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AN ARITHMETIC FUNCTION ARISING

FROM THE DEDEKIND ψ FUNCTION

Colin Defant

Abstract. We define ψ to be the multiplicative arithmetic function
that satisfies

ψ(pα) =

{
pα−1(p+ 1), if p 6= 2;

pα−1, if p = 2

for all primes p and positive integers α. Let λ(n) be the number of

iterations of the function ψ needed for n to reach 2. It follows from
a theorem due to White that λ is additive. Following Shapiro’s work
on the iterated ϕ function, we determine bounds for λ. We also use
the function λ to partition the set of positive integers into three sets
S1, S2, S3 and determine some properties of these sets.

1. Introduction

Throughout this paper, we let N, N0, and P denote the set of positive
integers, the set of nonnegative integers, and the set of prime numbers,
respectively. For any prime p and positive integer x, we let vp(x) denote the
exponent of p in the prime factorization of x.

The study of iterated arithmetic functions has played an important role
in number theory over the past century. In particular, Euler’s totient func-
tion has received considerable attention due to the fact that iterates of this
function eventually become constant. In 1943, H. Shapiro studied a function
C(n) that counts the number of iterations of Euler’s totient function needed
for n to reach 2, and he showed that this function is additive [3]. Many
scholars have since built upon Shapiro’s work. For example, White found a
class of functions related to Euler’s totient function which have the property
that the appropriate analogues of Shapiro’s function C are additive [6]. Our
goal is to study the iterates of one such function which is related to the
Dedekind ψ function.

The Dedekind ψ function is the unique multiplicative arithmetic function
that satisfies ψ(pα) = pα−1(p + 1) for all primes p and positive integers
α. This function, which Dedekind introduced in order to aid in the study
of modular functions, has found numerous applications in various areas of
mathematics, especially those closely related to group theory [2, 4]. We will
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define ψ to be the multiplicative arithmetic function that satisfies

ψ(pα) =

{
pα−1(p+ 1), if p 6= 2;

pα−1, if p = 2

for all primes p and positive integers α. One may wish to think of the
function ψ as a sort of hybrid of the Euler ϕ function and the Dedekind
ψ function. Indeed, ψ maps pα to ψ(pα) when p is odd and maps 2α to
ϕ(2α) = 2α−1. Observe that if n > 2, then ψ(n) is even just as ϕ(n) is even.
The reason for modifying the ψ function to create the function ψ in this
manner is to ensure that iterates of any positive integer n eventually become
constant. We will make this notion more precise after some definitions.

For any function f : N→ N, we define f0(n) = n and fk(n) = f(fk−1(n))
for all positive integers n and k. We refer to the sequence n, f(n), f2(n), . . .
as the trajectory of n under f . If there exist positive integers K and c such
that fk(n) = c for all integers k ≥ K, then we say the trajectory of n under f
collapses to c. If the trajectory of n under f collapses to c, then the iteration
length of n under f is the smallest positive integer k such that fk(n) = c.
For example, the trajectory of any positive integer under ϕ collapses to 1.
The iteration lengths of 1 and 2 under ϕ are both 1, while the iteration
length of 100 under ϕ is 6.

Inspired by the Euler ϕ function, White defined a function of finite index
to be any arithmetic function f such that the trajectory of any positive
integer under f collapses to 1 [6]. White then proved that any multiplicative
arithmetic function satisfying

(1.1) q|f(pα)⇒ q ≤ p for all p, q ∈ P and α ∈ N

and

(1.2) pα - f(pα) for all p ∈ P and α ∈ N

is of finite index. It is clear that ϕ satisfies (1.1) and (1.2). The function ψ
satisfies (1.2), but does not satisfy (1.1) in the case p = 2, q = 3. This makes
perfect sense because ψ(n) > n for all integers n > 1, which implies that ψ
cannot be of finite index. In fact, it is easy to show that the trajectory of any
integer n > 1 under ψ has a tail of the form 2a3b, 2a+13b, 2a+23b, . . . for some
a, b ∈ N. We choose to study ψ instead of ψ because ψ does satisfy (1.1) and
(1.2) (and is, therefore, of finite index). For n > 1, we let λ(n) denote the

unique nonnegative integer satisfying ψ
λ(n)

(n) = 2 (one may check that such
an integer must exist and be unique), and we define λ(1) = 0. Therefore,
λ(n) is simply one less than the iteration length of n under ψ. We say that
n is in class k if λ(n) = k. In order to facilitate calculations, we define a
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function D : N→ N0 by

D(x) =

{
λ(x), if x ≡ 1 (mod 2);

λ(x) + 1, if x ≡ 0 (mod 2).

