t
0 [W (α)(t− s, ·) ∗ f(V (s, ·))](x) ds,

V (t, x) ≤ (W (α)(t, ·) ∗ V 0)(x) +
∫ t
0 [W (α)(t− s, ·) ∗ g(U(s, ·))](x) ds.

We assume the following conditions:

(A1) f and g are monotone increasing.
(A2) For any M > 0, there exists a positive constant CM such that

(3.6) sup
0≤v,ṽ≤M

f(v)− f(ṽ)

v − ṽ ≤ CM , sup
0≤u,ũ≤M

g(u)− g(ũ)

u− ũ ≤ CM .

(A3)

(3.7) U0(x) ≤ u0(x) ≤ U0(x), V 0(x) ≤ v0(x) ≤ V 0(x) for x ∈ Rn.
(A4) For any T0 (0 < T0 < T ),

(3.8)

sup
t∈(0,T0]

||u(t, ·)||L∞(Rn) < +∞, sup
t∈(0,T0]

||v(t, ·)||L∞(Rn) < +∞,

sup
t∈(0,T0]

||U(t, ·)||L∞(Rn) < +∞, sup
t∈(0,T0]

||V (t, ·)||L∞(Rn) < +∞,

sup
t∈(0,T0]

||U(t, ·)||L∞(Rn) < +∞, sup
t∈(0,T0]

||V (t, ·)||L∞(Rn) < +∞.

Then we have

(3.9) U(t, x) ≤ u(t, x) ≤ U(t, x), V (t, x) ≤ v(t, x) ≤ V (t, x)

for (t, x) ∈ [0, T )× Rn.

Proof. Let us take any T0 ∈ (0, T ) and fix it. It suffices to show only two
inequalities u(t, x) ≤ U(t, x) and v(t, x) ≤ V (t, x) for (t, x) ∈ [0, T0]×Rn. In
fact, the proof of the inequalities that u(t, x) ≥ U(t, x) and v(t, x) ≥ V (t, x)
is similar.

Let w = U − u, w0 = U0 − u0, z = V − v, z0 = V 0 − v0. Moreover let

G1(t, x) =

{
f(V (t,x))−f(v(t,x))

V (t,x)−v(t,x) , if V (t, x) 6= v(t, x)

0, if V (t, x) = v(t, x)
,(3.10)

G2(t, x) =

{
g(U(t,x))−g(u(t,x))
U(t,x)−u(t,x) , if U(t, x) 6= u(t, x)

0, if U(t, x) = u(t, x)
.(3.11)
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Then by Theorem 3.1 (i), and the assumption that w0 = U0 − u0 ≥ 0 and
z0 = V 0 − v0 ≥ 0, we have
(3.12)

w(t, x) ≥W (α)(t, ·) ∗ w0(x)

+

∫ t

0

∫

Rn
W (α)(t− s, x− y)

{
f(V (s, y))− f(v(s, y))

}
dyds

≥
∫ t

0

∫

Rn
W (α)(t− s, x− y)G1(s, y)z(s, y) dyds,

z(t, x) ≥W (α)(t, ·) ∗ z0(x)

+

∫ t

0

∫

Rn
W (α)(t− s, x− y)

{
g(U(s, y))− g(u(s, y))

}
dyds

≥
∫ t

0

∫

Rn
W (α)(t− s, x− y)G2(s, y)w(s, y) dyds.

Let
(3.13)

M = max
{

sup
t∈(0,T0]

||u(t, ·)||L∞(Rn) , sup
t∈(0,T0]

||U(t, ·)||L∞(Rn) ,

sup
t∈(0,T0]

||v(t, ·)||L∞(Rn) , sup
t∈(0,T0]

||V (t, ·)||L∞(Rn)

}
.

We note that the above M is finite due to assumption (A4). Then, by (3.6),

(3.14) 0 ≤ Gj(t, x) ≤ CM (j = 1, 2) for (t, x) ∈ [0, T0]× Rn.

Now we introduce two linear operators Sj : L∞([0, T0]×Rn) −→ L∞([0, T0]×
Rn) (j = 1, 2) as follows.

(3.15) (Sjφ)(t, x) =

∫ t

0

∫

Rn
W (α)(t− s, x− y)Gj(s, y)φ(s, y) dyds

for φ ∈ L∞([0, T0]× Rn). Then by (3.12) we have

(3.16) w(t, x) ≥ (S1z)(t, x), z(t, x) ≥ (S2w)(t, x).

On the other hand, we see easily by induction that
(3.17)

|((S1S2)Nφ)(t, x)| ≤ C 2N
M

(2N)!
t2N ||φ||L∞([0,T0]×Rn), N = 1, 2, 3, · · · .

Hence

(3.18) ||(S1S2)N || ≤
(CMT0)

2N

(2N)!
−→ 0 as N →∞.



REACTION-DIFFUSION SYSTEM WITH THE FRACTIONAL LAPLACIAN 185

Since W (α)(t, x) > 0 (Theorem 3.1) and Gj(t, x) ≥ 0, Sj maps a nonnegative
function to a nonnegative function. So if φ(t, x) ≥ ψ(t, x), then Sjφ(t, x) ≥
Sjψ(t, x). By making use of this property combined with (3.16), we have

(3.19) w(t, x) ≥ (S1z)(t, x) ≥ (S1S2w)(t, x) ≥ · · · ≥ ((S1S2)
Nw)(t, x)

for N = 1, 2, 3, · · · . By letting N →∞ in (3.19) and using (3.18), we obtain

(3.20) w(t, x) ≥ 0 for (t, x) ∈ [0, T0]× Rn.

Similarly, we have

(3.21) z(t, x) ≥ 0 for (t, x) ∈ [0, T0]× Rn.

The proof is now completed. �

As a direct consequence of Theorem 3.2, we have

Corollary 3.2. Let u, v satisfy

(3.22)





ut + (−∆)αu = f(v), x ∈ Rn, t > 0,

vt + (−∆)αv = g(u), x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,
v(0, x) = v0(x), x ∈ Rn.

In addition, let U, V , U , and V satisfy

(3.23)





U t + (−∆)αU ≥ f(V ), x ∈ Rn, t > 0,

V t + (−∆)αV ≥ g(U), x ∈ Rn, t > 0,

U(0, x) = U0(x), x ∈ Rn,
V (0, x) = V 0(x), x ∈ Rn,





U t + (−∆)αU ≤ f(V ), x ∈ Rn, t > 0,

V t + (−∆)αV ≤ g(U), x ∈ Rn, t > 0,

U(0, x) = U0(x), x ∈ Rn,
V (0, x) = V 0(x), x ∈ Rn.

We assume the same conditions (A1), (A2), and (A3) as in Theorem 3.2.
Then we have

(3.24) U(t, x) ≤ u(t, x) ≤ U(t, x), V (t, x) ≤ v(t, x) ≤ V (t, x).

4. Existence of the strong solution

The purpose of this section is to prove that the solution to the related
system of integral equations satisfies (1.4).
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We start with the system of integral equations arising from (1.4)

(4.1)

{
u(t, x) = (W (α)(t, ·) ∗ u0)(x) +

∫ t
0 [W (α)(t− s, ·) ∗ v(s, ·)p](x) ds,

v(t, x) = (W (α)(t, ·) ∗ v0)(x) +
∫ t
0 [W (α)(t− s, ·) ∗ u(s, ·)q](x) ds.

Definition 4.1. A pair of functions (u, v) on [0, T ) × Rn is called a mild
solution of (1.4) in [0, T ) if the following (i), (ii), (iii) and (iv) hold.

(i) u, v ∈ C((0, T );L1(Rn) ∩ L∞(Rn)).

(ii) (u, v) satisfies the system of integral equations (4.1) for (t, x) ∈
(0, T )× Rn.

(iii) lim
t→0+

u(t) = u0, lim
t→0+

v(t) = v0 in L1(Rn).

(iv) For any T0 (0 < T0 < T ), sup
t∈(0,T0]

||u(t, ·)||L∞(Rn) < +∞, and

sup
t∈(0,T0]

||v(t, ·)||L∞(Rn) < +∞.

The following theorem is easily proved by the usual contraction argument.

Theorem 4.1. Assume that u0(x), v0(x) ≥ 0 and that u0, v0 ∈ L1(Rn) ∩
L∞(Rn). If T > 0 is sufficiently small, then the system of integral equations
(4.1) has a unique mild solution (u, v) in [0, T ) in the sense of Definition
4.1.

Now we define a strong solution of (1.4)

Definition 4.2. We assume that u, v ∈ C((0, T ) ;L1(Rn) ∩ L∞(Rn)). A
pair of functions (u, v) is called a strong solution of the semilinear reaction
diffusion system (1.4) in [0, T ) × Rn with initial data (u0, v0) in L1(Rn) ∩
L∞(Rn)) if u and v satisfy the following conditions.

(i) u, v ∈ C((0, T );H2α
1 (Rn) ∩H2α

∞ (Rn)).

(ii) u, v ∈ C1((0, T );L1(Rn) ∩ L∞(Rn)).

(iii) As an equality in C((0, T );L1(Rn) ∩ L∞(Rn)), u and v satisfy the
system of equations

(4.2)

{
∂tu+ (−∆)αu = vp,

∂tv + (−∆)αv = uq.

