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CATEGORICAL CHARACTERIZATION OF STRICT

MORPHISMS OF FS LOG SCHEMES

Yuichiro Hoshi and Chikara Nakayama

Abstract. In the present paper, we study a categorical characteriza-
tion of strict morphisms of fs log schemes. In particular, we prove that
strictness of morphisms of fs log schemes is preserved by an arbitrary
equivalence of categories between suitable categories of fs log schemes.
The main result of the present paper leads us to a relatively simple alter-
native proof of a result on a categorical representation of fs log schemes
proved by S. Mochizuki.

Introduction

Let S be an fs log scheme whose underlying scheme is locally noetherian.
Then, by considering noetherian fs log schemes of finite type over S, we
obtain a category Schlog(S) [cf. §0, Log Schemes]. In the present paper, we
discuss a categorical characterization of strict morphisms in this category
Schlog(S). Our main result is as follows [cf. Theorem 3.7]:

Theorem. Let S and T be fs log schemes whose underlying schemes are
locally noetherian,

φ : Schlog(S)
∼−→ Schlog(T )

an equivalence of categories, and f a morphism in Schlog(S). Then it
holds that f is strict if and only if φ(f) is strict.

The content of Theorem is in fact a formal consequence of a result of S.
Mochizuki [i.e., [Mzk2], Theorem A]. Moreover, Mochizuki also proved that
a result concerning a categorical representation of fs log schemes follows from
Theorem, together with some arguments [cf. Remark 3.7.1]. In particular,
the proof of the main theorem of the present paper may be regarded as an
alternative proof of the categorical representation of fs log schemes already
proved by Mochizuki.

Here, let us discuss the differences between the arguments of [Mzk2] and
the present paper. In the present paper, by establishing [cf. Proposition 2.5]
a categorical characterization of fs log points [i.e., fs log schemes whose
underlying schemes are isomorphic to the spectra of fields], we obtain a
simple proof of Theorem. In particular,
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2 Y. HOSHI AND C. NAKAYAMA

(i) the proof of the present paper may be regarded as a relatively simple
alternative proof of Theorem, as well as the categorical representation of fs
log schemes, i.e., [Mzk2], Theorem A.

Next, as explained in [Mzk2], Introduction, the theory of [Mzk2] arose as
an attempt to correct errors contained in the theory of [Mzk1] that was
supposed to lead us to Theorem. By comparing [Mzk2] with the present
paper from this point of view, one may find that

(ii) the argument of [Mzk1] [that contains errors] is closer to the argument
of the present paper than the argument of [Mzk2].

On the other hand, let us observe that, in the proof of the present paper,
one cannot avoid the use of the following two existence results:

• the existence of certain non-separated schemes in the category Schlog(S)
[cf. the proof of Lemma 2.4],

• the existence of closed points of noetherian schemes [cf., e.g., the proof
of Proposition 2.5].

By contrast, there is no need to use the above two existence results in the
arguments of [Mzk2]. As a result,

(iii) the arguments of the present paper only work under relatively re-
stricted conditions, whereas the arguments of [Mzk2] can be applied in more

general situations, e.g., even if one replaces the category Schlog(S) [of noe-
therian fs log schemes of finite type over S] by, for instance, the category
of [not necessarily noetherian] separated fs log schemes locally of finite type
over S.

In the proof of Theorem, we prove, by applying Hilbert’s Theorem 90, a
sufficient condition [cf. Proposition 1.3, Remark 1.3.1] for an fs log point to
be quasi-split [cf. Definition 1.2, (ii)]. In Appendix of the present paper, we
also discuss, by considering twisted versions of Hilbert’s Theorem 90, further
such sufficient conditions [cf. Theorem A.5]. Note that the proof of Theorem
does not depend on these further sufficient conditions obtained in Appendix.

0. Notations and Conventions

Monoids: We shall refer to a commutative semigroup with the unit element
as a monoid. Let M be a monoid. Then we shall write M× ⊆ M for the

submonoid consisting of invertible elements of M , M
def
= M/M×, and Mgp

for the groupification of M . Moreover,

• we shall say that M is sharp if M× has only the unit element;
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• we shall say that M is integral if the natural homomorphism M →Mgp

is injective [which thus implies that M may be regarded as a submonoid of
Mgp];

• we shall say that M is saturated if M is integral, and, moreover, for
each x ∈Mgp, it holds that x ∈M if the submonoid of Mgp generated by x
intersects nontrivially M ⊆Mgp;

• we shall say that M is fs if M is finitely generated and saturated.

Let h : M → N be a homomorphism of fs monoids. Then we shall write
hgp : Mgp → Ngp for the homomorphism between the groupifications in-
duced by h. Moreover,

• we shall say that h is local if M× = h−1(N×);

• we shall say that h is exact if M = (hgp)−1(N) [in Mgp].

Log Schemes: A basic reference for the notion of log schemes is [Kato].