It follows from a theorem of White that the function D is completely additive
[6, Theorem 2]. That is, D(xy) = D(x)+D(y) for all x, y ∈ N. In particular,
observe that D(2α) = α for all positive integers α. We now proceed to
determine some properties of the classes into which the function λ partitions
N.

2. The Structures of Classes

We begin by determining special values that provide bounds for the num-
bers in a given class. Define a function g : N\{1} → N by

g(k) =





5k/3, if k ≡ 0 (mod 3);

9 · 5(k−4)/3, if k ≡ 1 (mod 3);

3 · 5(k−2)/3, if k ≡ 2 (mod 3).

Lemma 2.1. For all m1,m2 ∈ N\{1}, we have g(m1)g(m2) ≥ g(m1 +m2).

Proof. If m1 ≡ m2 ≡ 0 (mod 3), then g(m1)g(m2) = 5m1/3 · 5m2/3 =

5(m1+m2)/3 = g(m1 + m2). If m1 ≡ m2 ≡ 1 (mod 3), then g(m1)g(m2) =

81 · 5(m1+m2−8)/3 > 3 · 5(m1+m2−2)/3 = g(m1 + m2). The other cases are
handled similarly. �

Lemma 2.2. There are no odd numbers in class 1. Furthermore, if x is an
even number in class m, then v2(x) 6= m.

Proof. First, note that 1 is in class 0. If n is in class 1, then ψ(n) = 2.
This is impossible if n is odd because ψ(n) = ψ(n) > n for all odd integers
n > 1. In fact, the only number in class 1 is 4. Suppose x is an even positive
integer satisfying v2(x) = m. We may write x = 2mt for some odd t. Then
λ(x) = D(2mt) − 1 = D(2m) + D(t) − 1 = m + λ(t) − 1. Because t is odd,
it is not in class 1. This means that λ(t) 6= 1, so λ(x) 6= m. �

The following lemma is quite simple, but we record it for future reference.

Lemma 2.3. If n is an odd positive integer, then n and 2n are in the same
class.

Proof. Observe that 1 and 2 are both in class 0, so the result holds for
n = 1. If n > 1, then the result is an easy consequence of the fact that
ψ(n) = ψ(2n). �



84 COLIN DEFANT

Theorem 2.1. Let k > 1 be an integer. The smallest odd number in class
k is g(k), and the smallest even number in class k is 2g(k).

Proof. We first use induction to prove that g(k) is indeed in class k. We
have λ(g(2)) = λ(3) = 2, λ(g(3)) = λ(5) = 3, and λ(g(4)) = λ(9) = 4,
so λ(g(k)) = k for all k ∈ {2, 3, 4}. Let r > 4 be an integer, and suppose
that λ(g(k)) = k if k ∈ {2, 3, . . . , r − 1}. Because g(r) is odd, λ(g(r)) =
D(g(r)) = D(5g(r − 3)) = D(5) + D(g(r − 3)) = D(5) + r − 3 = r. By
induction, we see that g(k) is in class k for any integer k > 1. Therefore,
2g(k) is also in class k by Lemma 2.3.