(iv) lim
t→+0

u(t, ·) = u0 and lim
t→+0

v(t, ·) = v0 in L1(Rn).

The main theorem in this section is stated as follows.

Theorem 4.2. We assume that 1
2 < α < 1. Let (u, v) be a mild solution of

the semilinear reaction diffusion system (1.4) in [0, T )×Rn with initial data
(u0, v0) in L1(Rn) ∩ L∞(Rn)). Then the following (i), (ii), and (iii) hold.
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(i) u and v are of class C1 in t ∈ (0, T ) and of class C2 in x ∈ Rn.
Moreover, u, v ∈ C((0, T ), H2

1 (Rn)∩H2
∞(Rn))∩C1((0, T );L1(Rn)∩

L∞(Rn))
(ii) (−∆)αu, (−∆)αv ∈ C((0, T );L1(Rn) ∩ L∞(Rn)).
(iii) (u, v) is a unique strong solution of (1.4) in the sense of Definition

4.2.

The proof of Theorem 4.2 is split into 7 steps.
First, we will consider the regularity of u and v with respect to x ∈ Rn.

1st Step. u and v are of class C1 in x ∈ Rn for each t ∈ (0, T ). Moreover,

for 1 ≤ j ≤ n, ∂xju, ∂xjv ∈ C((0, T );L1(Rn) ∩ L∞(Rn)).

Proof. We define an operator Φ on C((0, T );L1(Rn) ∩ L∞(Rn)) by

(4.3) (Φf)(t, x) =

∫ t

0

∫

Rn
W (α)(t− s, x− y) f(s, y) dyds

for f ∈ C((0, T );L1(Rn) ∩ L∞(Rn)). We first note that if u and v ∈
C((0, T );L1(Rn) ∩ L∞(Rn)) then so do uq and vp and thus Φ(vp) and
Φ(uq) are well-defined. Then it suffices to show that ∂xjΦ(vp), ∂xjΦ(uq) ∈
C((0, T );L1(Rn) ∩ L∞(Rn)).

By a straightforward computation, we have
(4.4)

∂xj (Φ(vp))(t, x) =

∫ t

0

∫

Rn
(t−s)− 1

2α (∂xjw
(α))(z) v(s, x−(t−s) 1

2α z )p dzds,

where w(α) is the function given by (2.5). Thus by the assumption that
1
2 < α < 1,

(4.5)

||∂xj (Φ(vp))(t, ·)||L∞(Rn)

≤ ||∂xjw(α)||L1(Rn)||v(t, ·)p||L∞(Rn) ×
∫ t

0
(t− s)− 1

2α ds < +∞.

Similarly

(4.6)

||∂xj (Φ(vp))(t, ·)||L1(Rn)

≤ ||∂xjw(α)||L1(Rn)||v(t, ·)p||L1(Rn) ×
∫ t

0
(t− s)− 1

2α ds < +∞.

The above two estimates show that ∂xj (Φ(vp)) ∈ C((0, T );L1(Rn) ∩
L∞(Rn)). Similarly we have ∂xj (Φ(uq)) ∈ C((0, T );L1(Rn) ∩ L∞(Rn)).

�

2nd Step. u and v are of class C2 in x ∈ Rn for each t ∈ (0, T ). Moreover,

for 1 ≤ j, k ≤ n, ∂xj∂xku, ∂xj∂xkv ∈ C((0, T );L1(Rn) ∩ L∞(Rn)).
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Proof. As in the 1st step, it suffices to show that ∂xj∂xkΦ(vp), ∂xj∂xkΦ(uq) ∈
C((0, T );L1(Rn) ∩ L∞(Rn)). Here we note that as a result of the 1st
step ∂xj (v

p), ∂xj (u
q) ∈ C((0, T );L1(Rn) ∩ L∞(Rn)). We also note that

∂xj (v
p)(s, ·) and ∂xj (u

q)(s, ·) may diverge as s→ +0.
By integral by parts with respect to x, we have

∂xj∂xk(Φ(vp))(t, x)

=

∫ t
2

0

∫

Rn
(∂xj∂xkW

(α))(t− s, x− y) v(s, y)p dyds

+

∫ t

t
2

∫

Rn
(t− s)− 1

2α (∂xjw
(α))(z) ∂xk{v(s, x− ((t− s) 1

2α z)}p dzds.

(4.7)

In the integrand of the first term of R.H.S of (4.7), (∂xj∂xkW
(α))(t−s, x−y)

is integrable with respect to (s, y) ∈ [0, t2 ] × Rn due to Corollary 2.1 and
Corollary 2.2. Moreover, in the integrand of the second term of R.H.S. of

(4.7), ∂xk{v(s, x − ((t − s)
1
2α z)}p is bounded and integrable with respect

to (s, x) ∈ [ t2 , t] × Rn due to the 1st step. Therefore, we obtain similar
estimates as in (4.5) and (4.6) for the first and the second term of (4.7),
which proves that ∂xj∂xkΦ(vp) ∈ C((0, T );L1(Rn) ∩ L∞(Rn)). Similarly we

have ∂xj∂xkΦ(uq) ∈ C((0, T );L1(Rn) ∩ L∞(Rn)). �

3rd Step. u, v ∈ C((0, T );H2α
1 (Rn) ∩ H2α

∞ (Rn)). In particular,

(−∆)αu, (−∆)αv ∈ C((0, T );L1(Rn) ∩ L∞(Rn)).

Proof. The assertion is obvious. In fact, as a direct consequence of the 2nd
step, u, v ∈ C((0, T );H2

1 (Rn) ∩ H2
∞(Rn)), and clearly H2

r (Rn) ⊂ H2α
r (Rn)

for 1 ≤ r ≤ ∞. �

Let us now consider the differentiability of u and v with respect to t ∈
(0, T ).

We start with the difference quotient
(4.8)
1

h
{(Φ(vp))(t+ h, x)− (Φ(vp))(t, x)}

=
1

h

∫ t+h

t

∫

Rn
W (α)(t+ h− s, x− y) v(s, y)p dyds

+
1

h

∫ t

0

∫

Rn

{
W (α)(t+ h− s, x− y) −W (α)(t− s, x− y)

}
v(s, y)p dyds

(we put)
=: I(h) + J(h).
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Without loss of generality, we may assume that h > 0 when we take the
limit h→ 0 in (4.8).

4th Step. I(h)→ vp as h→ 0 in C((0, T ), L1(Rn) ∩ L∞(Rn)).

Proof.

(4.9)

I(h) =
1

h

∫ t+h

t

∫

Rn
W (α)(t+ h− s, x− y) v(s, y)p dyds

=
1

h

∫ t+h

t

∫

Rn
w(α)(z) v(s, x+ (t+ h− s) 1

2α z)p dzds

=

∫

Rn
w(α)(z)

{
1

h

∫ t+h

t
v(s, x+ (t+ h− s) 1

2α z)p ds

}
dz.

Thus we have

(4.10)

|I(h)− v(t, x)p|

≤
∫

Rn
w(α)(z)

∣∣∣∣
1

h

∫ t+h

t
v(s, x+ (t+ h− s) 1

2α z)p ds − v(t, x)p
∣∣∣∣ dz

→ 0 as h→ 0.

Moreover, by the above computation, we see easily that I(h)→ vp as h→ 0
in the topology of C((0, T ), L1(Rn) ∩ L∞(Rn)). �

Next, let us consider the limit lim
h→0

J(h), namely,

(4.11)

lim
h→0

1

h

∫ t

0

∫

Rn

{
W (α)(t+ h− s, x− y) −W (α)(t− s, x− y)

}
v(s, y)p dyds.

Before computing the above limit, we have to rewrite J(h).

5th Step.

(4.12) J(h) = −(−∆)α
∫ 1

0

∫ t

0

∫

Rn
W (α)(t+ hτ − s, x− y) v(s, y)p dydsdτ.

Proof. We first note that the integrand of J(h) has a singularity at s = t as
a function of s. In order to avoid this singularity, we introduce the following
two integrals:
(4.13)

J (ε)(h) :=
1

h

∫ t−ε

0

∫

Rn

{
W (α)(t+h−s, x−y)−W (α)(t−s, x−y)

}
v(s, y)p dyds,

(4.14)

Φ(h,ε)(v
p)(t, x) :=

∫ 1

0

∫ t−ε

0

∫

Rn
W (α)(t+ hτ − s, x− y) v(s, y)p dydsdτ
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for ε ≥ 0. Since ∂tW
(α) = −(−∆)αW (α), we have

(4.15)

J (ε)(h) =

∫ t−ε

0

∫

Rn

∫ 1

0
(∂tW

(α))(t+ hτ − s, x− y) v(s, y)p dτdyds

= −
∫ t−ε

0

∫

Rn

∫ 1

0
((−∆)αW (α))(t+ hτ − s, x− y) v(s, y)p dτdyds

= −(−∆)α
∫ 1

0

∫ t−ε

0

∫

Rn
W (α)(t+ hτ − s, x− y) v(s, y)p dydsdτ

= −(−∆)αΦ(h,ε)(v
p)(t, x).