Let X be an fs log scheme. Then we shall write
◦
X for the underlying

scheme of X, OX for the structure sheaf of
◦
X [regarded as an étale sheaf],

MX for the [étale] sheaf of monoids on
◦
X which defines the log structure of

X, and MX
def
= MX/O×X . Moreover,

• we shall say that X is of log rank n [where n is an integer] if the
groupification [which is necessarily a free module] of the stalk ofMX at any

geometric point of
◦
X is of rank n;

• we shall say that X is an fs log point if
◦
X is isomorphic to the spectrum

of a field;

• we shall say that X is a trivial log point if X is an fs log point and of
log rank 0;

• we shall say that X is a standard log point if X is an fs log point and
of log rank 1.

Let f : X → Y be a morphism of log schemes. Then we shall write
◦
f :

◦
X →

◦
Y for the underlying morphism of schemes of f . Moreover,

• we shall say that f is strict if the natural homomorphism
◦
f−1MY →

MX is an isomorphism;
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• we shall say that f is exact if the homomorphism [of fs monoids] obtained

by considering the stalk of the homomorphism
◦
f−1MY → MX at any

geometric point of
◦
X is exact.

Let S be an fs log scheme whose underlying scheme
◦
S is locally noetherian.

Then we shall write

Schlog(S)

for the category defined as follows: An object of Schlog(S) is a morphism of
log schemes X → S, where X is an fs log scheme whose underlying scheme
is noetherian, whose underlying morphism of schemes is of finite type. A
morphism in Schlog(S) [from an object X → S to an object Y → S] is a
morphism of log schemes X → Y lying over S [whose underlying morphism
of schemes is necessarily of finite type]. To simplify the exposition, we shall
often refer to the domain X of an arrow X → S which is an object of
Schlog(S) as an “object of Schlog(S)”.

We shall say that a morphism in Schlog(S) is an fs (respectively, a trivial;
a standard) log point if the domain of the morphism is an fs (respectively, a
trivial; a standard) log point.

1. Characterization of Trivial and Standard Log Points

In the present §1, we give a categorical characterization of trivial and
standard log points [cf. Proposition 1.7 below]. In the present §1, let S be
an fs log scheme whose underlying scheme is locally noetherian.

First, let us prove some facts on sharp fs monoids:

Lemma 1.1. Let M be a sharp fs monoid. Write V
def
= Mgp ⊗Z Q and

r
def
= dimQ(V ). Then the following hold:

(i) For each x ∈Mgpr{0}, there exists a local homomorphism h : M →
N such that hgp(x) 6= 0.

(ii) Let L ⊆ V be a nonzero Q-subspace. Then there exist r local homo-
morphisms h1, . . . , hr : M → N which satisfy the following two conditions:

(1) The homomorphism hgp : Mgp → ⊕r
i=1 Z induced by the

[necessarily local] homomorphism h : M → ⊕r
i=1N given by mapping

x ∈M to (hi(x))ri=1 ∈
⊕r

i=1N is injective.

(2) For every 1 ≤ i ≤ r, L is not contained in the kernel of the

Q-linear homomorphism hQi : V → Q induced by hi.
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(iii) Suppose that a finite group G acts on M . Then there exists a
homomorphism h : M → N which is local and G-equivariant [with respect
to the trivial action of G on N].

(iv) In the situation of (iii), suppose that r ≥ 2. Then there exists a
submonoid P ⊆ Mgp such that M ( P , and, moreover, P is G-stable,
sharp, and fs.

Proof. Assertion (i) follows from [Mzk1], Lemma 2.5, (iii). Next, we verify
assertion (ii). It follows immediately from assertion (i) that there exist r
local homomorphisms h1, . . . , hr : M → N which satisfy condition (1). Thus,

there exists 1 ≤ i0 ≤ r such that L 6⊆ Ker(hQi0). Then one verifies easily
that, by replacing hi [where 1 ≤ i ≤ r] by hi + hi0 (respectively, hi) if

L ⊆ Ker(hQi ) (respectively, L 6⊆ Ker(hQi )), we obtain r homomorphisms
of the desired type. This completes the proof of assertion (ii). Assertion
(iii) follows [by considering the sum

∑
g∈G h ◦ g : M → N for some local

homomorphism h : M → N] from assertion (i).
Finally, we verify assertion (iv). Let h : M → N be a G-equivariant local

homomorphism [cf. assertion (iii)]. Let x ∈Mgp rM be such that hgp(x) ∈
Nr{0}. [Note that one may verify existence of such an x as follows: Assume
that (hgp)−1(N r {0}) ⊆ M . Let a ∈ M rM×. Then since h(a) ∈ N r {0}
by the fact that h is local, it holds that Ker(hgp) + a ⊆ (hgp)−1(Nr {0}) ⊆
M , which thus implies that Ker(hgp) + a ⊆ h−1({h(a)}). On the other
hand, since M is finitely generated, and h is local, one verifies easily that
h−1({h(a)}) is finite. In particular, Ker(hgp) + a, hence also Ker(hgp), is
finite, in contradiction to our assumption that r ≥ 2.] Write P ⊆ Mgp for
the saturation of the submonoid N ⊆Mgp generated by M ⊆Mgp and the
G-orbit of x ∈ Mgp. Then it is immediate that M ( P , and that P is G-
stable and fs. Moreover, since h is G-equivariant, it follows from our choice
of x that the image of every nontrivial element of N via hgp is contained in
Nr {0}, which thus implies that N , hence also P , is sharp. This completes
the proof of assertion (iv), hence also of Lemma 1.1. �

Definition 1.2. Let X be an fs log point. Thus,
◦
X is isomorphic to

the spectrum of a field k. Let ksep be a separable closure of k. Write

Gk
def
= Gal(ksep/k), x→

◦
X for the geometric point determined by the sepa-

rable closure ksep, and M
def
= MX,x. [Thus, the Gk-monoid M is naturally

isomorphic to the Gk-monoid obtained by forming the stalk MX,x; more-

over, M is sharp and fs.]