It is easy to verify that the theorem holds if k ∈ {2, 3, 4}. Therefore,
let m > 4 be a positive integer, and suppose the theorem holds whenever
k < m. Let n and s be the smallest odd number and the smallest even
number, respectively, in class m. We have already shown that n ≤ g(m)
and s ≤ 2g(m), so we wish to prove the opposite inequalities. Assume,
first, that n is a prime. Then m = λ(n) = 1 + λ(ψ(n)) = 1 + λ(n + 1), so
n+ 1 is in class m− 1. By the induction hypothesis and the fact that n+ 1
is even, we have n + 1 ≥ 2g(m − 1). It is easy to see from the definition
of g that 2g(m − 1) ≥ g(m) + 1, so n ≥ g(m). Assume, now, that n is
composite. We may write n = n1n2, where n1 and n2 are odd integers
satisfying 1 < n1 ≤ n2 < n. Write λ(n1) = m1 and λ(n2) = m2. We have
m = λ(n) = D(n) = D(n1) + D(n2) = m1 + m2. We know that m1 and
m2 are each less than m because n was assumed to be the smallest odd
number in class m (or, alternatively, because m1 and m2 must be positive
because n1 and n2 are each greater than 2). By the induction hypothesis,
n1 ≥ g(m1), and n2 ≥ g(m2). Using Lemma 2.1, we may conclude that
n = n1n2 ≥ g(m1)g(m2) ≥ g(m1 +m2) = g(m). This proves that n = g(m).

Now, write s = 2αt, where t is odd. We have m = λ(2αt) = D(2αt)− 1 =
D(2α) + D(t) − 1 = λ(t) + α − 1, so λ(t) = m − (α − 1). If t = 1, then
α = m+1 > 5. However, it is easy to see that 2α−2 ·3 would then be an even
integer in class m that is smaller than s. This is a contradiction, so t > 1.
Lemma 2.2 guarantees that m − (α − 1) > 1 because t is an odd number
in class m− (α− 1). Because we know from the induction hypothesis (and
the preceding paragraph in the case α = 1) that the smallest odd number
in class m− (α− 1) is g(m− (α− 1)), we have t ≥ g(m− (α− 1)). If α = 1,
then we have obtained the desired inequality s = 2t ≥ 2g(m). As mentioned
in the preceding paragraph, 2g(m − 1) > g(m). Hence, if α = 2, then
s = 22t ≥ 22g(m−1) > 2g(m). Finally, suppose α > 2. It is easy to see that
g(α−1) ≤ 2α−1. Using Lemma 2.1, we have g(α−1)g(m− (α−1)) ≥ g(m).
Hence, s = 2 · 2α−1t ≥ 2 · 2α−1g(m− (α− 1)) ≥ 2g(α− 1)g(m− (α− 1)) ≥
2g(m). �
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We may use Theorem 2.1 to prove the following more general result.

Theorem 2.2. Let a and k be positive integers with k > λ(a) + 1. The
smallest multiple of a in class k is ag(k − λ(a)). If a is odd, then the only
multiple of a in class λ(a) + 1 is 4a. If a is even, then the only multiple of
a in class λ(a) + 1 is 2a.

Proof. First note that λ(ag(k− λ(a))) = λ(a) + λ(g(k− λ(a))) = k because
g(k − λ(a)) is an odd number in class k − λ(a). Hence, ag(k − λ(a)) is
indeed in class k. Let am be a multiple of a that is in class k. We wish to
show that am ≥ ag(k − λ(a)). Suppose that a is odd or m is odd. Then
λ(m) = λ(am)−λ(a) = k−λ(a). This means that m is in class k−λ(a), so
m ≥ g(k− λ(a)) by Theorem 2.1. Thus, am ≥ ag(k− λ(a)). Suppose, now,
that a and m are both even. Then λ(m) = D(m)−1 = D(am)−D(a)−1 =
λ(am)−D(a) = k −D(a) = k − λ(a)− 1, so m is an even number in class
k−λ(a)−1. If k = λ(a)+2, then we must have m = 4 because 4 is the only
number in class 1. In this case, am = 4a > 3a = ag(k − λ(a)). Thus, let us
suppose k > λ(a)+2. Theorem 2.1 yields the inequality m ≥ 2g(k−λ(a)−1).
Recall that 2g(x−1) > g(x) for any integer x > 1, so m > g(k−λ(a)). This
completes the proof of the first statement of the theorem.

Suppose a is odd and at is a multiple of a in class λ(a) + 1. Then λ(t) =
λ(at)− λ(a) = 1, so t = 4.

Suppose a is even and au is a multiple of a in class λ(a) + 1. If u is odd,
then λ(u) = λ(au)− λ(a) = 1, which contradicts Lemma 2.2. Thus, u must
be even. Then λ(u) = D(u) − 1 = D(au) − D(a) − 1 = λ(au) − D(a) =
λ(a) + 1 − D(a) = 0. This implies that u = 2 because 2 is the only even
number in class 0. �

Theorem 2.3. Let k > 1 be an integer. The largest even number in class
k is 2k+1, and the largest odd number in class k is less than 2k.