Here we see that

Φ(h,ε)(v
p)(t, x)

ε→0−→ Φ(h,0)(v
p)(t, x)

=

∫ 1

0

∫ t

0

∫

Rn
W (α)(t+ hτ − s, x− y) v(s, y)p dydsdτ

in C((0, T ), H2
1 (Rn) ∩H2

∞(Rn)).

(4.16)

As is well known, the fractional Laplacian (−∆)α is a bounded linear oper-
ator from H2α

q (Rn) to Lq(Rn) for 1 ≤ q ≤ ∞. This fact is easily checked by
the argument of Fourier multipliers. (See for example Bergh and Löfström
[1], Chapter 6, Theorem 6.2.3.) Therefore, we have

(4.17)
J (ε)(h) = −(−∆)αΦ(h,ε)(v

p)
ε→0−→ −(−∆)αΦ(h,0)(v

p)

in C((0, T ), L1(Rn) ∩ L∞(Rn)).

On the other hand, obviously J (ε)(h) −→ J(h) as ε→ 0 in C((0, T ), L1(Rn)∩
L∞(Rn)), which proves the assertion of the 5th step. �

We are now in a position to compute the limit lim
h→0

J(h).

6th Step. J(h)→ −(−∆)αΦ(vp) as h→ 0 in C((0, T ), L1(Rn)∩L∞(Rn)).

Proof. We see easily that

∫ 1

0

∫ t

0

∫

Rn
W (α)(t+ hτ − s, x− y) v(s, y)p dydsdτ,

h→0−→
∫ t

0

∫

Rn
W (α)(t− s, x− y) v(s, y)p dyds

= Φ(vp)(t, x) in C((0, T ), H2
1 (Rn) ∩H2

∞(Rn)).

(4.18)
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Again, by making use of the fact that (−∆)α is a bounded linear operator
from H2α

q (Rn) to Lq(Rn) for 1 ≤ q ≤ ∞, we have

(4.19) (−∆)α
∫ 1

0

∫ t

0

∫

Rn
W (α)(t+ hτ − s, x− y) v(s, y)p dydsdτ

h→0−→ (−∆)αΦ(vp)(t, x)

in C((0, T ), L1(Rn)∩L∞(Rn)). By (4.19) and (4.12), we obtain the assertion
of the 6th step. �

7th Step. u ∈ C1((0, T );L1(Rn) ∩ L∞(Rn)), and u satisfies ∂tu +

(−∆)αu = vp as an equality in C((0, T );L1(Rn) ∩ L∞(Rn)).

Proof. By the assertions of the 4th step and 6th step,

lim
h→0

1

h
{Φ(vp)(t+ h, x)− Φ(vp)(t, x)}

= lim
h→0

I(h) + lim
h→0

J(h)

= v(t, x)p − (−∆)αΦ(vp)(t, x) in C((0, T ), L1(Rn) ∩ L∞(Rn)).

(4.20)

Since u satisfies the first integral equation of (4.1), namely,

(4.21) u(t, x) = (W (α)(t, ·) ∗ u0)(x) + Φ(vp)(t, x),

we have

lim
h→0

1

h
{u(t+ h, x)− u(t, x)}

= ∂tW
(α)(t, ·) ∗ u0(x) + lim

h→0

1

h
{Φ(vp)(t+ h, x)− Φ(vp)(t, x)}

(by (4.20)) = −(−∆)αW (α)(t, ·) ∗ u0(x) + (vp)(t, x)p − (−∆)αΦ(vp)(t, x)

(by (4.21)) = −(−∆)α{W (α)(t, ·) ∗ u0(x) + Φ(vp)(t, x)}+ v(t, x)p

= −(−∆)αu(t, x) + v(t, x)p.

(4.22)

�
Obviously, the same argument holds for the second equation of the system

(4.1). The proof of Theorem 4.2 is now completed.
From now on, let us consider the semilinear reaction diffusion system (1.4)

in a different setting.
We introduce function spaces Bm(Rn), (m = 0, 1, 2, · · · ). First, we define

a function space B0(Rn) by the space of bounded continuous functions on
Rn. Next, for a positive integer m, we define a function space Bm(Rn) by

(4.23) Bm(Rn) = { f ∈ Cm(Rn) | ∂γxf ∈ B0(Rn) for ∀γ with |γ| ≤ m }.
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Here we remark that if f ∈ B2(Rn), then (−∆)αf(x) is written as

(4.24) (−∆)αf(x) = Cn,α p.v.

∫

Rn

f(x)− f(y)

|x− y|n+2α
dy,

where the constant Cn,α is given by

(4.25) Cn,α =
α22αΓ(n2 + α)

π
n
2 Γ(1− α)

.

(See, for example, Stein [19], Chapter V.) It follows easily from (4.24) that
(−∆)αu, (−∆)αv ∈ C((0, T );L1(Rn) ∩ L∞(Rn)).

Now we give the second definitions of a mild solution and a strong solution.

Definition 4.3. A pair of functions (u, v) is called a B0(Rn)-valued mild
solution of (1.4) in [0, T ) if the following (i), (ii) and (iii) hold.

(i) u, v ∈ C((0, T );B0(Rn)).

(ii) (u, v) satisfies the system of integral equations (4.1) for (t, x) ∈
(0, T )× Rn.

(iii) lim
t→0+

u(t, x) = u0(x), lim
t→0+

v(t, x) = v0(x) for x ∈ Rn.

Definition 4.4. We assume that u, v ∈ C((0, T ) ;B0(Rn)). A pair of func-
tions (u, v) is called a strong solution of the semilinear reaction diffusion
system (1.4) in [0, T ) × Rn with initial data (u0, v0) ∈ B0(Rn)) if u and v
satisfy the following conditions.

(i) u, v ∈ C((0, T );B2(Rn)).

(ii) u, v ∈ C1((0, T );B0(Rn)).

(iii) As an equality in C((0, T );B0(Rn)), u and v satisfy the system of
equations

(4.26)

{
∂tu+ (−∆)αu = vp,

∂tv + (−∆)αv = uq.

(iv) lim
t→+0

u(t, x) = u0(x) and lim
t→+0

v(t, x) = v0(x) for any fixed x ∈ Rn.

The following theorem is proved in the same manner as in the case of
Theorem 4.2. So we omit the proof.

Theorem 4.3. We assume that 1
2 < α < 1. Let u, v ∈ C((0, T );B0(Rn))

satisfy the system of integral equations (4.1) in [0, T ) × Rn. Then the fol-
lowing (i), (ii), and (iii) hold.

(i) u and v are of class C1 in t ∈ (0, T ) and of class C2 in x ∈ Rn.
Moreover, u, v ∈ C((0, T ), B2(Rn)) ∩ C1((0, T );B0(Rn)).

(ii) (−∆)αu, (−∆)αv ∈ C((0, T );B0(Rn)).
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(iii) (u, v) is a unique strong solution of (1.4) in the sense of Definition
4.4.

Remark 4.1. In the case of (1.1), most references study the global existence
and the blowup for the mild solution of (1.1), namely, the solution to the
system of integral equations arising from (1.1). In fact, in this case, it is not
difficult to show that the mild solution satisfies (1.1). However, in the case of
the semilinear reaction diffusion system with the fractional Laplacian (1.4),
it seems to be nontrivial to show that the mild solution of (4.1) becomes
the strong solution of (1.4). Unfortunately, in our proof, we are obliged to
assume that 1

2 < α < 1.

5. Existence of global solutions

The purpose of this section is to prove the existence of the global in time
solution to the system (1.4).

Throughout this section, we assume that

(5.1) p > 1, q > 1,
n

2α
>

max{p, q}+ 1

pq − 1
.

In addition, we also assume that the initial data (u0, v0) satisfy

(5.2) 0 ≤ u0(x), v0(x) ≤ δ0 (1 + |x|)−n−2α for some constant δ0 > 0.

Due to Corollary 3.1, the condition (5.2) is equivalent to

(5.3) 0 ≤ u0(x), v0(x) ≤ c0W (α)(1, x) for some constant c0 > 0.

For 0 < T ≤ ∞, and µ > 0 we define a Banach space V(T,µ) by the space
of all measurable functions v on [0, T )× Rn satisfying

(5.4) ||v||V(T,µ)
def
= ess.sup

(t,x)∈[0,T )×Rn
|v(t, x)|

(1 + t)µρ(t, x)
< +∞,

where

(5.5) ρ(t, x) = W (α)(1 + t, x).

Moreover, we define a subset V+(T,µ) of V(T,µ) by

(5.6) V+(T,µ) = {v ∈ V(T,µ) ; v(t, x) ≥ 0, for (t, x) ∈ [0, T )× Rn }.
For p, q with pq > 1, we put

(5.7) µ :=
n

2α
− p+ 1

pq − 1
, ν :=

n

2α
− q + 1

pq − 1
.

Here we note that µ and ν satisfy the system of linear equations

(5.8)

{
pν + 1− n

2α(p− 1) = µ,

qµ+ 1− n
2α(q − 1) = ν.
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By the assumption on p and q, the above µ and ν satisfy

(5.9) µ > 0, ν > 0.

In view of Theorem 4.2, it suffices to show the existence of the global in
time solution to the system of integral equations (4.1). For the initial data
(u0, v0), let us put

(5.10) U0(t, x) = (W (α)(t, ·) ∗ u0)(x), V0(t, x) = (W (α)(t, ·) ∗ v0)(x).