(i) We shall say that X is split if the action of Gk on M is trivial.
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(ii) We shall say that X is quasi-split if the Gk-equivariant surjec-
tion M � M has a Gk-equivariant splitting [which thus determines a Gk-

equivariant isomorphism k×sep ×M
∼→ M — i.e., an isomorphism of sheaves

O×X ×MX
∼→MX ].

Note that one verifies easily that the issue of whether or not X is split
(respectively, quasi-split) does not depend on the choice of ksep.

Proposition 1.3. Let X be an fs log point. Suppose that X is split. Then
X is quasi-split. In particular, a standard log point is quasi-split.

Proof. Since the monoid N has no nontrivial automorphism, the final as-
sertion follows from the first assertion. Let us verify the first assertion.
Since we are in the situation of Definition 1.2, we shall apply the notation
of Definition 1.2. Then we have an exact sequence 1 → k×sep → Mgp →
Mgp → 1 of Gk-modules. Thus, since Mgp is a free module, to verify that
the Gk-equivariant surjection Mgp � Mgp, hence also M � M , has a Gk-
equivariant splitting, it suffices to verify that H1(Gk,HomZ(Mgp, k×sep)) =

{0}. On the other hand, since the action of Gk on M is trivial, this follows
from Hilbert’s Theorem 90. This completes the proof of Proposition 1.3. �

Remark 1.3.1. Proposition 1.3 gives us a sufficient condition for an fs log
point to be quasi-split. Now let us observe that Proposition 1.3 essentially
follows from Hilbert’s Theorem 90. In §A, we discuss, by considering twisted
versions of Hilbert’s Theorem 90, further such sufficient conditions.

Lemma 1.4. Let X be an object of Schlog(S). Then the following hold:

(i) Suppose that X is an fs log point. Since we are in the situation of
Definition 1.2, we shall apply the notation of Definition 1.2. Let φ : M → N
be a local homomorphism. Then there exists a finite separable extension
K of k which satisfies the following condition: If we write X ′ for the object
of Schlog(S) obtained by equipping the spectrum of K with the log structure
induced by the log structure of X, then there exists a standard log point
Y → X ′ such that the induced homomorphism between the stalks of “M”
coincides with φ.

(ii) Let x ∈
◦
X be a closed point. Then there exists a standard log

point f : Y → X such that the image of
◦
f coincides with {x}.

Proof. First, we verify assertion (i). We may assume without loss of gener-
ality, by replacing k by a suitable finite separable extension of k, that X is
split, hence also quasi-split [cf. Proposition 1.3]. Thus, assertion (i) follows

from the Gk-equivariant isomorphism k×sep ×M
∼→M of Definition 1.2, (ii).
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Next, we verify assertion (ii). We may assume without loss of generality,
by replacing X by the log scheme obtained by equipping the spectrum of the

residue field of
◦
X at x with the log structure induced by the log structure

of X, that X is an fs log point. Thus, by assertion (i), to verify assertion
(ii), it suffices to verify existence of a local homomorphism M → N. On the
other hand, this follows from Lemma 1.1, (i). This completes the proof of
assertion (ii), hence also of Lemma 1.4. �
Definition 1.5. We shall say that an object X of Schlog(S) is minimal if

X is non-initial, and, moreover, every monomorphism in Schlog(S) from a
non-initial object to X is an isomorphism [cf. [Mzk1], Proposition 2.4]. We

shall say that a morphism in Schlog(S) is a minimal log point if the domain
of the morphism is minimal.

Lemma 1.6. Let X be an object of Schlog(S). Then it holds that X is
minimal if and only if X is either a trivial log point or a standard log
point.

Proof. This is the content of [Mzk2], Proposition 1.6, (ii). Note that suf-
ficiency also follows immediately from the surjectivity portion of necessity
of [Mzk1], Proposition 2.3 [cf. also [Mzk2], Appendix]. Here, we give a
proof of necessity from the point of view of the present paper for the reader’s
convenience as follows:

Suppose that X is minimal. Since
◦
X is noetherian,

◦
X has a closed point.

Thus, one verifies immediately, by considering the strict closed immersion
into X determined by this closed point, that X is an fs log point. Now
since we are in the situation of Definition 1.2, we shall apply the notation
of Definition 1.2.