Proof. Observe that if n > 1, then ψ(n) ≥ 1

2
n. Similarly, if ψ(n) > 1, then

ψ
2
(n) ≥ 1

4
n. Continuing this same argument, we find that 2 = ψ

λ(n)
(n) ≥

1

2λ(n)
n. Hence, if n is in class k, then n ≤ 2k+1. Because 2k+1 is in class k,

this proves that the largest even number in class k is 2k+1. Suppose n > 1

is odd. Then ψ(n) ≥ n + 1, so ψ
2
(n) ≥ 1

2
(n+ 1). Again, we continue this

argument until we find that 2 = ψ
λ(n)

(n) ≥ 1

2λ(n)−1
(n+ 1). This shows that

if n is in class k, then n+ 1 ≤ 2k. This proves the second claim. �
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For k > 1, Theorems 2.1 and 2.3 allow us to divide class k into three
useful sections as follows:

g(k), . . . ,︸ ︷︷ ︸
Section I

2g(k), . . . ,︸ ︷︷ ︸
Section II

2k, . . . , 2k+1

︸ ︷︷ ︸
Section III

.

More specifically, Section I of class k is the set of numbers in class k that are
less than 2g(k). All elements of Section I are necessarily odd by Theorem
2.1. Section II of class k is the set of elements of class k that are greater
than or equal to 2g(k) and strictly less than 2k. Section II of a class may
contain both even and odd elements. Finally, Section III of class k is the
set of numbers in class k that are greater than 2k; all such numbers are
necessarily even by Theorem 2.3. We must define the sections of class 0 and
class 1 explicitly. We will say that Section I of class 0 contains only the
number 1, and Section III of class 0 contains only the number 2. We will
say that Section II of class 0 is empty. Similarly, Sections I and II of class
1 will be empty while Section III of class 1 will contain only the number 4
(the only number in class 1).

Let S1 denote the set of all positive integers that are in Section I of their
respective classes. That is, S1 = {n ∈ N : n < 2g(λ(n))}. Define S2 and S3
similarly for numbers in Section II and Section III, respectively. For each
nonnegative integer k 6= 1, let B(k) denote the largest odd number in class
k (observe that such a number must exist because 1 is in class 0 and g(k)
is an odd number in class k when k > 1). Let B = {B(k) : k ∈ N0\{1}}.
Theorem 2.3 states that B(k) < 2k for each integer k > 1, but it does not
give any lower bound for B(k). This leads us to the following lemma and
theorem.

Lemma 2.4. If 0 < p < q, then (2q − 1)p > (2p − 1)q.

Proof. Let f(x) = (2x − 1)1/x. Then

f ′(x) = (2x − 1)1/x
(

2x log 2

x(2x − 1)
− log(2x − 1)

x2

)

> (2x − 1)1/x
(

2x log 2

x2x
− log(2x)

x2

)
= 0.

Therefore, if 0 < p < q, then f(p) < f(q). This then implies that (2q−1)p =
f(q)pq > f(p)pq = (2p − 1)q. �
Theorem 2.4. Let 2p − 1 and 2q − 1 be Mersenne primes with p < q. If

k ≥ (p− 1)(q − 1), then B(k) ≥ 2k(1− 2−q)
k−p(q−1)

q (1− 2−p)q−1.

Proof. Fix some k ≥ (p− 1)(q − 1). A result due to Skupień [5, Prop. 3.2]
implies that there exist unique positive integers a and b with b ≤ q− 1 such
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that k = aq + bp. Let j = q − 1− b. Then a =
k − p(q − 1)

q
+
p

q
j. Observe

that λ(2p − 1) = 1 + λ(ψ(2p − 1)) = 1 + λ(2p) = p. Similarly, λ(2q − 1) = q.
Therefore,

λ((2q − 1)a(2p − 1)b) = aq + bp = k.