Let us now rewrite the system of integral equations (4.1) as

(5.11)

{
u(t, x) = U0(t, x) + Φ(vp)(t, x),

v(t, x) = V0(t, x) + Φ(uq)(t, x),

where Φ is the operator defined by (4.3). What we are going to do is to
apply a contraction argument to (5.11) in a certain Banach space. So we
need to give a suitable estimate for each term of the above system (5.11).
The following two lemmas play a crucial rule in our contraction argument.

Lemma 5.1. (i) For any T (0 < T ≤ ∞), we have

(5.12) 0 ≤ Φ(vp)(t, x) ≤ {w
(α)(0)}p−1
µ

||v||pV(T,ν) (1 + t)µρ(t, x)

for (t, x) ∈ [0, T )× Rn.

(ii) For any T (0 < T ≤ ∞), we have

(5.13) 0 ≤ Φ(uq)(t, x) ≤ {w
(α)(0)}q−1
ν

||u||pV(T,µ) (1 + t)νρ(t, x)

for (t, x) ∈ [0, T )× Rn.

Proof. It suffices to prove the first inequality (5.12) in (i). For simplicity,
let us put A = ||v||V(T,ν) . Then by the definition of the norm || · ||V(T,ν) and

the assumption that v ∈ V+(T,ν),

(5.14) 0 ≤ v(t, x) ≤ A(1 + t)νρ(t, x).

Here we note that

(5.15)
ρ(t, x)p = W (α)(1 + t, x)p−1W (α)(1 + t, x)

≤ {w(α)(0)}p−1(1 + t)−
n
2α

(p−1)W (α)(1 + t, x).
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Let us put c1 = {w(α)(0)}p−1. Then we have
(5.16)

0 ≤ Φ(vp)(t, x)

≤ Ap
∫ t

0

∫

Rn
W (α)(t− s, x− y){(1 + s)νρ(s, y)}p dxds

≤ c1Ap
∫ t

0
(1 + s)−

n
2α

(p−1)−pν
∫

Rn
W (α)(t− s, x− y)W (α)(1 + s, y) dyds

(by semigroup property)

≤ c1ApW (α)(1 + t, x)

∫ t

0
(1 + s)−

n
2α

(p−1)−pν ds

(5.8)
= c1A

pW (α)(1 + t, x) × 1

µ
{(1 + t)µ − 1}

≤ c1
µ
Ap (1 + t)µρ(t, x),

which proves the assertion of (i). �

Lemma 5.2. (i) If v, ṽ ∈ V+(T,ν), then

(5.17)

|Φ(vp)(t, x)− Φ(ṽp)(t, x) |

≤ p{w(α)(0)}p−1
µ

max{||v||p−1V(T,ν) , ||ṽ||
p−1
V(T,ν)}

× |v(t, x)− ṽ(t, x)| (1 + t)µρ(t, x)

for (t, x) ∈ [0, T )× Rn.

(ii) If u, ũ ∈ V+(T,µ), then

(5.18)

|Φ(uq)(t, x)− Φ(ũq)(t, x) |

≤ q{w(α)(0)}q−1
ν

max{||u||q−1V(T,µ) , ||ũ||
q−1
V(T,µ)}

× |u(t, x)− ũ(t, x)| (1 + t)νρ(t, x)

for (t, x) ∈ [0, T )× Rn.

Proof. It suffices to prove (i). For simplicity, we put

(5.19) A = ||v||V(T,ν) , B = ||ṽ||V(T,ν) , C = ||v − ṽ||V(T,ν) .
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Since p > 1, we have

(5.20)

|v(s, y)p − ṽ(s, y)p|
≤ pmax{ |v(s, y)|p−1, |ṽ(s, y)|p−1 }|v(s, y)− ṽ(s, y)|
≤ pmax{Ap−1, Bp−1 }(1 + s)(p−1)νρ(s, y)p−1 × C(1 + t)νρ(t, x)

= pmax{Ap−1, Bp−1 }C × (1 + s)pνρ(s, y)p.

Thus, similarly as in the proof of Lemma 5.1, we have

(5.21)

|Φ(vp)(t, x)− Φ(ṽp)(t, x) |
≤ Φ(|vp − ṽp|)(t, x)

≤ pmax{Ap−1, Bp−1 }

× C
∫ t

0

∫

Rn
W (α)(t− s, x− y){(1 + s)νρ(s, y)}p dxds.

The rest part of the proof is almost the same as that of Lemma 5.1. So we
omit it. �

The above two lemmas, Lemma 5.1 and Lemma 5.2 yield the following.

Proposition 5.1. (i) If v ∈ V+(T,ν), then Φ(vp) ∈ V+(T,µ). Moreover, we

have

(5.22) ||Φ(vp)||V(T,µ) ≤
{w(α)(0)}p−1

µ
||v||pV(T,ν) .

(ii) If u ∈ V+(T,µ), then Φ(uq) ∈ V+(T,ν). Moreover, we have

(5.23) ||Φ(uq)||V(T,ν) ≤
{w(α)(0)}q−1

ν
||u||qV(T,µ) .

(iii) If v, ṽ ∈ V+(T,ν), then we have

(5.24) ||Φ(vp)− Φ(ṽp) ||V(T,µ)

≤ p{w(α)(0)}p−1
µ

max{ ||v||p−1V(T,ν) , ||ṽ||
p−1
V(T,ν) }|| v − ṽ ||V(T,ν) .

(iv) If u, ũ ∈ V+(T,µ), then we have

(5.25) ||Φ(uq)− Φ(ũq) ||V(T,ν)

≤ q{w(α)(0)}q−1
µ

max{ ||u||q−1V(T,µ) , ||ũ||
q−1
V(T,µ) }||u− ũ ||V(T,µ) .

Next, we will estimate U0(t, x) and V0(t, x) in (5.11). Due to the assump-
tion (5.3), we see easily the following.
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Lemma 5.3. Under the assumption (5.3), for any T (0 < T ≤ ∞), we have

(5.26)
0 ≤ U0(t, x) ≤ c0ρ(t, x) for ∈ (0, T )× Rn,
0 ≤ V0(t, x) ≤ c0ρ(t, x) for (t, x) ∈ (0, T )× Rn.

As a direct consequence of Lemma 5.3, we obtain

Proposition 5.2. For the constant c0 in (5.3) and for any T (0 < T ≤ ∞),
we have

(5.27) ||U0||V(T,µ) ≤ c0, ||V0||V(T,ν) ≤ c0.
Let us define a Banach space V∞ and its norm || · ||V∞ by

V∞ := V(∞,µ) × V(∞,ν),(5.28)

||(u, v)||V∞ := max{ ||u||V(∞,µ) , ||v||V(∞,ν) }.(5.29)

In addition, we define a closed and convex subset V+∞ of V∞ by

V+∞ = V+(∞,µ) × V
+
(∞,ν).

Now we introduce a mapping Ψ : V+∞ → V+∞ by

(5.30) Ψ(u, v) := (U0, V0) + (Φ(vp),Φ(uq)).

Taking account of Proposition 5.1 and Proposition 5.2, we see easily that
the above mapping Ψ is well defined as a mapping from V∞ to itself.

Proposition 5.3. Let
(5.31)

C = max

{
{w(α)(0)}p−1

µ
,
{w(α)(0)}q−1

ν
,
p{w(α)(0)}p−1

µ
,
q{w(α)(0)}q−1

ν

}
.

(i) If ||(U0, V0)||V∞ ≤ c0 and if (u, v) ∈ V+∞ satisfies ||(u, v)||V∞ ≤ η,
then

(5.32) ||Ψ(u, v) ||V∞ ≤ c0 + C max{ηp, ηq}.
(ii) If ||(u, v)||V∞ ≤ η and ||(ũ, ṽ)||V∞ ≤ η, then

(5.33) ||Ψ(u, v)−Ψ(ũ, ṽ)||V∞ ≤ C max{ηp−1, ηq−1} ||(u, v)− (ũ, ṽ)||V∞ .
We are now in a position to prove the global existence of the solution.
Let us choose a small positive number ε0 such that

(5.34) C max{(2ε0)p−1, (2ε0)q−1} ≤
1

2
,

where the constant C is given by (5.31). Next, we define a closed convex set
B+(2ε0) in V∞ by

(5.35) B+(2ε0) = { (u, v) ∈ V+(∞,µ) × V
+
(∞,ν) ⊂ V∞ | ||(u, v)||V∞ ≤ 2ε0 }.
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Then we have the following:

Proposition 5.4. We assume that ||(U0, V0)||V∞ ≤ ε0. Then Ψ satisfies the
following (i) and (ii).

(i) Ψ maps B+(2ε0) into B+(2ε0).
(ii) If (u, v), (ũ, ṽ) ∈ B+(2ε0),

(5.36) ||Ψ(u, v)−Ψ(ũ, ṽ)||V∞ ≤
1

2
||(u, v)− (ũ, ṽ)||V∞ .