Assume that the free module Mgp is of rank ≥ 2. Then it follows from
Lemma 1.1, (iv), that there exists a Gk-stable submonoid P ⊆ Mgp such
that M ( P , and, moreover, P is sharp and fs. Thus, we have a Gk-stable

submonoid N
def
= (Mgp � Mgp)−1(P ) of Mgp such that M ( N , and,

moreover, the natural homomorphism Mgp → Ngp is an isomorphism.
Next, let us observe that since P is sharp, by mapping each element of

N rM to 0 ∈ ksep, we obtain a Gk-equivariant extension N → ksep of the
homomorphism M → ksep of monoids [where we regard ksep as a monoid by
multiplication] which defines the log structure of X. Moreover, one verifies
easily that this homomorphism N → ksep of monoids determines an fs log

structure on
◦
X. Write Y for the resulting [non-initial] fs log scheme. Then

since M ( N , and the natural homomorphism Mgp → Ngp is an isomor-
phism, the morphism Y → X [in Schlog(S)] induced by the natural inclusion
M ↪→ N is a monomorphism but not an isomorphism. In particular, we
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conclude that X is not minimal, in contradiction to our assumption that X
is minimal. This completes the proof of necessity of Lemma 1.6. �

Proposition 1.7. Let X be an object of Schlog(S). Then the following hold:

(i) The following two conditions are equivalent:

(1) X is a trivial log point.

(2) X is minimal, and, moreover, there exists a minimal log point
f : Y → X such that Y has an endomorphism over X [relative to f ] which
is not an isomorphism.

(ii) The following two conditions are equivalent:

(3) X is a standard log point.

(4) X is minimal but not a trivial log point.

Proof. These assertions follow immediately from Lemma 1.6. �

2. Characterization of Fs Log Points

In the present §2, we give a categorical characterization of fs log points [cf.
Proposition 2.5 below]. In the present §2, let S be an fs log scheme whose

underlying scheme is locally noetherian and X an object of Schlog(S).

Definition 2.1.

(i) We shall say that a finite set {fi : Yi → X}i∈I consisting of standard
log points whose codomains are X is an epimorphic family of X if the mor-
phism

⊔
i∈I Yi → X from the coproduct of the Yi’s to X determined by the

fi’s is an epimorphism in Schlog(S).

(ii) We shall say that a collection consisting of standard log points whose
codomains are X is an indispensable collection for X if every epimorphic
family of X has an element which belongs to the collection.

Definition 2.2. Suppose that X is an fs log point. Since we are in the sit-
uation of Definition 1.2, we shall apply the notation of Definition 1.2. Write

V
def
= Mgp⊗ZQ. Let f : Y → X be a standard log point. Then, by consider-

ing a geometric point of
◦
Y which lifts x→

◦
X, we obtain a [necessarily local]

homomorphism M → N. We shall write L(f) ⊆ V for the kernel of the
Q-linear homomorphism V → Q induced by this homomorphism M → N.
[Note that one verifies easily that L(f) does not depend on the choice of the

geometric point of
◦
Y .]
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Lemma 2.3. Suppose that X is an fs log point. Let {fi : Yi → X}i∈I be
a nonempty finite set consisting of standard log points whose codomains are
X. Suppose that

⋂
i L(fi) = {0}. Then the finite set {fi : Yi → X}i∈I is an

epimorphic family of X.

Proof. Let x →
◦
X be a geometric point of

◦
X and, for i ∈ I, yi →

◦
Y i a

geometric point of
◦
Y i which lifts x →

◦
X. Then since

⋂
i L(fi) = {0}, the

homomorphismMX,x →
∏
i∈IMYi,yi induced by the fi’s is injective, which

thus implies that the morphism
⊔
i∈I Yi → X is an epimorphism. This

completes the proof of Lemma 2.3. �
Lemma 2.4. Let f : Y → X be an epimorphism in Schlog(S). Then every

closed point of
◦
X is contained in the image of

◦
f :
◦
Y →

◦
X.

Proof. Suppose that the image of
◦
f does not contain a closed point x ∈

◦
X.

Write Z for the object of Schlog(S) obtained by glueing two copies of X
along the open log subscheme X r {x} [via the identity automorphism of
X r {x}]. Then we have two distinct natural open immersions X ↪→ Z
whose restrictions to X r {x} coincide, which thus implies that f is not an

epimorphism in Schlog(S). This completes the proof of Lemma 2.4. �
Proposition 2.5. The following two conditions are equivalent:

(1) X is an fs log point.

(2) Every indispensable collection for X has a finite subset which forms
an epimorphic family of X.

Proof. First, we verify the implication (1) ⇒ (2). Suppose that condition
(1) is satisfied. Since we are in the situation of Definition 1.2, we shall apply

the notation of Definition 1.2. Write V
def
= Mgp ⊗Z Q.