Because (2q − 1)a(2p − 1)b is an odd number in class k, we have

B(k) ≥ (2q − 1)a(2p − 1)b = 2k(1− 2−q)a(1− 2−p)b

= 2k(1− 2−q)
k−p(q−1)

q
+ p
q
j
(1− 2−p)q−1−j = (1− 2−q)

p
q
j
(1− 2−p)−jL,

where L = 2k(1− 2−q)
k−p(q−1)

q (1− 2−p)q−1. From Lemma 2.4, we have

(2q − 1)p > (2p − 1)q,

so

(1− 2−q)
p
q
j
(1− 2−p)−jL = ((2q − 1)p)

j
q 2−pj(1− 2−p)−jL

> (2p − 1)j2−pj(1− 2−p)−jL = L.

�
The numbers B(k) are quite difficult to handle, so a better lower bound

currently evades us. Numerical evidence seems to suggest that the elements
of B (other than 1) are all primes, but we have no proof or counterexample.
We may, however, prove the following fact quite easily. The analogue of
the following theorem for Euler’s totient function was originally proven by
Catlin [1].

Theorem 2.5. If x ∈ B, then every positive divisor of x is in B.

Proof. Let x ∈ B, and suppose d is a positive divisor of x that is not in B.
As x ∈ B, x must be odd. This implies that d is odd, so there must be some
odd number m > d that is in the same class as d. Write x = dy. Then
λ(x) = λ(d) + λ(y) = λ(m) + λ(y) = λ(my). Then my is an odd number
that is in the same class as x and is larger than x. This is a contradiction,
and the desired result follows. �

We may prove a similar result for the numbers in S1. The analogue of
the following theorem for Euler’s totient function was originally proven by
Shapiro [3].

Theorem 2.6. If x ∈ S1, then every positive divisor of x is in S1.

Proof. Let x ∈ S1, and let d be a positive divisor of x. Write x = dy. We
wish to show that d is in Section I of its class. This is trivial if d = 1 or
d = x, so we may assume that d and y are both greater than 1. As x ∈ S1,
x must be odd. This implies that d and y are odd, so λ(x) = λ(d) + λ(y).
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Lemma 2.1 then implies that g(λ(d))g(λ(y)) ≥ g(λ(x)). The fact that x ∈ S1
implies that x < 2g(λ(x)). Furthermore, y ≥ g(λ(y)) by Theorem 2.1, so
d = x/y < 2g(λ(x))/y ≤ 2g(λ(x))/g(λ(y)) ≤ 2g(λ(d)). Hence, d is in
Section I of its class. �

We next determine a bit of information about the structure of S3. We
will do so in greater generality than is necessary, and the results pertinent
to S3 with follow as corollaries. To this end, define V (c) = {n ∈ N : n >

2λ(n)−c} for any real number c, and observe that S3 = V (0). Also, define
η(p) = λ(p)− log2(p) for all odd primes p. Note that η(p) is always positive
by Theorem 2.3.

Lemma 2.5. Let r and α be positive integers, and let c be a real number.
Let t = pα1

1 · · · pαrr , where p1, . . . , pr are distinct odd primes and α1, . . . , αr

are positive integers. Then 2αt ∈ V (c) if and only if
r∑

i=1

αiη(pi) < c+ 1.

Proof. By the definition of V (c), 2αt ∈ V (c) if and only if 2αt > 2λ(2
αt)−c.

Now, λ(2αt) = α− 1 +
r∑

i=1

αiλ(pi), so 2λ(2
αt)−c = 2α−c−1

r∏

i=1

2αiλ(pi). There-

fore, 2αt ∈ V (c) if and only if 2c+1t >
r∏

i=1

2αiλ(pi). This inequality is equiva-

lent to

c+ 1 + log2(p
α1
1 · · · pαrr ) > log2

(
r∏

i=1

2αiλ(pi)

)
,

which we may rewrite as
r∑

i=1

αiη(pi) < c+ 1. �

Although the proof of Lemma 2.5 is quite simple, the lemma tells us quite
a bit about the factors of elements of V (c). For example, we see that whether
or not an even integer is an element of V (c) is independent of the power of
2 in its prime factorization. Also, any even divisor of an even element of
V (c) must itself be in V (c). In the case c = 0, this provides an analogue of

Theorem 2.6 for S3. Furthermore, if q is an odd prime and k =

⌊
c+ 1

η(q)

