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THE DEGREE OF SET-VALUED MAPPINGS FROM ANR

SPACES TO HOMOLOGY SPHERES

Yoshimi Shitanda

Abstract. An admissible mapping is a set-valued mapping which has
a selected pair of continuous mappings. In this paper, we study the
degree of admissible mappings from ANR spaces to homology spheres
and prove the uniqueness of the degree under some conditions.

1. Introduction

For every point x in a topological space X, a non-empty closed set ϕ(x) in
a topological space Y is assigned, the correspondence is called a set-valued
mapping which is written by the Greek alphabet ϕ : X → Y . For a single-
valued mapping, we write f : X → Y etc. by the Roman alphabet. In this
paper, we assume that set-valued mappings are upper semi-continuous (cf.
[6]).

Fixed point theorems and equivariant point theorems are studied by many
mathematicians (cf. [3], [11], [12], [13]). Fixed point theorems and equi-
variant point theorems of single-valued mappings are generalized for set-
valued mappings by many topologists (cf. [5], [6], [15], [16]).

An admissible mapping ϕ : X → Y is a set-valued mapping which has a
selected pair p : Γ → X and q : Γ → Y (cf. Definition 2). When an ANR
spaces X satisfies Hn(X;Z) ∼= Z, we define the degree of ϕ by the set

deg(ϕ) = {deg((p∗)−1q∗) : (p∗)−1q∗ : Hn(N ;Z)→ Hn(X;Z)}
where N is an n-dimensional homology sphere. In this paper,we shall study
the degree of ϕ : X → N under the conditions ϕ(x) ∩ ϕ(T (x)) = ∅ and
T ′ϕ(x) ∩ ϕ(T (x)) = ∅ where T and T ′ are involutions.

Y.Hara and Y.Moriwaki [8] determined the degree of admissible mappings
ϕ : M → Sn where M is an n-dimensional smooth manifold and Sn is the
n-dimensional sphere. Their method uses essentially the character of the
sphere. In this paper, we shall give a generalization of their results. Our
technic is homological method and more elementary than [14], [15]. Though
our main theorems are proved partly by Theorem 5.5 and Theorem 6.3 of
[15], the uniqueness of the degree is not proved there. Our main results are
stated as follows (cf. Theorem 3.4, Theorem 4.1).
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Main Theorem 1. Let X be an ANR space with a free involution T and
N be an n-dimensional homology sphere. Suppose that dimX = n and
Hn(X;Z) ∼= Z and c(X,T )n 6= 0. If an admissible mappings ϕ : X → N
satisfies ϕ(x) ∩ ϕ(Tx) = ∅ for any x ∈ X, then there exists a unique odd
number m such that degϕ = {m}.

For the case c(X,T )n = 0, then there exists a unique even number m such
that deg(ϕ) = {m} (cf. Theorem 3.5).

Main Theorem 2. Let X be an ANR space with a free involution T and
N be an n-dimensional homology sphere with a non trivial involution T ′.
Suppose that dimX = n and Hn(X;Z) ∼= Z and an admissible mappings
ϕ : X → N satisfies T ′ϕ(x) ∩ ϕ(Tx) = ∅ for any x ∈ X. Then there exists
a unique even number m such that deg(ϕ) = {m}. In particular, if T ′ is an
orientation reversing involution, then degϕ = {0}.

Assume that an involution T ′ on N is free in the above main theorem.
For the case that n is an odd number, there exists a unique even number
m such that degϕ = {m}. For the case that n is an even number, then
degϕ = {0} (cf. Corollary 4.2).

2. Preliminaries

In this paper, we shall use the Alexander-Spanier cohomology theory
H̄∗(−;G) and the singular cohomology theory H∗(−;G). If the singular
cohomology theory satisfies the continuity condition (cf. Theorem 6.9.1 in
[17]), the Alexander-Spanier cohomology theory is isomorphic to the singular
cohomology theory, that is,

(2.1) µ; H̄∗(X;G) ∼= H∗(X;G).

In particular, H̄∗(−;G) and H∗(−;G) are isomorphic for ANR spaces by
Corollary 6.9.5 of [17]. In this paper, we use H̄∗(−) and H∗(−)for H̄∗(−; F2)
and H̄∗(−; F2) respectively where F2 is the prime field of the characteristic
2.