Assume that there exists an indispensable collection A for X such that A
does not have any finite subset which forms an epimorphic family ofX. [Note
that since there exists a nonempty epimorphic family of X by Lemma 1.1,
(ii), Lemma 1.4, (i), and Lemma 2.3, it holds that A 6= ∅.] Then it follows

immediately from Lemma 2.3 that L
def
=

⋂
f L(f) 6= {0} — where f ranges

over the members of A. Thus, one verifies immediately from Lemma 1.1, (ii),
that there exists a finite set {gj}j∈J consisting of standard log points whose
codomains are X such that L 6⊆ L(gj) [cf. condition (2) of Lemma 1.1, (ii)]
— which thus implies that gj does not belong to A for every j ∈ J — and,
moreover,

⋂
j L(gj) = {0} [cf. condition (1) of Lemma 1.1, (ii)] — which

thus implies [cf. Lemma 2.3] that this finite set {gj}j∈J is an epimorphic
family. In particular, since A is indispensable, we obtain a contradiction.
This completes the proof of the implication (1) ⇒ (2).
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Next, we verify the implication (2) ⇒ (1). Suppose that condition (2) is

satisfied. Let x ∈
◦
X be a closed point of

◦
X. [Note that since

◦
X is noetherian,

a closed point of
◦
X always exists.] Write A for the collection consisting of

the standard log points whose codomains are X and images coincide with

{x} ⊆
◦
X. [Note that it follows from Lemma 1.4, (ii), that A 6= ∅.] Then it

follows from Lemma 2.4 that A is indispensable. In particular, since some
finite subset of A forms an epimorphic family of X [cf. condition (2)], again
by Lemma 2.4, we conclude that x is the unique closed point of X, which

thus implies that
◦
X is isomorphic to the spectrum of a noetherian local ring

R.
Let π ∈ R r R×. Write A1

X for the fs log scheme over X obtained by
equipping Spec(R[t]) — where t is an indeterminate — with the log struc-
ture induced by the log structure of X. Then we have two strict closed
immersions f0, fπ : X ↪→ A1

X over X determined by the R-linear homo-
morphisms R[t] → R given by mapping t ∈ R[t] to 0, π ∈ R, respectively.
Now let us observe that one verifies immediately that, for an fs log point

f : Y → X, if the image of
◦
f is {x}, then it holds that f0 ◦ f = fπ ◦ f . Thus,

since some finite subset of A forms an epimorphic family of X as verified
above, we conclude that f0 = fπ, hence also π = 0, which thus implies that
R is a field. This completes the proof of the implication (2) ⇒ (1), hence
also of Proposition 2.5. �

3. Characterization of Strict Morphisms

In the present §3, we prove the main theorem of the present paper [cf.
Theorem 3.7 below]. In the present §3, let S be an fs log scheme whose

underlying scheme is locally noetherian, X and Y objects of Schlog(S), and

f : X → Y a morphism in Schlog(S).

Lemma 3.1. Suppose that X is an fs log point, and that f is a monomor-
phism. Then it holds that f is strict if and only if f is a terminal object
among the fs log points Z → Y which satisfy that X ×Y Z is non-initial.

Proof. This is [Mzk1], Corollary 2.13. However, since the proof contains an
error [cf. [Mzk2], Appendix], we give a proof as follows: Let us first observe
that, to verify Lemma 3.1, we may assume without loss of generality, by
replacing Y by the log scheme obtained by equipping the spectrum of the

residue field of
◦
Y at the image of

◦
f with the log structure induced by the

log structure of Y , that Y is an fs log point. Now, to verify necessity,
suppose that f is strict. Then since f is a strict monomorphism, one verifies
easily that f is an isomorphism. Thus, necessity is immediate. Next, we
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verify sufficiency. Since the identity automorphism of Y is an fs log point
which satisfies that X ×Y Y = X is non-initial, by our condition, f has a
splitting over Y [i.e., a morphism s : Y → X over Y such that the composite

Y
s→ X

f→ Y is the identity automorphism of Y ]. Thus, f is an isomorphism.
This completes the proof of sufficiency, hence also of Lemma 3.1. �

Lemma 3.2. It holds that f is strict if and only if, for every commutative
diagram in Schlog(S)

Z −−−−→ X
y

yf

W −−−−→ Y
— where the horizontal arrows are fs log points, monomorphisms, and
strict — it holds that the left-hand vertical arrow is strict.

Proof. This is [Mzk1], Corollary 2.14. However, since the proof contains an
error [cf. [Mzk2], Appendix], we give a proof as follows: Necessity may be

easily verified. Next, we verify sufficiency. Let x be a closed point of
◦
X.

[Note that since
◦
X is noetherian, a closed point of

◦
X always exists.] Write

Z → X for the strict morphism whose underlying morphism of schemes is

given by the natural morphism from the spectrum of the residue field of
◦
X

at x and W → Y for the strict morphism whose underlying morphism of
schemes is given by the natural morphism from the spectrum of the residue

field of
◦
Y at

◦
f (x). Then one verifies easily that Z → X, hence also W → Y ,

is a morphism in Schlog(S). Moreover, it holds that Z → X and W → Y are
monomorphisms. Thus, by our condition, the natural morphism Z → W is

strict, which thus implies that
◦
f−1MY →MX is an isomorphism at x ∈

◦
X.

This implies sufficiency. �

Lemma 3.3. Suppose that both X and Y are fs log points. Then the
following hold:

(i) It holds that f is exact if and only if, for every fs log point Z → Y ,
the fiber product X ×Y Z is non-initial.

(ii) It holds that f is strict if and only if the following condition is
satisfied: f is exact, and, moreover, for every minimal log point Z → Y ,
the second projection X ×Y Z → Z is strict.