⌋
,

then Lemma 2.5 tells us that 2αqβ ∈ V (c) for all positive integers α and β
with β ≤ k. On the other hand, qβ does not divide any even element of V (c)
if β > k. In particular, if η(q) > c+ 1 so that k = 0, then no even element
of V (c) is divisible by q. This leads us to inquire about the set T (c) of odd
primes q satisfying η(q) > c + 1. Let bc(x) = |{q ∈ T (c) : q ≤ x}|. One
may wish to determine estimates for bc(x). We have not attempted to do
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so in great detail; rather, we will simply show that lim
x→∞

bc(x)

π(x)
= 1. In other

words, T (c) has asymptotic density 1 when regarded as a subset of the set
of primes.

Lemma 2.6. Let c be a real number. Let q ∈ T (c), and let p be an odd
prime such that p ≡ −1 (mod q). Then p ∈ T (c).

Proof. As mentioned in the above discussion, q cannot divide any even ele-
ment of V (c). Hence, p + 1 6∈ V (c), which implies that p + 1 ≤ 2λ(p+1)−c.
Therefore, λ(p) = 1 + λ(ψ(p)) = 1 + λ(p + 1) ≥ c + 1 + log2(p + 1), so
η(p) = λ(p)− log2(p) > c+ 1. �

We will also need the following fact, the proof of which follows as an easy
consequence of the well-known generalization of Dirichlet’s Theorem that

states that, for any relatively prime positive integers k and `,
∑

p≤x
p≡` (mod k)

1

p

diverges as x→∞.

Fact 2.1. For any relatively prime positive integers k and `,

lim
x→∞




∏

p≤x
p≡` (mod k)

(
1− 1

p

)

 = 0.

Lemma 2.7. Let x and y be positive real numbers with x > y. Let Π(x) be
the set of all odd primes that are at most x, and let Q(y) be some set of odd
primes that are at most y. Let

A(x, y) = {p ∈ Π(x) : p ≡ −1 (mod q) for some q ∈ Q(y)},
and let B(x, y) = A(x, y) ∪Q(y). Let P =

∏

q∈Q(y)

q, and let

W = {n ∈ {1, 2, . . . ,P} : n 6≡ 0,−1 (mod q) ∀ q ∈ Q(y)}.
Finally, let

Z = {p ∈ Π(x) : p ≡ w (mod P) for some w ∈W}.
We have B(x, y) ∪ Z = Π(x) and B(x, y) ∩ Z = ∅.
Proof. Observe that it follows from the definitions of B(x, y) and Q(y) that
B(x, y) ∪ Q(y) ⊆ Π(x). Choose some p ∈ Π(x) \ B(x, y). Because p is
prime and p 6∈ Q(y), we know that p cannot be congruent to 0 modulo q
for any q ∈ Q(y). Furthermore, p cannot be congruent to −1 modulo q for
any q ∈ Q(y) because p 6∈ A(x, y). Because p is not congruent to 0 or −1
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modulo q for all q ∈ Q(y), it follows from the Chinese Remainder Theorem
that p ∈ Z. We have shown that Π(x) \ B(x, y) ⊆ Z, which implies that
Π(x) ⊆ B(x, y) ∪ Z. Thus, Π(x) = B(x, y) ∪ Z.

We now show that B(x, y) ∩ Z = ∅. Suppose for the sake of finding a
contradiction that there exists some p′ ∈ B(x, y) ∩ Z. Assume p′ ∈ Q(y).
We know that p′ ≤ P and p′ 6∈ W , so p′ 6∈ Z. This is a contradiction,
so we may assume that p′ 6∈ Q(y). Because p′ ∈ B(x, y), this implies that
p′ ∈ A(x, y). Hence, there exists some q′ ∈ Q(y) such that p′ ≡ −1 (mod q′).
Since p′ ∈ Z, there exists some w′ ∈W such that p′ ≡ w′ (mod P). Because
q′|P, we find that p′ ≡ w′ (mod q′). Hence, w′ ≡ p′ ≡ −1 (mod q′). This
contradicts the fact that w′ ∈W , so the proof of the lemma is complete. �

Theorem 2.7. Let c be a real number. With bc defined as above, we have

lim
x→∞

bc(x)

π(x)
= 1.