Let f : X → Y be a continuous mapping. When f−1(K) is a compact set
for any compact subset K ⊂ Y , f is called a proper mapping. f is called
a perfect mapping, if f is a closed mapping and any preimage f−1(y) is a
compact set for each y ∈ Y . A perfect mapping is a proper mapping by
Theorem 3.7.2 in R. Engelking [4]. For the case that Y is a metric space, a
proper mapping f is a closed mapping (cf. Proposition 1.8.1 in [6]).

A mapping f : X → Y is called a compact mapping, if f(X) is contained

in a compact set of Y , or equivalently its closure f(X) is compact.



THE DEGREE OF SET-VALUED MAPPINGS 29

Definition 1. Let X and Y be paracompact Hausdorff spaces. A map-
ping f : X → Y is called a Vietoris mapping, if it satisfies the following
conditions;

(1) f is a perfect and onto continuous mapping.
(2) f−1(y) is an acyclic space for any y ∈ Y , that is, it is a connected

space and H̄∗(f−1(y);G) = 0 for positive dimensions.

When f is closed and onto continuous mapping and satisfies the condition
(2), we call it weak Vietoris mapping.

The following theorem is called the Vietoris-Begle mapping theorem and
is important for our purpose (cf. Theorem 6.9.15 in [17]).

Theorem 2.1. Let f : X → Y be a weak Vietoris mapping between para-
compact Hausdorff spaces X and Y . Then,

(2.2) f∗ : H̄m(Y ;G)→ H̄m(X;G)

is an isomorphism for all m = 0.

The graph of a set-valued mapping ϕ : X → Y is defined by Γϕ =
{(x, y) ∈ X × Y | y ∈ ϕ(x)}. If ϕ is upper semi-continuous, Γϕ is closed,
but the converse is not true. If the image ϕ(X) is contained in a compact
set, the converse is true (cf. §14 in [6]).

Definition 2. An upper semi-continuous mapping ϕ : X → Y is called
an admissible mapping, if there exist a paracompact Hausdorff space Γ and
continuous mappings p : Γ → X and q : Γ → Y satisfying the following
conditions:

(1) p : Γ→ X is a Vietoris mapping
(2) ϕ(x) ⊃ q(p−1(x)) for each x ∈ X.

A pair (p, q) of mappings p and q is called a selected pair of ϕ.

For an admissible mapping ϕ : X → Y , we define ϕ∗ : H̄∗(Y ;G) →
H̄∗(X;G) by the set

ϕ∗ = {(p∗)−1q∗} | (p, q) is a selected pair of ϕ}.

ϕ∗ is similarly defined by the set {q∗(p∗)−1}.
When an ANR spaces X satisfies Hn(X;Z) ∼= Z and N is an n-

dimensional homology sphere, the degree deg(ϕ) of ϕ is also defined (see
Introduction).

Note that deg(ϕ) is a subset of the set Z of integers.
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3. The degree of admissible mappings 1

In this paper, manifolds are paracompact Hausdorff topological manifolds.
An n-dimensional homology sphere N means that it is an n-dimensional
topological manifold and has the homology groups of the n-dimensional
sphere i.e. H∗(N ;Z) ∼= H∗(Sn;Z). It is easily seen H∗(N ;G) ∼= H∗(Sn;G)
for any abelian group G.

Let τ be the group of the order 2. When a paracompact Hausdorff space
X has a free involution T , the group τ generated by T acts on X. Similarly
when Y has a free involution T ′, the group τ generated by T ′ acts on Y .
Their orbit spaces are denoted by Xτ , Yτ . An equivariant mapping f : X →
Y creates the induced mapping fτ : Xτ → Yτ between their orbits spaces.

When an equivariant mapping f : X → Y is a perfect mapping, the
induced mapping fτ ;Xτ → Yτ is also a perfect mapping. If f : X → Y is a
Vietoris mapping, fτ ;Xτ → Yτ is also a Vietoris mapping.