Proof. Take c0 = ε0 and η = 2ε0 in Proposition 5.3. Then the above (i) and
(ii) follow easily from Proposition 5.3. �

The above proposition shows that Ψ : B+(2ε0)→ B+(2ε0) is a contraction
mapping. Therefore, by the fixed point theorem, for any (U0, V0) ∈ V∞ with
||(U0, V0)||V∞ ≤ ε0, there exists a unique element (u, v) ∈ B+(2ε0) such that
Ψ(u, v) = (u, v). Namely, we have the following:

Theorem 5.1. For a positive constant ε0 satisfying (5.34), we take initial
data (u0, v0) such that

(5.37) 0 ≤ u0(x), v0(x) ≤ ε0W (α)(1, x).

Then the system of integral equations (5.11) (or (4.1)) with the initial data
(u0, v0) has a unique global in time solution (u, v) in B+(2ε0).

As is easily seen, the above solution (u, v) satisfies that u, v ∈
C((0,∞);L1(Rn) ∩ L∞(Rn)). Thus, by Theorem 4.2, we obtain

Theorem 5.2. We assume that 1
2 < α < 1 and that (5.1) holds. We also

assume that initial data (u0, v0) satisfies the condition (5.37). Then, in
the sense of Definition 4.2, there exists a global in time strong solution to
the reaction diffusion system (1.4). In addition, if initial data (u0, v0) are
continuous, then the above global solution becomes a unique strong solution
in the sense of Definition 4.4.

If u0 satisfies that 0 ≤ u0(x) ≤ c0W (α)(1, x) for some constant c0, the the

solution u(t, x) = (W (α)(t, ·)∗u0)(x) to the linear equation ∂tu+(−∆)αu = 0
satisfies

(5.38) sup
x∈Rn

|u(t, x)| ≤ C(1 + t)−
n
2α ,

for some other constant C. In other words, the decay rate of u as t→∞ is
O(t−

n
2α ). However, even if initial data (u0, v0) satisfies the condition (5.3),

the decay rate of the global in time solution (u, v) of (1.4) (or (4.1)) as
t → ∞ may become weak due to the nonlinear terms. More precisely, the
following holds.
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Corollary 5.1. Let (u, v) be the global in time solution in Theorem 5.1 (or
in Theorem 5.2). Then we have
(5.39)

sup
x∈Rn

|u(t, x)| = O
(
t
− p+1
pq−1

)
, sup

x∈Rn
|v(t, x)| = O

(
t
− q+1
pq−1

)
as t→∞.

Proof. Since (u, v) ∈ B+(2ε0) ⊂ V(∞,µ) × V(∞,ν), u and v satisfy

0 ≤ u(t, x) ≤ ||u||V(∞,µ)(1 + t)µρ(t, x) for (t, x) ∈ [0,∞)× Rn,
0 ≤ v(t, x) ≤ ||u||V(∞,ν)(1 + t)νρ(t, x) for (t, x) ∈ [0,∞)× Rn,

respectively. In addition, by (5.7), we have

(1 + t)µρ(t, x) ≤ Const. (1 + t)µ−
n
2α = Const. (1 + t)

− p+1
pq−1 ,

(1 + t)νρ(t, x) ≤ Const. (1 + t)ν−
n
2α = Const. (1 + t)

− q+1
pq−1 ,

which finishes the proof. �

Remark 5.1. Let us consider the semilinear parabolic equation.

(5.40)

{
∂tu+ (−∆)αu = up, t ∈ (0,∞), x ∈ Rn,
u(0, x) = u0(x) ≥ 0, x ∈ Rn,

where 0 < α < 1 and 1 < p. If 1 + 2α
n < p, there exists a global in time

solution for sufficiently small initial data u0. In this case, the decay rate of
the global solution is the same as that of the solution to the corresponding
linear equation. Namely, we have

(5.41) sup
x∈Rn

|u(t, x)| = O
(
t−

n
2α

)
as t→∞.

For the detail, see Kakehi and Sakai [11].

6. Blow up

In this section, we prove the following blow up result:

Theorem 6.1. Assume that 1 ≤ p, 1 ≤ q, p q > 1, max{p,q}+1
pq−1 ≥ n

2α . Assume

also that

u0(x) ≥ 0, v0(x) ≥ 0,(6.1)

where u0(x) and v0(x) are bounded continuous functions on Rn. Then any
nontrivial mild solution for the reaction-diffusion system (1.4) blows up in
a finite time.
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Proof. Assume by contrary that a mild solution (u, v) to (1.4) exists
globally in time. Then u(t, x) and v(t, x) are both nonnegative, and satisfy

sup
0≤t≤T0

‖u(t, ·)‖L∞(Rn) <∞, sup
0≤t≤T0

‖v(t, ·)‖L∞(Rn) <∞ for 0 ≤ T0 <∞

and the system of integral equations (4.1). Set




F (1)(t) =

∫

Rn
W (α)(t, x)u(t, x) dx,

F (2)(t) =

∫

Rn
W (α)(t, x)v(t, x) dx.

Note that ∫

Rn
W (α)(t, x) dx = 1 (t > 0).

We may assume that there exists a positive constant c0 such that

u0(x), v0(x) ≥ c0W (α)(1, x) for x ∈ Rn.
In fact we have the following:

Lemma 6.1. Assume that u0 6≡ 0, v0 6≡ 0. For each t0 > 0,

u(t0, x) ≥ c0W (α)(t0, x) and v(t0, x) ≥ c0W (α)(t0, x)

hold for some constant c0 > 0.

We omit the proof. Next we show the following:

Lemma 6.2. For any t > 0,

F (1)(t) ≥ c0(2t+ 1)−
n
2αw(α)(0)

+ (2t)−
n
2α

∫ t

0
s
n
2α

{
F (2)(s)

}p
ds,

F (2)(t) ≥ c0(2t+ 1)−
n
2αw(α)(0)

+ (2t)−
n
2α

∫ t

0
s
n
2α

{
F (1)(s)

}q
ds.

Proof. We have

F (1)(t) ≥ c0
∫

Rn
W (α)(t, x)[W (α)(t, ·) ∗W (α)(1, ·)](x) dx

+

∫ t

0

∫

Rn
W (α)(t, x)[W (α)(t− s, ·) ∗ v(s)p](x) dxds.

Then by using the semigroup property∫

Rn
W (α)(t, x− y)W (α)(s, y) dy = W (α)(t+ s, x) (t, s > 0, x ∈ Rn),
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we have

The first term

= c0

∫

Rnx
W (α)(t, x)

∫

Rny
W (α)(t, x− y)W (α)(1, y) dy dx

= c0

∫

Rnx
W (α)(t, x)W (α)(t+ 1, x) dx

= c0W
(α)(2t+ 1, 0)

= c0(2t+ 1)−
n
2αw(α)(0).

On the other hand, we have

The second term

=

∫ t

0

∫

Rnx

∫

Rny
W (α)(t, x)W (α)(t− s, x− y) {v(s, y)}p dydxds

=

∫ t

0

∫

Rny

{∫

Rnx
W (α)(t, x)W (α)(t− s, x− y) dx

}
{v(s, y)}p dyds

=

∫ t

0

∫

Rny
W (α)(2t− s, y) {v(s, y)}p dyds.

Note that

W (α)(2t− s, y) = (2t− s)− n
2αw(α)

(
y

(2t− s)1/2α
)

≥ (2t)−
n
2α s

n
2α

(
2t− s

2t

)− n
2α

s−
n
2αw(α)

( y

s1/2α

)

≥ (2t)−
n
2α s

n
2αW (α)(s, y)

for 0 ≤ s ≤ t ≤ 2t − s ≤ 2t, since w(α)(·) > 0 and w(α)(x) < w(α)(y) for
|x| > |y|. Using this inequality, we get

The second term

≥ (2t)−
n
2α

∫ t

0
s
n
2α

∫

Rny
W (α)(s, y) {v(s, y)}p dyds.
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Hence by Jensen’s inequality (p ≥ 1), we have

The second term

≥ (2t)−
n
2α

∫ t

0
s
n
2α

{∫

Rn
W (α)(s, y)v(s, y) dy

}p
ds

= (2t)−
n
2α

∫ t

0
s
n
2α

{
F (2)(s)

}p
ds.

Thus we get the first inequality. We can prove the second inequality in the
same way. �

Set

G(j)(t) = t
n
2αF (j)(t) (j = 1, 2).

Then we have

G(1)(t) = t
n
2αF (1)(t)

≥ c0w(α)(0)

(
t

2t+ 1

) n
2α

+ 2−
n
2α

∫ t

0
s
n
2α

{
F (2)(s)

}p
ds

≥ c1 + c2

∫ t

0
s
n
2α

(1−p)
{
G(2)(s)

}p
ds.

Set {
G̃(1)(t) = c−11 G(1)(t),

G̃(2)(t) = c−11 G(2)(t).

Then we have

G̃(1)(t) ≥ 1 + c2c1
−1
∫ t

0
s
n
2α

(1−p)
{
c1G̃

(2)(s)
}p

ds

= 1 + c2c1
p−1

∫ t

0
s
n
2α

(1−p)
{
G(2)(s)

}p
ds

≥ 1 + c3

∫ t

0
s
n
2α

(1−p)
{
G̃(2)(t)

}p
ds

for t > 0. Thus we have the following:

Lemma 6.3. There exists a positive constant c4 such that




G̃(1)(t) ≥ 1 + c4

∫ t

1
s
n
2α

(1−p)
{
G̃(2)(t)

}p
ds,

G̃(2)(t) ≥ 1 + c4

∫ t

1
s
n
2α

(1−q)
{
G̃(1)(t)

}q
ds,
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for t ≥ 1.