Proof. Assertion (i) is essentially [Naka], (A.1), Proposition [cf. also the
proof of [Naka], (A.1), Proposition]. Next, we verify assertion (ii). Necessity
may be easily verified. We verify sufficiency. Write M for the stalk of MX



12 Y. HOSHI AND C. NAKAYAMA

at a geometric point of
◦
X, N for the stalk ofMY at the geometric point of

◦
Y

determined by the geometric point of
◦
X, and φ : N →M for the [necessarily

exact — cf. our condition] local homomorphism induced by f .
Let ψ : N → N be a local homomorphism [cf. Lemma 1.1, (i)]. Write P for

the quotient by the torsion elements of the saturation of the pushout [in the

category of monoids] of M
φ← N

ψ→ N. Then, by our condition in the end
of the statement of assertion (ii) [cf. also Lemma 1.6], together with [Naka],
Proposition (2.1.1), the natural homomorphism N → P is an isomorphism.
Thus, it follows that rankZ(Coker(φgp : Ngp → Mgp)) = rankZ(Coker(Z =
Ngp → P gp)) = 0.

Assume that f is not strict, i.e., that φ is not an isomorphism. Then,
since φ is exact, and Coker(φgp) is of rank 0, it holds that Coker(φgp) has a
nontrivial torsion. In particular, there exists a homomorphism π : Ngp → Z
which does not factor through φgp. Next, observe that since N is finitely
generated, there exists a positive integer n such that the homomorphism
Ngp → Z given by mapping x ∈ Ngp to π(x)+n ·ψgp(x) ∈ Z maps N ⊆ Ngp

to N ⊆ Z, and the resulting homomorphism ψ0 : N → N is local. Then it
follows from our choice of π [together with the fact that ψ factors through
φ — cf. the above discussion concerning P ] that ψ0 does not factor through
φ. Thus, by means of ψ0, together with Lemma 1.4, (i), one may construct
a minimal log point Z → Y such that the second projection X ×Y Z → Z
is not strict, in contradiction to our condition. This completes the proof of
assertion (ii), hence also of Lemma 3.3. �

Lemma 3.4. Suppose that Y is minimal. Then it holds that f is strict if
and only if every fs log point Z → X factors through a minimal log point

W → X such that the composite W → X
f→ Y is strict.

Proof. First, we verify necessity. Suppose that f is strict. Let Z → X

be an fs log point. Write W for the log scheme obtained by equipping
◦
Z

with the log structure induced by the log structure of X. Thus, we have a
factorization Z → W → X, where W → X is strict. Since f is strict and

Y is minimal, the composite W → X
f→ Y is strict and W is minimal [cf.

Lemma 1.6]. This completes the proof of necessity.

Next, we verify sufficiency. Suppose that f is not strict. Then since
◦
X

is noetherian, one verifies easily that there exists a closed point x of
◦
X such

that the homomorphism
◦
f−1MY →MX is not an isomorphism at x ∈

◦
X.

Thus, to verify sufficiency, we may assume without loss of generality, by
replacing X by the log scheme obtained by equipping [the reduced closed
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subscheme determined by] {x} with the log structure induced by the log
structure of X, that X is an fs log point.

Assume that the identity automorphism X → X [which is in fact an fs
log point] factors through a minimal log point W → X which satisfies that

the composite W → X
f→ Y is strict.

If Y is a trivial log point, then since the composite W → X
f→ Y is strict,

it follows that W is a trivial log point, which thus implies that X is a trivial
log point. In particular, f is strict, in contradiction to our assumption that
f is not strict.

Thus, it follows from Lemma 1.6 that we may assume without loss of
generality that Y is a standard log point. Then since the composite W →
X

f→ Y is strict, it follows that W is a standard log point. Thus, it follows
immediately, by considering our factorization X → W → X of the identity
automorphism of X, that X is a standard log point, and, moreover, X →
W , hence also the composite X → W → X → Y [i.e., f ], is strict, in
contradiction to our assumption that f is not strict. This completes the
proof of sufficiency, hence also of Lemma 3.4. �
Lemma 3.5. Suppose that both X and Y are minimal. Then it holds that
f is strict if and only if the following condition is satisfied: There exists a
factorization X → Z → Y of f such that Z is connected and either of
log rank 0 or of log rank 1, X → Z is a monomorphism, and Z → Y

has a splitting [i.e., a morphism s : Y → Z such that Y
s→ Z → Y is the

identity automorphism].

Proof. This follows from [Mzk2], Proposition 2.4. �
Lemma 3.6. It holds that X is of log rank 0 (respectively, 1) if and only if
every fs log point Z → X factors through a trivial (respectively, standard)
log point W → X.