There exist the standard covering projections πn : Sn → RPn and π∞ :
S∞ → RP∞. For a covering projection πX : X → Xτ , there exist a classi-
fying mapping fτ : Xτ → RP∞ and f : X → S∞ such that π∞f = fτπX
by Theorem 4.12.2 of [9]. The first Stiefel-Whitney class c(X,T ) ∈ H̄1(Xτ )
(or c(X,T ) ∈ H1(Xτ ) ) is defined by f∗τ (ω) where ω is the generator of
H1(RP∞) i.e. c(X,T ) = f∗τ (ω).
X is called an ANR space, if X is a metric space and for any metric space

Y and any embedding h : X → Y h(X) is a neighborhood retract of Y . (cf.
[10], or Definition 1.7 of [6]). If X is an ANR space, Xτ is also an ANR
space by Theorem 4.4.17 of [4] and by Theorem 3.3 of [7].

When X is an ANR space, there exist a simplicial complex K and map-
pings h : X → K, k : K → X such that kh is homotopic to IdX by
Theorem 6.1 of [7] (cf. [10], or [1]). Moreover when X is n-dimensional, K
is an n-dimensional complex.

dimX means the covering dimension of X. (cf. Chapter 7 of [4]). When
X is a normal space, then dimX = n implies dimXτ = n by Theorem 7.1.7
and Theorem 7.2.4 of [4]. When an ANR space X satisfies Hn(X;Z) ∼= Z
and dimX = n, then Hk(X;Z) = 0 for k > n and Hn(X) ∼= F2 by Theorem
5.5.10 of [17]. In particular, if X is a compact ANR space, then Hn(X;Z) ∼=
Z and Hn−1(X;Z) is finitely generated free group by the universal coefficient
theorem.

Proposition 3.1. Let X be an ANR space with a free involution T which
satisfies dimX = n and Hn(X;Z) ∼= Z. Suppose that c(X,T )n 6= 0. Then
T ∗ = IdHn(X;Z) for an odd number n and T ∗ = −IdHn(X;Z) for an even
number n.
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Proof. A covering projection πX : X → Xτ is induced by a classifying
mapping fτ : Xτ → RP∞ and f : X → S∞ such that π∞f = fτπX . By
the above remark there exist a simplicial complex K and h : Xτ → K and
k : K → Xτ such that kh is homotopic to IdXτ denoted by kh ' IdXτ . We
see fτ ' fτkh. There exists a continuous mapping g : K → RPn by the
cellular approximation theorem such that g is homotopic to fτk. Therefore
we see that fτ is homotopic to gh : Xτ → RPn by fτ ' fτkh ' gh. We may
assume fτ : Xτ → RPn. That is, there exists the following diagram:

(3.1)

X
f−−−−→ Sn

yπX
yπn

Xτ
fτ−−−−→ RPn.

Let σn ∈ Hn(Sn) be the dual element of the generator of Hn(Sn) and
ωn ∈ H1(RPn) be the generator. By the Gysin-Smith sequence of πn : Sn →
RPn, we see (πn)!(σn) = ωnn where (πn)! is the transfer homomorphism of
πn.

Let µ be the generator of Hn(X). Set ω′ = c(X,T ). By the Gysin-Smith
sequence of πX : X → Xτ :

(3.2) → Hn(Xτ )
π∗X−→ Hn(X)

(πX)!−→ Hn(Xτ )
∪ω′−→ Hn+1(Xτ )→

we have (πX)! : Hn(X) ∼= Hn(Xτ ) ∼= F2 and (πX)!(µ) = c(X,T )n. More-
over we see f∗(σn) = µ by (πX)!f

∗(σn) = f∗τ (πn)!(σn). Therefore f∗ :
Hn(Sn;Z)→ Hn(X;Z) is not trivial.

For the the antipodal involution Tn : Sn → Sn, we have T ∗n = IdHn(Sn;Z)

for an odd number n and T ∗n = −IdHn(Sn;Z) for an even number n. Therefore
we obtain our result by fT = Tnf . �

Remark. An n-dimensional connected orientable closed manifold M satisfies
dimM = n and Hn(M ;Z) ∼= Z. We can easily construct many ANR spaces
satisfying the above conditions which are not manifolds.

Remark. The Gysin-Smith sequence is well-known for the singular cohomol-
ogy theory (cf. [17]). The Gysin-Smith sequence for the Alexander-Spanier
cohomology theory is proved by Corollary 6.5.2 of [17] (cf. §5 of [14] and
Corollary 6.8.8 of [17]).