Note that

F (1)(t) ≤ sup
x∈Rn

u(t, x) <∞, F (2)(t) ≤ sup
x∈Rn

v(t, x) ≤ ∞

for all 1 ≤ t <∞, and hence G̃(j)(t) <∞ for all 1 ≤ t <∞.
We have the blowup results for the following ODE system:





x′(t) = c4t
n
2α

(1−p)y(t)p for t ≥ 1,

y′(t) = c4t
n
2α

(1−q)x(t)q for t ≥ 1,

x(1) = y(1) = 1.

Proposition 6.1. Assume that a > 0, b + qa > 0, p, q > 0, pq > 1. Then
the solution to the following ODE system

(6.2)





x′(t) = ta−1y(t)p for t ≥ 1,

y′(t) = tb−1x(t)q for t ≥ 1,

x(1) = y(1) = 1,

blows up in a finite time.

Proof. Assume by contrary that the solution exists globally in time. We see
that x(t) ≥ 1 and y(t) ≥ 1 (t ≥ 1). Then we have

x′(t) ≥ ta−1 (t ≥ 1),

and hence

x(t) ≥
∫ t

1
sa−1 ds = ta − 1 ≥ 1

2
ta (t ≥ 21/a).

Hence there exists a constant c1 > 0 such that

x(t) ≥ c1ta (t ≥ 1).

Therefore by (6.2),

y′(t) ≥ cq1tb+aq−1 (t ≥ 1).

Integrating this inequality gives

y(t) ≥ cq1
∫ t

1
sb+aq−1 ds = cq1(t

b+aq − 1) ≥ cq1
2
tb+aq (t ≥ 21/(b+aq)).

Hence there exists a constant d1 > 0 such that

y(t) ≥ d1tb+aq (t ≥ 1).
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Repeating this procedure, we see that

x(t) ≥ cntan (t ≥ 1),

y(t) ≥ dntbn (t ≥ 1),

for some cn > 0, dn > 0,

an =
−(pb+ a) + (pq)n−1p(qa+ b)

pq − 1
,

bn =
(qa+ b)[(pq)n − 1]

pq − 1
.

Note that an and bn satisfy

bn = qan + b,

an+1 = pbn + a = pqan + pb+ a,

and an → ∞, bn → ∞ as n → ∞ since a > 0, b + qa > 0, pq > 1. Take
ε > 0 such that p− ε > 0, q − ε > 0, (p− ε)(q − ε) > 1. Choose sufficiently
large N ∈ N such that

a− 1 + εbN > 0,

b− 1 + εaN > 0.

Then it follows that {
x′(t) ≥ y(t)p−ε for t ≥ τ,
y′(t) ≥ x(t)q−ε for t ≥ τ

for some τ > 0. It follows from a comparison argument that x(t) ≥ x(t),
y(t) ≥ y(t), where x(t), y(t) are the solution to the problem





x′(t) = y(t)p−ε for t ≥ τ,
y′(t) = x(t)q−ε for t ≥ τ,
x(tN ) > x(tN ) > 0,

y(tN ) > y(tN ) > 0.

However this contradicts to the fact that the solution (x(t), y(t)) blows up
in a finite time. �
Proposition 6.2. Assume that a > 0, p, q > 0, pq > 1. Then the solution
to the following ODE system

(6.3)





x′(t) = ta−1y(t)p for t ≥ 1,

y′(t) = t−qa−1x(t)q for t ≥ 1,

x(1) = x0 > 0,

y(1) = y0 > 0,
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blows up in a finite time.

Proof. Without loss of generality, we may assume that

(6.4)
yp+1
0

p+ 1
>
xq+1
0

q + 1

holds. In fact, if (6.4) does not hold, we can replace x0 by a smaller positive
number so that (6.4) holds, and then we can apply the comparison argument.

Assume by contrary that the solution exists globally in time.
In the same way as in the proof of Proposition 6.1, we see that there exist

positive constants c1, d1 such that x(t) ≥ c1ta, y(t) ≥ d1 log t for all t ≥ 1.

Set c =
(
p+1
q+1

) p
p+1

and c2 = 2a
(
2a
c

) p+1
pq−1 , and let t1 > 1 be a constant

satisfying d1 log t1 = (c2)
1/p. Then we have

x′(t) ≥ c2ta−1 (t ≥ t1).
Hence

x(t) ≥ c2
∫ t

t1

sa−1 ds =
c2
a

(ta − ta1) ≥ c2
2a
ta (t ≥ 21/at1).

Set z(t) = x(t)
ta . Then z(t) ≥ c1 > 0 for t ≥ 1,

(6.5) z(t) ≥ c2
2a

=

(
2a

c

) p+1
pq−1

(t ≥ 21/at1 =: t2),

and

(6.6)





z′(t) =
y(t)p − az(t)

t
for t ≥ 1,

y′(t) =
z(t)q

t
for t ≥ 1,

z(1) = x0,

y(1) = y0.

Then we have
(
y(t)p+1

p+ 1
− z(t)q+1

q + 1

)′
= a

z(t)q+1

t
> 0 (t ≥ 1).

Therefore

y(t)p+1

p+ 1
− z(t)q+1

q + 1
≥ yp+1

0

p+ 1
− xq+1

0

q + 1
> 0 (t ≥ 1),

and hence

z′(t) ≥ cz(t)
p+pq
p+1 − az(t)
t

(t ≥ 1).



206 T. KAKEHI AND Y. OSHITA

Since there holds

z(t)
p+pq
p+1 = z(t)

pq−1
p+1 z(t) ≥ 2a

c
z(t) (t ≥ t2)

by (6.5), we have

z′(t) ≥ c

2t
z(t)

p+pq
p+1 (t ≥ t2).

But this implies that

z(t) ≥
[
z(t2)

− pq−1
p+1 − c(pq − 1)

2(p+ 1)
log

t

t2

]− p+1
pq−1

(t ≥ t2),

which is a contradiction. �
Proposition 6.3. Assume that p, q > 0 and pq > 1. Then the solution
(x(t), y(t)) to the following ODE system





x′(t) = t−1y(t)p for t ≥ 1,

y′(t) = t−1x(t)q for t ≥ 1,

x(1) = x0 > 0,

y(1) = y0 > 0,

blows up in a finite time.

Proof. Assume by contrary that the solution exists globally in time. It

suffices to consider the case
xq+1
0
q+1 −

yp+1
0
p+1 ≥ 0. Then since

(
x(t)q+1

q + 1
− y(t)p+1

p+ 1

)′
= xqx′ − ypy′ = 0,

we have x(t)q+1

q+1 −
y(t)p+1

p+1 ≥ 0 for t ≥ 1. Thus we see that y′(t) ≥ t−1y(t)
q+pq
q+1

for t ≥ 1, which gives a contradiction. �
Completion of the proof of Theorem. In what follows, we assume that 1 ≤
p ≤ q for definiteness. Then by the assumption,

1

p− 1
≥ q + 1

pq − 1
≥ n

2α
.

Thus

p ≤ 1 +
2α

n
.

Set

a = 1− n(p− 1)

2α
and

b = 1− n(q − 1)

2α
.
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Then
a ≥ 0, b+ qa = q + 1− n

2α
(pq − 1) ≥ 0, b ≤ a.

Let (x(t), y(t)) be the solution to the following ODE system.




x′(t) = c4t
a−1y(t)p for t ≥ 1,

y′(t) = c4t
b−1x(t)q for t ≥ 1,

x(1) = y(1) = 1.

Then it follows from a comparison argument that

(6.7) G̃
(1)
λ (t) ≥ x(t), G̃

(2)
λ (t) ≥ y(t) for 1 ≤ t <∞.

This means that x(t) and y(t) must exist globally. However we see that
(x(t), y(t)) blows up in a finite time by Proposition 6.1 in the case a > 0,
−qa < b ≤ a, Proposition 6.2 in the case a > 0, b = −qa, and Proposition
6.3 in the case a = 0, b = 0. We obtain a desired contradiction. �

7. Life span

In this section, we consider the life span of the solution and prove the
following:

Theorem 7.1. Assume 1 ≤ p < 1 + 2α
n , 1 ≤ q < 1 + 2α

n , pq > 1. Assume
also that

u0(x) = λµ
∗
ϕ(x) ≥ 0, v0(x) = λν

∗
ψ(x) ≥ 0

where ϕ and ψ are continuous functions on Rn such that

0 ≤ ϕ(x), ψ(x) ≤ C(1 + |x|)−n−2α(7.1)

for some constant C > 0, µ∗ = p+1
pq−1 − n

2α , ν∗ = q+1
pq−1 − n

2α , and λ > 0 is

a small parameter. Then the life span T ∗λ of the nontrivial mild solution to
the reaction-diffusion system (1.4) satisfies

T ∗λ ∼
1

λ
as λ→ 0

Proof. Under the assumption, there hold

µ∗ =
p+ 1

pq − 1
− n

2α
> 0,

ν∗ =
q + 1

pq − 1
− n

2α
> 0.