Proof. Necessity follows by considering a suitable strict monomorphism
W → X. Next, we verify sufficiency. One verifies easily that X is of
log rank 0 if every fs log point Z → X factors through a trivial log point
W → X. Thus, suppose that every fs log point Z → X factors through a
standard log point W → X. Then it follows immediately from our condition

that the module Mgp
X,x is of rank 1 for every geometric point x→

◦
X whose

image is closed in
◦
X. Write U ⊆

◦
X for the maximal [necessarily open — cf.

the well-known constructibility of MX ] subset on which MX is trivial. If
U 6= ∅, then since U has a closed point [by the fact that U is noetherian],
we obtain a contradiction by our condition. This completes the proof of
sufficiency, hence also of Lemma 3.6. �
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Theorem 3.7. Let S and T be fs log schemes whose underlying schemes
are locally noetherian,

φ : Schlog(S)
∼−→ Schlog(T )

an equivalence of categories, and f a morphism in Schlog(S). Then it
holds that f is strict if and only if φ(f) is strict.

Proof. Let X be an object of Schlog(S) and g a morphism in Schlog(S). Let
us first observe that it follows from Proposition 1.7, Proposition 2.5 that

(1) it holds that X is a trivial (respectively, a standard; an fs) log point
if and only if φ(X) is a trivial (respectively, a standard; an fs) log point.

Moreover, it follows from Lemma 3.1, together with assertion (1), that

(2) if g [hence also φ(g) — cf. (1)] is an fs log point and a monomorphism,
then it holds that g is strict if and only if φ(g) is strict.

Thus, it follows from Lemma 3.2 that, to verify Theorem 3.7, it is enough
to verify the following assertion (3):

(3) If the domain and codomain of g [hence also of φ(g) — cf. (1)] are fs
log points, then it holds that g is strict if and only if φ(g) is strict.

Next, let us observe that, to verify assertion (3), it follows from
Lemma 3.3, together with assertion (1), that it suffices to verify the
following assertion (4):

(4) If the codomain of g [hence also of φ(g)] is minimal, then it holds
that g is strict if and only if φ(g) is strict.

Next, to verify assertion (4), it follows from Lemma 3.4, together with
assertion (1), that it is sufficient to verify the following assertion (5):

(5) If the domain and codomain of g [hence also of φ(g)] are minimal,
then it holds that g is strict if and only if φ(g) is strict.

Thus, to verify Theorem 3.7, it follows from Lemma 3.5 that it suffices to
verify the following assertion (6):

(6) It holds that X is either of log rank 0 or of log rank 1 if and only if
φ(X) is either of log rank 0 or of log rank 1.

On the other hand, assertion (6) follows from Lemma 3.6, together with
assertion (1). This completes the proof of Theorem 3.7. �

Remark 3.7.1. The content of Theorem 3.7 is in fact a formal consequence
of a result of S. Mochizuki [i.e., [Mzk2], Theorem A]. Moreover, Mochizuki
also proved that a result concerning a categorical representation of fs log
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schemes [i.e., [Mzk1], Theorem B; [Mzk2], Theorem A] follows from Theo-
rem 3.7, together with some discussions [cf. the portion of [Mzk2] from the
discussion preceding [Mzk2], Proposition 3.7, to the end of [Mzk2], §3 —
also [Mzk2], Appendix].

Appendix A. Twisted Versions of Hilbert’s Theorem 90

In §1, we gave a sufficient condition for an fs log point to be quasi-split [cf.
Proposition 1.3, Remark 1.3.1]. In the present §A, we discuss, by considering
twisted versions of Hilbert’s Theorem 90, further such sufficient conditions.
In the present §A, let k be a field and ksep a separable closure of k. Write

Gk
def
= Gal(ksep/k). Let M be a sharp fs monoid equipped with a continuous

action of Gk [with respect to the discrete topology on M ].

Proposition A.1. Let X be an fs log point. Then the following three
conditions are equivalent:

(1) X is quasi-split.

(2) There exist an fs log point Y and a morphism f : Y → X such that

Y is quasi-split, and, moreover,
◦
f is an isomorphism.

(3) There exist a standard log point Y and a morphism f : Y → X

such that
◦
f is an isomorphism.

Proof. The implication (3) ⇒ (2) follows from Proposition 1.3. The impli-
cation (1) ⇒ (3) follows from Lemma 1.1, (iii).

Finally, to verify the implication (2) ⇒ (1), suppose that condition (2) is

satisfied. By means of the isomorphism
◦
f , let us identify

◦
X with

◦
Y . Since Y

is quasi-split, it follows from Definition 1.2, (ii), that the natural inclusion
O×Y ↪→ MY has a splitting MY � O×Y (= O×X). Thus, by considering
the composite of the homomorphism MX → MY induced by f and the
above splittingMY � O×X , we obtain a splittingMX � O×X of the natural

inclusion O×X ↪→ MX . In particular, X is quasi-split, i.e., condition (1) is
satisfied. This completes the proof of the implication (2) ⇒ (1), hence also
of Proposition A.1. �

Definition A.2. We shall say that the pair (k,M) is quasi-split if the fol-
lowing condition is satisfied: For every fs log scheme X whose underlying
scheme is the spectrum of k, if there exists a Gk-equivariant isomorphism of

M with the stalk of MX at the geometric point x→
◦
X determined by the

separable closure ksep, then X is quasi-split.
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Proposition A.3. It holds that the pair (k,M) is quasi-split if and
only if H1(Gk,HomZ(Mgp, k×sep)) = {0} [where the action of Gk on

HomZ(Mgp, k×sep) is given by g · φ def
= g ◦ φ ◦ g−1].