Let ∆X be the diagonal set of X2 = X ×X. There exists an involution
TX : X2 → X2 defined by TX(x, y) = (y, x). TX is a free involution on
X2 −∆X .
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Theorem 3.2. Let N be an n-dimensional closed manifold. Suppose
H∗(N ;Z) ∼= H∗(Sn;Z). Then H∗(N − {x};G) ∼= H∗(pt;G) for any x ∈ N
and π∗i : H∗(N2 −∆N ;G) ∼= H∗(N ;G) for the projections πi : N2 −∆N →
N (i = 1, 2).

Proof. Let U be a neighborhood of x ∈ N homeomorphic to the open disk
Dn. N is a union of (N−U) and Cl(U). (N−U)∩Cl(U) is homeomorphic to
Sn−1. By using the Mayer-Vietoris sequence of {(N−U),Cl(U)}, we obtain
H∗(N − U ;Z) ∼= H∗(pt;Z) for any x ∈ N . Since N − {x} is homotopy
equivalent to N − U , we have H∗(N − {x};G) ∼= H∗(pt;G) for any x ∈ N .

The projections πi : N2 − ∆N → N are a fiber bundle over N with a
fiber N − {x} (cf. Lemma 6.2.5 in E. Spanier [17]). That is, there exists a
neighborhood U of x such that π−1

i (U) is homeomorphic to U × (N − {x}).
By comparing the Mayer-Vietoris sequences of {U} and {π−1

i (U)} where
{U} is a covering of N , we obtain the theorem. �

For a connected paracompact Hausdorff space X with a free involution
T , c(X,T ) ∈ H1(Xτ ) is not zero by the Gysin-Smith sequence.

If N is an n-dimensional homology sphere, N2 − ∆N satisfies H∗(N2 −
∆N ) ∼= H∗(N) by Theorem 3.2. Let ν ∈ Hn(N) be the dual element of
the fundamental cycle [N ] ∈ Hn(N). ν ′ ∈ Hn(N2 − ∆N ) is defined by
π∗1(ν) = ν ′. We obtain easily the following proposition.

Proposition 3.3. Let N be an n-dimensional homology sphere and TN :
N2 −∆N → N2 −∆N be the free involution. Then c(N2 −∆N , TN )n 6= 0
and π!(ν

′) = c(N2 −∆N , TN )n where π : (N2 −∆N )→ (N2 −∆N )τ .

Let (p, q) be a selected pair of ϕ where p : Γ → X is a Vietoris mapping
and q : Γ → N is a continuous mapping. When X has an involution T ,
define Γ0 by

Γ0 = {(z, z′) ∈ Γ× Γ | p(z) = Tp(z′)}
and p0 : Γ0 → X, q0; Γ0 → N by p0(z, z′) = p(z), q0(z, z′) = q(z) re-
spectively. pΓ : Γ0 → Γ is defined by pΓ(z, z′) = z. When X is a metric
space, Γ0 is a paracompact space by Theorem 3.7.9 and Theorem 5.1.35
of [4]. Easily seen, p0 is a Vietoris mapping for the case. We remark
deg((p∗0)−1q∗0) = deg((p∗)−1q∗). When T is a free involution, we can de-
fine a free involution T0 : Γ0 → Γ0 by T0(z, z′) = (z′, z). Then p0 is an
equivariant mapping i.e. Tp0 = p0T0 .

In the following theorem, the degree is also determined by the contra-
position of Theorem 6.3 of [15]. Here we use only an elementary method,
essentially the Gysin-Smith sequence. And we shall prove the uniqueness of
the degree.
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Theorem 3.4. Let X be an ANR space with a free involution T and N be
an n-dimensional homology sphere. Suppose that dimX = n, Hn(X;Z) ∼=
Z and c(X,T )n 6= 0. If an admissible mappings ϕ : X → N satisfies
ϕ(x) ∩ ϕ(Tx) = ∅ for any x ∈ X, then there exists a unique odd number m
such that degϕ = {m}.
Proof. Let Q : Γ0 → N2 − ∆N be defined by Q(z, z′) = (q(z), q(z′)). Q
is well-defined by the assumption and Q is an equivariant mapping. Then
there exists a classifying mapping gτ : (N2−∆N )τ → RP∞ for the covering
projection π : N2 −∆N → (N2 −∆N )τ .