Let the nonnegative functions uλ(t, x), vλ(t, x), t ∈ [0, T ∗λ ), x ∈ Rn be the
mild solution to (1.4). Here T ∗λ ∈ (0,∞) is the life span of the solution.
Then the solution (uλ, vλ) satisfies

sup
0≤t≤T

‖uλ(t, ·)‖L∞(Rn) <∞, sup
0≤t≤T

‖vλ(t, ·)‖L∞(Rn) <∞ for 0 ≤ T < T ∗λ ,
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and the following system of integral equations.




uλ(t, x) = λµ
∗
(W (α)(t, ·) ∗ ϕ)(x) +

∫ t

0
[W (α)(t− s, ·) ∗ {vλ(s, ·)}p](x) ds,

vλ(t, x) = λν
∗
(W (α)(t, ·) ∗ ψ)(x) +

∫ t

0
[W (α)(t− s, ·) ∗ {uλ(s, ·)}q](x) ds.

(1) In order to obtain an upper bound for the life span, we reduce the
problem into an ODE system in the same way as in Section 6.

Set 



F
(1)
λ (t) =

∫

Rn
W (α)(t, x)uλ(t, x) dx,

F
(2)
λ (t) =

∫

Rn
W (α)(t, x)vλ(t, x) dx.

Note that ∫

Rn
W (α)(t, x) dx = 1 (t > 0).

We may assume that there exists a positive constant c0 such that

ϕ(x), ψ(x) ≥ c0W (α)(1, x) for x ∈ Rn.

In fact we have the following.

Lemma 7.1. Assume that ϕ 6≡ 0, ψ 6≡ 0. For each 0 < t0 < T ∗λ ,

uλ(t0, x) ≥ c0λµ
∗
W (α)(t0, x) and vλ(t0, x) ≥ c0λν

∗
W (α)(t0, x)

hold for some constant c0 > 0.

Lemma 7.2. For 0 < t < T ∗λ ,

F
(1)
λ (t) ≥ c0λµ

∗
(2t+ 1)−

n
2αw(α)(0)

+ (2t)−
n
2α

∫ t

0
s
n
2α

{
F

(2)
λ (s)

}p
ds,

F
(2)
λ (t) ≥ c0λν

∗
(2t+ 1)−

n
2αw(α)(0)

+ (2t)−
n
2α

∫ t

0
s
n
2α

{
F

(1)
λ (s)

}q
ds.

Proof. We have

F
(1)
λ (t) ≥ c0λµ

∗
∫

Rn
W (α)(t, x)[W (α)(t, ·) ∗W (α)(1, ·)](x) dx

+

∫ t

0

∫

Rn
W (α)(t, x)[W (α)(t− s, ·) ∗ vλ(s)p](x) dxds.
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Then by using the semigroup property
∫

Rn
W (α)(t, x− y)W (α)(s, y) dy = W (α)(t+ s, x) (t, s > 0, x ∈ Rn),

we have

The first term

= c0λ
µ∗
∫

Rnx
W (α)(t, x)

∫

Rny
W (α)(t, x− y)W (α)(1, y) dy dx

= c0λ
µ∗
∫

Rnx
W (α)(t, x)W (α)(t+ 1, x) dx

= c0λ
µ∗W (α)(2t+ 1, 0)

= c0λ
µ∗(2t+ 1)−

n
2αw(α)(0).

On the other hand, we have

The second term

=

∫ t

0

∫

Rnx

∫

Rny
W (α)(t, x)W (α)(t− s, x− y) {vλ(s, y)}p dydxds

=

∫ t

0

∫

Rny

{∫

Rnx
W (α)(t, x)W (α)(t− s, x− y) dx

}
{vλ(s, y)}p dyds

=

∫ t

0

∫

Rny
W (α)(2t− s, y) {vλ(s, y)}p dyds.

Note that

W (α)(2t− s, y) = (2t− s)− n
2αw(α)

(
y

(2t− s)1/2α
)

≥ (2t)−
n
2α s

n
2α

(
2t− s

2t

)− n
2α

s−
n
2αw(α)

( y

s1/2α

)

≥ (2t)−
n
2α s

n
2αW (α)(s, y)

for 0 ≤ s ≤ t ≤ 2t − s ≤ 2t, since w(α)(·) > 0 and w(α)(x) < w(α)(y) for
|x| > |y|.

Using this inequality, we get

The second term

≥ (2t)−
n
2α

∫ t

0
s
n
2α

∫

Rny
W (α)(s, y) {vλ(s, y)}p dyds.
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Hence by Jensen’s inequality (p ≥ 1), we have

The second term

≥ (2t)−
n
2α

∫ t

0
s
n
2α

{∫

Rn
W (α)(s, y)vλ(s, y) dy

}p
ds

= (2t)−
n
2α

∫ t

0
s
n
2α

{
F

(2)
λ (s)

}p
ds.

Thus we get the first inequality. We can prove the second inequality in the
same way. �

Setting

G
(j)
λ (t) = t

n
2αF

(j)
λ (t) (j = 1, 2),

we have

G
(1)
λ (t) = t

n
2αF

(1)
λ (t)

≥ c0λµ
∗
w(α)(0)

(
t

2t+ 1

) n
2α

+ 2−
n
2α

∫ t

0
s
n
2α

{
F

(2)
λ (s)

}p
ds

≥ c1λµ
∗

+ c2

∫ t

0
s
n
2α

(1−p)
{
G

(2)
λ (s)

}p
ds.

Define 


G̃

(1)
λ (t) = c−11 λ−µ

∗
G

(1)
λ (t),

G̃
(2)
λ (t) = c−11 λ−ν

∗
G

(2)
λ (t).

Then

G̃
(1)
λ (t) ≥ 1 + c2c1

−1
∫ t

0
s
n
2α

(1−p)λ−µ
∗
{
c1λ

ν∗G̃
(2)
λ (s)

}p
ds

= 1 + c2c1
p−1

∫ t

0
s
n
2α

(1−p)λpν
∗−µ∗

{
G

(2)
λ (s)

}p
ds

≥ 1 + c3λ
1+ n

2α
(1−p)

∫ t

0
s
n
2α

(1−p)
{
G̃

(2)
λ (t)

}p
ds

for 0 < t < Tλ. Assume that T ∗λ > 1 in what follows. Then we have the
following:
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Lemma 7.3. There exists a positive constant c4 such that




G̃
(1)
λ (t) ≥ 1 + c4λ

1+ n
2α

(1−p)
∫ t

1
s
n
2α

(1−p)
{
G̃

(2)
λ (t)

}p
ds,

G̃
(2)
λ (t) ≥ 1 + c4λ

1+ n
2α

(1−q)
∫ t

1
s
n
2α

(1−q)
{
G̃

(1)
λ (t)

}q
ds,

for 1 ≤ t < T ∗λ .

Thus we see that T ∗λ is smaller than or equal to the blowup time for the
following ODE systems.





x′(t) = c4λ
1+ n

2α
(1−p)t

n
2α

(1−p)y(t)p for t ≥ 1,

y′(t) = c4λ
1+ n

2α
(1−q)t

n
2α

(1−q)x(t)q for t ≥ 1,

x(1) = y(1) = 1.

(2) Next in order to obtain a lower bound for the life span, we shall
construct a super solution as follows.

First let Hj(t, x) (j = 1, 2) be the solution to

(∂t + (−∆)α)Hj(t, x) = 0 (j = 1, 2)

with initial conditions{
H1(0, x) = u0(x) = λµ

∗
ϕ(x),

H2(0, x) = v0(x) = λν
∗
ψ(x).

Note that r > 0 and s > 0 by the assumption. We may assume that there
exists a positive constant c0 such that

ϕ(x), ψ(x) ≥ c0W (α)(1, x) for x ∈ Rn.

Lemma 7.4. There exist positive constants c1, c2, C1, C2 such that
{
c1λ

µ∗W (α)(1 + t, x) ≤ H1(t, x) ≤ C1λ
µ∗W (α)(1 + t, x),

c2λ
ν∗W (α)(1 + t, x) ≤ H2(t, x) ≤ C2λ

ν∗W (α)(1 + t, x),

for x ∈ Rn, t ≥ 0.

Then we have

H2(t, x)p

H1(t, x)
≤ C3λ

pν∗−µ∗W
(α)(1 + t, x)p

W (α)(1 + t, x)

= C3λ
1+ n

2α
(1−p)W (α)(1 + t, x)p−1

≤ C4λ
1+ n

2α
(1−p)(1 + t)

n
2α

(1−p).
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Define {
f(t) = C4λ

1+ n
2α

(1−p)(1 + t)
n
2α

(1−p),

g(t) = C4λ
1+ n

2α
(1−q)(1 + t)

n
2α

(1−q).

Then we have 



f(t) ≥ sup
x∈Rn

H2(t, x)p

H1(t, x)
,

g(t) ≥ sup
x∈Rn

H1(t, x)q

H2(t, x)
.

Let (ξ(t), η(t)) be the solution to the following ODE system

(7.2)





ξ′(t) = f(t)η(t)p for t ≥ 0,

η′(t) = g(t)ξ(t)q for t ≥ 0,

ξ(0) = η(0) = 1.