Proof. If c ≤ −1, then the result is trivial because every odd prime is in
T (c). Therefore, let us assume that c > −1. We first need to show that T (c)

is nonempty. Let k =

⌊
c+ 1

η(3)

⌋
=

⌊
c+ 1

2− log2(3)

⌋
. By Dirichlet’s Theorem,

there exist infinitely many primes in the arithmetic progression 2 · 3k+1 −
1, 4 · 3k+1 − 1, 6 · 3k+1 − 1, . . .. Let ω be one such prime, and write ω =
2` · 3k+1− 1. If we replace 2αt with 2` · 3k+1 in Lemma 2.5, then we see that
r∑

i=1

αiη(pi) ≥ (k + 1)η(3), where we have used the notation from Lemma 2.5.

By the definition of k, (k + 1)η(3) > c + 1. Lemma 2.5 then tells us that

2` ·3k+1 = ω+1 6∈ V (c). Hence, ω+1 ≤ 2λ(ω+1)−c = 2λ(ψ(ω))−c = 2λ(ω)−c−1.
This yields the inequality log2(ω + 1) ≤ λ(ω) − c − 1, which implies that
η(ω) = λ(ω) − log2(ω) > c + 1. This shows that ω ∈ T (c), so T (c) is
nonempty.

Now, choose some δ, ε > 0. Let q0 be the smallest element of T (c). For
any positive real number y, let Q(y) be the set of odd primes that are less
than or equal to y and that are congruent to −1 modulo q0. By Lemma

2.6, Q(y) ⊆ T (c). Let us choose y large enough so that
∏

q∈Q(y)

(
1− 1

q

)
< δ

(Fact 2.1 guarantees that we may do so). Pick some real number x > y, and
let Π(x) be the set of all odd primes that are at most x. Let

A(x, y) = {p ∈ Π(x) : p ≡ −1 (mod q) for some q ∈ Q(y)}.
Using Lemma 2.6 again, we see that A(x, y) ⊆ T (c). Thus, putting B(x, y) =
A(x, y)∪Q(y), we find that B(x, y) ⊆ T (c). As every element of B(x, y) is at
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most x, |B(x, y)| ≤ bc(x). Therefore, if we can show that lim
x→∞

|B(x, y)|
π(x)

= 1,

then we will be done.
Let P =

∏

q∈Q(y)

q, and let

W = {n ∈ {1, 2, . . . ,P} : n 6≡ 0,−1 (mod q) ∀ q ∈ Q(y)}.
Let

Z = {p ∈ Π(x) : p ≡ w (mod P) for some w ∈W}.
Because no two elements of W can be congruent to each other modulo P,
each element of Z is congruent to exactly one element of W modulo P.

Hence, |Z| =
∑

w∈W
πw(x), where πw(x) denotes the number of primes less

than or equal to x that are congruent to w modulo P. Lemma 2.7 tells
us that B(x, y) ∪ Z = Π(x) and B(x, y) ∩ Z = ∅. Thus, |B(x, y)| + |Z| =
|Π(x)| = π(x)− 1. We may rewrite this as

π(x)− |B(x, y)| − 1 =
∑

w∈W
πw(x).

By the Chinese Remainder Theorem, |W | =
∏

q∈Q(y)

(q − 2). One version of

Dirichlet’s Theorem tells us that
πw(x)

π(x)
=

1

ϕ(P)
(1 + o(1)) for all w ∈ W .

Hence, we may choose x large enough so that
πw(x)

π(x)
<

1

ϕ(P)
+ ε for all

w ∈W . With such a choice of x, we have

π(x)− |B(x, y)| − 1

π(x)
=
∑

w∈W

πw(x)

π(x)
<
∑

w∈W

(
1

ϕ(P)
+ ε

)
=
|W |
ϕ(P)

+ |W |ε

=
∏

q∈Q(y)

(
q − 2

q − 1

)
+ |W |ε <

∏

q∈Q(y)

(
1− 1

q

)
+ |W |ε < δ + |W |ε.

Because |W | does not depend on x or ε, this shows that

lim
x→∞

π(x)− |B(x, y)| − 1

π(x)
= 0.

Therefore,

lim
x→∞

|B(x, y)|
π(x)

= 1.

�
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