Now consider the following diagram :

(3.3)

X
p0←−−−− Γ0

Q−−−−→ N2 −∆N
g−−−−→ S∞

yπX
yπΓ0

yπ
yπ∞

Xτ
(p0)τ←−−−− (Γ0)τ

Qτ−−−−→ (N2 −∆N )τ
gτ−−−−→ RP∞.

Xτ , (Γ0)τ , (N2 − ∆N )τ are orbit spaces and πX , πΓ0 , π and π∞ are quo-
tient mappings and (p0)τ , Qτ , gτ are the induced mappings of p0, Q, g
respectively.

We see

(3.4) (p0)∗τ (c(X,T )) = Q∗τg
∗
τ (ω)

by the naturality and Theorem 4.12.4 of [9]. Set (p0)∗τ (c(X,T )) = c(Γ0, T0).
We obtain c(Γ0, T0)n 6= 0 by c(X,T )n 6= 0 and the naturality.

By the Gysin-Smith sequence of πX : X → Xτ , we have (πX)!(µ) =
c(X,T )n where µ is the generator of Hn(X). c(N2−∆N , TN )n ∈ Hn((N2−
∆N )τ ) satisfies c(N2 −∆N , TN )n = g∗τ (ωn). Then there exists the element
ν ′ ∈ Hn(N2−∆N ) such that c(N2−∆N , TN )n = π!(ν

′) by Proposition 3.3.
By (πX)!(µ) = c(X,T )n and (p0)∗τ (c(X,T )) = c(Γ0, T0), we obtain

(3.5) Q∗(ν ′) = p∗0(µ).

Therefore we have (p∗0)−1Q∗ : Hn(N2 −∆N ) ∼= Hn(X) ∼= F2.
Consider the following diagram:

(3.6)

X
p0←−−−− Γ0

Q−−−−→ N2 −∆Ny=

ypΓ

yπ1

X
p←−−−− Γ

q−−−−→ N.

Since p∗Γ and π∗1 are isomorphisms, we see that deg((p∗)−1q∗) is an odd
number where (p∗)−1q∗ : Hn(N ;Z)→ Hn(X;Z).
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We shall prove

(3.7) deg(T ∗N ) =

{
1 odd number n

−1 even number n .

By QT0 = TNQ and deg(Q∗) 6= 0, it holds deg(T ∗0 ) = deg(T ∗N ). By
p0T0 = Tp0 and deg(p∗0) = ±1, it holds deg(T ∗0 ) = deg(T ∗). Therefore we
see

deg(T ∗N ) = deg(T ∗) = ±1.

By Proposition 3.1, we obtain our assertion (3.7).

Let ν̂ be the generator of Hn(N ;Z). ν̂ ′ ∈ Hn(N2 −∆N ;Z) is defined by

ν̂ ′ = π∗1(ν̂) where π1 : N2−∆N → N . Note that ν and ν ′ are the reductions

of ν̂ and ν̂ ′ respectively. From π∗i : Hn(N ;Z) ∼= Hn(N2 −∆N ;Z) ∼= Z, we
see

(3.8) (π∗1)−1π∗2(ν̂) =

{
+ν̂ odd number n

−ν̂ even number n

by π1 = π2TN and the above remark (3.7).
We shall prove the uniqueness of deg((p∗)−1q∗).
Let (p, q) and (p′, q′) be two selected pairs of ϕ, that is, X

p←− Γ
q−→ N

and X
p′←− Γ′

q′−→ N . Γ′0 and X
p′0←− Γ′0

q′0−→ N are defined similarly to Γ0.
Define Γ01 and Γ10 by

Γ01 = {(z, z′) ∈ Γ× Γ′ | p(z) = Tp′(z′)}

and

Γ10 = {(z′, z) ∈ Γ′ × Γ | p′(z′) = Tp(z)}.

p1 : Γ01 → X, p′1 : Γ10 → X are defined by p1(z, z′) = p(z), p′1(z′, z) = p′(z′)
respectively. π̂1 : Γ01 → Γ and π̂′1 : Γ10 → Γ′ are the projections to the first
factors.