Then 



ξ′(t) ≥ H2(t, x)p

H1(t, x)
η(t)p for t ≥ 0, x ∈ Rn,

η′(t) ≥ H1(t, x)q

H2(t, x)
ξ(t)q for t ≥ 0, x ∈ Rn.

Set {
U(t, x) = ξ(t)H1(t, x),

V (t, x) = η(t)H2(t, x).

Then (U, V ) is a super solution, namely,
{
Ut + (−∆)αU ≥ V p for t ≥ 0, x ∈ Rn,
Vt + (−∆)αV ≥ U q for t ≥ 0, x ∈ Rn.

It follows from the comparison theorem that
{
uλ(t, x) ≤ U(t, x) for t ≥ 0, x ∈ Rn,
vλ(t, x) ≤ V (t, x) for t ≥ 0, x ∈ Rn.

Thus we get an lower bound for the life span. That is, T ∗λ is greater than or
equal to the blowup time for (7.2).

(3) By (1) and (2), in order to obtain an upper and lower bound for the
life span, we need only consider the ODE system of the same type.

(7.3)





u′(t) = λata−1v(t)p for t ≥ 1,

v′(t) = λbtb−1u(t)q for t ≥ 1,

u(1) = v(1) = 1,
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where

a = 1− n(p− 1)

2α
,

b = 1− n(q − 1)

2α
.

Under the assumption, we have a > 0 and b > 0. If p ≤ q, then a ≥ b. It
suffices to consider only the case a ≥ b.

Hence we obtain the upper and lower bound of the life span by the fol-
lowing Proposition 7.1. �

Let T = T (λ) be the blowup time for (7.3).
Next let T1 = T1(λ) be the blowup time for the following ODE stystems

(7.4)





x′(t) = λata−1y(t)p for t ≥ 1,

y′(t) = λbtb−1x(t)q for t ≥ 1,

x(1) = (q + 1)1/(q+1) > 1,

y(1) = (p+ 1)1/(p+1) > 1,

and T2 = T2(λ) be the blowup time for the following ODE stystems

(7.5)





x′(t) = λata−1y(t)p for t ≥ 1
λ ,

y′(t) = λbtb−1x(t)q for t ≥ 1
λ ,

x( 1
λ) = (p+ 1)−1/(q+1) < 1,

y( 1
λ) = (q + 1)−1/(p+1) < 1.

Note that

1 < T (λ) <∞, 1 < T1(λ) <∞, 1

λ
< T2(λ) <∞.

Proposition 7.1. Assume that

a > 0, b > 0,

pq > 1, p > 0, q > 0.

There exist positive constants c and C, depending only on p, q, a and b,
such that

c

λ
≤ T (λ) ≤ C

λ
for all λ ∈ (0, 1).

Proof. It follows from a comparison argument that

T1(λ) ≤ T (λ).

If T (λ) ≤ 1
λ , then T (λ) ≤ 1

λ < T2(λ).
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Assume that T (λ) > 1
λ . Then we see that u( 1

λ) > 1 and v( 1
λ) > 1

since u(t) and v(t) are monotonically increasing. Thus it follows from the
comparison argument that

T (λ) ≤ T2(λ).

Hence we get the desired estimate from the following Lemma 7.5 and
7.6. �
Lemma 7.5. Assume that a ≥ b. Then

T1(λ) ≥ min





1

λ
,



b(p+ 1)

− pq−1
(p+1)(q+1) + pq−1

q+1

(
q+1
p+1

) q
q+1

λb

pq−1
q+1

(
q+1
p+1

) q
q+1

λb




1/b




for all λ ∈ (0, 1).

Proof. It suffices to show that either T1(λ) ≥ 1
λ or

T1(λ) ≥



b(p+ 1)

− pq−1
(p+1)(q+1) + pq−1

q+1

(
q+1
p+1

) q
q+1

λb

pq−1
q+1

(
q+1
p+1

) q
q+1

λb




1/b

holds.
Assume that T1(λ) < 1

λ . Let (x(t), y(t)), 1 ≤ t < T1(λ) be the solution to
(7.4). Since

{(p+ 1)x(t)q+1 − (q + 1)y(t)p+1}′

= (p+ 1)(q + 1)(xqx′ − ypy′)
= (p+ 1)(q + 1)(λa−bta−b − 1)λbt−1+bxqyp

≤ 0 (1 ≤ t < T1(λ) ≤ 1
λ),

we have

(p+ 1)x(t)q+1 − (q + 1)y(t)p+1

≤ (p+ 1)x(1)q+1 − (q + 1)y(1)p+1 = 0

for 1 ≤ t < T1(λ). Hence

(p+ 1)x(t)q+1 ≤ (q + 1)y(t)p+1

for 1 ≤ t < T1(λ). Then

y′(t) = λbtb−1x(t)q

≤ λb
(
q + 1

p+ 1

) q
q+1

tb−1y
q+pq
q+1
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for 1 ≤ t < T1(λ). Note that q+pq
q+1 > 1 and b > 0. Hence

y(t) ≤
[
y(1)

− pq−1
q+1 − pq − 1

q + 1

(
q + 1

p+ 1

) q
q+1 1

b
λb(tb − 1)

]− q+1
pq−1

(7.6)

for 1 ≤ t < T1(λ). Therefore

T1(λ) ≥



b(p+ 1)

− pq−1
(p+1)(q+1) + pq−1

q+1

(
q+1
p+1

) q
q+1

λb

pq−1
q+1

(
q+1
p+1

) q
q+1

λb




1/b

.

The proof is now completed. �

Lemma 7.6. Assume that a ≥ b.

T2(λ) ≤



b(q + 1)

pq−1
(p+1)(q+1) + pq−1

q+1

(
q+1
p+1

) q
q+1

pq−1
q+1

(
q+1
p+1

) q
q+1




1/b

1

λ

for all λ ∈ (0, 1).

Proof. Let (x(t), y(t)), 1
λ ≤ t < T2(λ) be the solution to (7.5). Since

{(p+ 1)x(t)q+1 − (q + 1)y(t)p+1}′

= (p+ 1)(q + 1)(xqx′ − ypy′)
= (p+ 1)(q + 1)(λa−bta−b − 1)λbt−1+bxqyp

≥ 0 ( 1
λ ≤ t < T2(λ)),

we have

(p+ 1)x(t)q+1 − (q + 1)y(t)p+1

≥ (p+ 1)x( 1
λ)q+1 − (q + 1)y( 1

λ)p+1 = 0

for 1
λ ≤ t < T2(λ). Hence

(p+ 1)x(t)q+1 ≥ (q + 1)y(t)p+1

for 1
λ ≤ t < T2(λ). Then

y′(t) = λbtb−1x(t)q

≥ λb
(
q + 1

p+ 1

) q
q+1

tb−1y
q+pq
q+1
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for 1
λ ≤ t < T2(λ). Note that q+pq

q+1 > 1 and b > 0. Hence

y(t) ≥
[
{
y( 1

λ)
}− pq−1

q+1 − pq − 1

q + 1

(
q + 1

p+ 1

) q
q+1 1

b
λb(tb − λ−b)

]− q+1
pq−1

(7.7)

for 1
λ ≤ t < T2(λ). Therefore

T2(λ) ≤



b(q + 1)

pq−1
(p+1)(q+1) + pq−1

q+1

(
q+1
p+1

) q
q+1

pq−1
q+1

(
q+1
p+1

) q
q+1




1/b

1

λ
.

The proof is now completed. �

Similarly we can prove the following.

Theorem 7.2. Assume that p = q = 1 + 2α
n . Assume also that

u0(x) = λϕ(x) ≥ 0, v0(x) = λψ(x) ≥ 0

where ϕ and ψ are continuous functions on Rn such that

0 ≤ ϕ(x), ψ(x) ≤ C(1 + |x|)−n−2α(7.8)

for some constant C > 0, and λ > 0 is a small parameter. Then the life
span T ∗λ of the mild solution to the reaction-diffusion system (1.4) satisfies

log T ∗λ ∼
1

λn/2α
as λ→ 0.

8. Final remarks

8.1. Semilinear parabolic equations with the fractional Laplacian.
As is well known, the problem of blowup for the semilinear parabolic differ-
ential equation was first studied by Fujita [3]. Since [3], this problem and
related problems have been studied by a lot of people. See, for example,
[14], [15], [16], [17], [22] and [23]. On the other hand, fewer results are
known about the semilinear parabolic equation with the fractional Lapla-
cian ∂tu + (−∆)αu = up. See, for example, [5], [7], [11] and [20]. This is
due to the fact that the detailed properties of the fundamental solution of
the linear equation ∂tu+ (−∆)αu = 0 is not well known. We also note that
recent developments on nonlinear differential equations with the fractional
Laplacian are written in [21].
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8.2. Semilinear reaction diffusion system with the fractional Lapla-
cian. Finally, we remark that there are several references on semilinear re-
action diffusion systems with the fractional Laplacian. (See [4], [10] and [9].)
For example, Kirane and Qafsaoui [10] study some semilinear reaction dif-
fusion systems with the fractional Laplacian and determine the Fujita type
critical exponent. We also note that Kirane, Laskri and Tatar [9] deals with
the blowup and the global existence for a certain semilinear reaction diffu-
sion system with the fractional Laplacian and fractional time derivatives.
However, none of those deal with the problem of life span.

References
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