Now consider the following diagram:
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(3.9)

X
p←−−−− Γ

q−−−−→ N
x=

xπ̂1

xπ1

X
p1←−−−− Γ01

Q̂−−−−→ N2 −∆NyT
yT̂

yTN

X
p′1←−−−− Γ10

Q̂′−−−−→ N2 −∆Ny=

yπ̂′1
yπ1

X
p′←−−−− Γ′

q′−−−−→ N.

where Q̂(z, z′) = (q(z), q′(z′)), Q̂′(z′, z) = (q′(z′), q(z)). T̂ : Γ10 → Γ10 is

defined by T̂ (z, z′) = (z′, z). By deg(T ∗) = deg(T ∗N ) and the above diagram,
we have deg((p∗)−1q∗) = deg((p′∗)−1q′∗). �

For the case of c(X,T )n = 0 instead of c(X,T )n 6= 0, we obtain the
following theorem.

Theorem 3.5. Let X be an ANR space with a free involution T and N be
an n-dimensional homology sphere. Suppose that dimX = n, Hn(X;Z) ∼=
Z and c(X,T )n = 0. If an admissible mappings ϕ : X → N satisfies
ϕ(x)∩ϕ(Tx) = ∅ for any x ∈ X, then there exists a unique even number m
such that degϕ = {m}.
Proof. If deg((p∗)−1q∗) is an odd degree, it holds (p∗)−1q∗ : Hn(N) ∼=
Hn(X). By the diagram (3.6) of Theorem 3.4, we see p∗0(µ) = Q∗(ν ′).
From π!(ν

′) = c(N2 − ∆N )n and Q∗τπ!(ν
′) = (πΓ0)!Q

∗(ν ′), we have
(πX)!(µ) = c(X,T )n by p0T0 = Tp0 and the formula (3.4). By the as-
sumption c(X,T )n = 0, we see (πX)!(µ) = 0.

On the other hand, by the Gysin-Smith sequence of πX : X → Xτ , it hold
(πX)! : Hn(X) ∼= Hn(Xτ ). We obtain (πX)!(µ) 6= 0. This contradicts the
above remark. Therefore deg((p∗)−1q∗) is an even degree.

The uniqueness of deg(ϕ) is same as the proof of Theorem 3.4.
�

Remark. Let X be a simplicial complex with a simplicial free involution T .
Sn has the antipodal involution. If X satisfies the condition of Theorem 3.4,
any odd integer d is realized by an equivariant mapping f : X → Sn with
deg(f) = d.

Because there exists an equivariant mapping f : X → Sn by Chapter II
Proposition 3.15 of T. tom Dieck [2]. When c(X,T )n 6= 0, the degree of f
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is odd. By Theorem 4. 11 of T. tom Dieck [2], there exists an equivariant
mapping g : X → Sn with the degree deg(g) = d.

Similarly if X satisfies the condition of Theorem 3.5 any even integer d
is realized by an equivariant mapping f : X → Sn with deg(f) = d. This is
proved by Chapter II Proposition 3.15 and Theorem 4. 11 of T. tom Dieck
[2]. The mappings defined above satisfy the condition f(Tx) 6= f(x) for any
x ∈ X.

4. The degree of admissible mappings 2

Let X be a Hausdorff space with an involution T . We defined ∆X and
TX in section 3. Set

∆′X = {(x, Tx) ∈ X2 | x ∈ X}.
If T is a free involution, then ∆X ∩ ∆′X = ∅. Generally TX is not a free
involution on X2 −∆′X . When N is an n-dimensional homology sphere, it
holds π∗i : H∗(N2 −∆′N ) ∼= H∗(N) (i = 1, 2) as Theorem 3.2.

In the following theorem, the degree is also determined by the contrapo-
sition of Theorem 5.5 of [15]. But the uniqueness is not proved there. Our
method is more elementary than [14], [15].

Theorem 4.1. Let X be an ANR space with a free involution T and N be
an n-dimensional homology sphere with a non trivial involution T ′. Suppose
that dimX = n and Hn(X;Z) ∼= Z and an admissible mappings ϕ : X → N
satisfies T ′ϕ(x)∩ϕ(Tx) = ∅ for any x ∈ X. Then there exists a unique even
number m such that deg(ϕ) = {m}. In particular, if T ′ is an orientation
reversing involution, then degϕ = {0}.
Proof. Though N2 −∆′N is a TN -invariant set, TN is not a free involution
of N2 −∆′N . We need a device to work in the category of free involutions.
As Proposition 3.3, we see Hn(S∞ × (N2 −∆′N )) ∼= F2 whose generator is
denoted by ν ′.

Set ω = c(S∞×τ (N2−∆′N ), T ′N ) where T ′N (x, z, z′) = (Tx, z′, z). At first

we remark ωk 6= 0 for all k. Since T ′ is a non trivial involution, there exist
a point z0 ∈ N such that T ′(z0) 6= z0 and equivariant mappings

h : S∞ → S∞ × (N2 −∆′N ), k : S∞ × (N2 −∆′N )→ S∞

which are defined by h(x) = (x, z0, z0) and k(x, z, z′) = x. They satisfy
kτhτ = IdRP∞ . Therefore we obtain our assertion.
q̂ : S∞ × Γ0 → S∞ ×N2 is defined by q̂(x, z, z′) = (x, q(z), q(z′)). By our

assumption q̂ is regarded as q̂ : S∞×Γ0 → S∞×(N2−∆′N ). πΓ0 : S∞×Γ0 →
S∞×τ Γ0 , πN2 : S∞×N2 → S∞×τ N2 and π : S∞× (N2−∆′N )→ S∞×τ
(N2 −∆′N ) are covering projections. The generator of Hn(N2 −∆′N ) ∼= F2
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is also denoted by ν ′. Then we have j∗(ν × 1) = ν ′, j∗(1 × ν) = ν ′ where
j : N2 −∆′N → N2 is the inclusion.

Set j̃ : S∞ × (N2 −∆′N )→ S∞ ×N2 defined by j̃(x, z, z′) = (x, j(z, z′)).
Consider the following diagram:

(4.1)

{0} −−−−→ H∗(S∞ ×N2)
j̃∗−−−−→ H∗(S∞ × (N2 −∆′N ))

y
y(πN2 )!

yπ!

H∗(S∞ ×N2)
(πN2 )!−−−−→ H∗(S∞ ×τ N2)

j̃∗τ−−−−→ H∗(S∞ ×τ (N2 −∆′N ))
yq̂∗

yq̂∗τ
yq̂∗τ

H̄∗(S∞ × Γ0)
(πΓ0

)!−−−−→ H̄∗(S∞ ×τ Γ0)
=−−−−→ H̄∗(S∞ ×τ Γ0).

We shall prove

(4.2) π!(ν
′) = 0, Hk(S∞ ×τ (N2 −∆′N )) ∼= F2 ⊕ F2 (k = n).

By the Gysin-Smith sequence

→ H∗(S∞×τ (N2−∆′N ))
π∗→ H∗(S∞×(N2−∆′N ))

π!→ H∗(S∞×τ (N2−∆′N ))

we obtain easily

Hk(S∞ ×τ (N2 −∆′N )) ∼= F2 (0 5 k 5 n− 1).

If π!(ν
′) 6= 0, we have π∗ = 0 : Hn(S∞×τ (N2−∆′N ))→ Hn(S∞×(N2−∆′N ))

and Hn(S∞ ×τ (N2 −∆′N )) = F2. Then we see π!(ν
′) = ωn by the Gysin-

Smith sequence. From H∗(S∞×(N2−∆′N )) ∼= H∗(N), we obtain Hk(S∞×τ
(N2−∆′N )) ∼= 0 for k = n+ 1. This contradicts the above result ωk 6= 0 for

all k. Therefore we obtain π!(ν
′) = 0 and Hk(S∞×τ (N2−∆′N )) ∼= F2⊕F2

for all k = n.
By j̃∗(1 × ν) = ν ′, we have j̃∗τ (πN2)!(1 × ν) = 0. Therefore we see

q̂∗τ ((πN2)!(1× ν)) = 0. We obtain

(4.3) q̂∗(1× ν) = 0

by the isomorphism (πΓ0)! : H̄n(S∞×Γ0) ∼= H̄n(S∞×τΓ0). That (πΓ0)! is an
isomorphism is proved by the Gysin-Smith sequence and H∗(X) ∼= H̄∗(Γ0).
Similarly we have also q̂∗(ν × 1) = 0.

Therefore we have q̂∗ = 0 : Hn(S∞ ×N2) → H̄n(S∞ × Γ0) and q∗ = 0 :
Hn(N)→ H̄n(Γ). Therefore we see that deg(q∗) = {m} where m is an even
number.

Now we shall prove the uniqueness. Let (p, q) and (p′, q′) be two selected

pairs of ϕ. Let R̂ : Γ01 → N2 −∆N and R̂′ : Γ10 → N2 −∆N be defined by
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R̂(z, z′) = (q(z), T q′(z′)) and R̂′(z′, z) = (T ′q′(z′), q(z)) respectively. Note

that R̂ and R̂′ are well defined by the assumption. When q = q′, R̂ is an
equivariant mapping i.e. R̂T0 = T̂ R̂ where T̂ (z, z′) = (T (z′), T (z)). But T̂
is not a free involution on N2 −∆N .

Now consider the following diagram:

(4.4)

X
p←−−−− Γ

q−−−−→ N
x=

xπ1

xπ1

X
p←−−−− Γ01

R̂−−−−→ N2 −∆NyT
yT

yTN

X
p←−−−− Γ10

R̂′−−−−→ N2 −∆Ny=

yπ1

yπ1

X
p′←−−−− Γ′

T ′q′−−−−→ N.

Since π∗i (i = 1, 2) are isomorphisms, we have

(4.5) deg((p∗)−1q∗) = deg((p′∗)−1q′∗T ′∗).

If T ′ is an orientation preserving mapping, we have deg((p∗)−1q∗) =
deg((p′∗)−1q′∗).

If T ′ is an orientation reversing mapping, we have deg((p∗)−1q∗) =
−deg((p∗)−1q∗) by taking q′(z′) = q(z′). Therefore we have deg((p∗)−1q∗) =
0. In any cases, the degree of ϕ is uniquely determined.

�

Corollary 4.2. Under the same conditions as Theorem 4.1 , assume that
an involution T ′ on N is free. If n is an even number, then degϕ = {0}.

Proof. By Proposition 3.1, T ′ is an orientation preserving involution for an
odd number n and is an orientation reversing involution for an even number
n. Therefore we obtain our result by Theorem 4.1. �

Remark. There are many involutions on spheres, for example the antipo-
dal involution, the reflections with respect to the hyper planes and theirs
compositions etc.. Theorem 4.1 holds for these non trivial involutions.

In Corollary 4.2, it is necessary that T ′ is a free involution. For example,
consider the involutions

T (x0, x1, x2) = (−x0,−x1,−x2), T ′(x0, x1, x2) = (−x0,−x1, x2)
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on the unit sphere S2 centered at the origin. Let f : S2 → S2 defined by

f(x0, x1, x2) =
(x2

0 − x2
1, 2x0x1, x2)√

(x2
0 − x2

1)2 + (2x0x1)2 + (x2)2

We see easily f(T (x0, x1, x2)) 6= T ′f(x0, x1, x2) and deg(f) = 2. From this
example, it is necessary that T ′ is a free involution in Corollary 4.2.

Remark. Let X be a simplicial complex with a simplicial free involution T .
If X satisfies the condition of Theorem 4.1, any even integer 2d is realized
by an equivariant mapping f : X → Sn such that deg(f) = 2d. Here we
consider the trivial involution T ′ on Sn.

Because there exists a mapping f : Xτ → Sn such that deg f is any given
integer by the Hopf classification theorem (cf. [17]). Let f ′ : X → Sn be
defined by f ′ = fπX : X → Xτ → Sn, Since it holds π∗X = 0 : Hn(Xτ ) →
Hn(X) by the Gysin-Smith sequence, we see that the degree of f ′ is even
and f ′ is an equivariant mapping with respect to T and T ′.

By Theorem 4.11 of T. tom Dieck [2], for any even degree 2d, there
exists an equivariant mapping g : X → Sn with deg(g) = 2d. g satisfies
the condition g(Tx) 6= T ′′g(x) for any x ∈ X where T ′′ is the antipodal
involution on Sn.
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