Proof. One can prove sufficiency in the same way as the proof of Proposi-
tion 1.3. Next, we verify necessity. Suppose that (k,M) is quasi-split. Let
1 → k×sep → E → Mgp → 1 be an exact sequence of Gk-modules corre-

sponding to an element of Ext1Gk
(Mgp, k×sep) = H1(Gk,HomZ(Mgp, k×sep)).

Write N
def
= (E � Mgp)−1(M) ⊆ E. [Thus, N is isomorphic, as an ab-

stract monoid, to k×sep×M .] Then since M is sharp [which thus implies that

N× = k×sep], by mapping each element of N r k×sep to 0 ∈ ksep, we obtain
a Gk-equivariant homomorphism N → ksep of monoids [where we regard
ksep as a monoid by multiplication] which is an extension of the natural in-
clusion k×sep ↪→ ksep. Moreover, one verifies easily that this homomorphism
N → ksep of monoids determines an fs log structure on Spec(k). On the
other hand, since (k,M) is quasi-split, the resulting fs log scheme is quasi-
split, which thus implies that the above exact sequence of Gk-modules has a
Gk-equivariant splitting. This completes the proof of Proposition A.3. �

Lemma A.4. Let K be a finite Galois extension of k. Write G
def
=

Gal(K/k). Let H ⊆ N ⊆ G be subgroups such that N is normal in G.
Let us define an action of G on the module Map(G/N, (KH)×) [consisting

of maps of sets G/N → (KH)×] by g · φ def
= φ ◦ g−1; moreover, let us also

define an action of G on the module Map(G/H,K×) [consisting of maps of

sets G/H → K×] by g · φ def
= g ◦ φ ◦ g−1. Then the homomorphism

Map(G/N, (KH)×) −→ Map(G/H,K×)
φ 7→ (gH 7→ gφ(gN))

determines a G-equivariant isomorphism

Map(G/N, (KH)×)
∼−→ Map(G/H,K×)N

of G-modules. In particular, the G/N -module Map(G/H,K×)N is a coin-
duced module.

Proof. This follows from a straightforward computation. �

Theorem A.5. If one of the following three conditions is satisfied, then the
pair (k,M) is quasi-split.

(1) The action of Gk on M is trivial.

(2) The Brauer group of every finite separable extension of k is zero.
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(3) There exists a [not necessarily Gk-equivariant] isomorphism M
∼→

N⊕n of monoids for some positive integer n.

Proof. Theorem A.5 in the case where condition (1) is satisfied follows for-
mally from Proposition 1.3. Theorem A.5 in the case where condition (2) is
satisfied follows from Proposition A.3 and [Serre], Chapter X, Proposition
11, as well as [Serre], Chapter X, Corollary to Proposition 11.

Finally, we verify Theorem A.5 in the case where condition (3) is satis-
fied. Suppose that condition (3) is satisfied. Let us first observe that one
verifies easily that each automorphism of the monoid N⊕n arises from some
permutation of the n factors. Thus, it follows from Proposition A.3 that, to
complete the verification of Theorem A.5, it suffices to verify that

(†): for a finite set S and a finite Galois extension K of

k whose Galois group G
def
= Gal(K/k) acts on S, it holds

that H1(G,Map(S,K×)) = {0} [where the action of G on

Map(S,K×) is given by g · φ def
= g ◦ φ ◦ g−1].

Next, let us observe that we may assume without loss of generality, by
replacing G by a p-Sylow subgroup of G [where p is a prime number], that
G in (†) is a [nontrivial] p-group. Next, let us observe that we may assume
without loss of generality, by replacing S by the G-orbit of an element of
S, that S in (†) is the G-set G/H for a subgroup H ⊆ G. Observe that if
H = G, then (†) follows from Hilbert’s Theorem 90; thus, we may assume
without loss of generality that H 6= G.

Let N ⊆ G be a normal subgroup such that H ⊆ N , and, moreover,
[G : N ] = p. [Note that one may verify existence of such a normal subgroup
N as follows: Since G is a nontrivial p-group, there exists a subgroup Z ⊆ G
such that Z is of order p and contained in the center of G. If H · Z = G,
which thus implies that H × Z = G, then one may take H itself as “N”.
If H · Z 6= G, then, by induction on the cardinality of “G”, one obtains a
normal subgroup of G/Z of index p which contains the image of H. Thus,
by considering the inverse image in G of this normal subgroup of G/Z, one
obtains a subgroup of the desired type.] Thus, by induction on the cardinality
of G, to verify (†), it suffices to verify that

H1(G/N,Map(G/H,K×)N ) = {0}.

On the other hand, this follows from Lemma A.4. This completes the proof
of Theorem A.5. �

Remark A.5.1. Examples of “k” which satisfies condition (2) in the state-
ment of Theorem A.5 are given in the discussion entitled “Examples of
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Fields with Zero Brauer Group” in [Serre], p.162. For instance, a quasi-
algebraically closed field [i.e., a field which has property C1] — e.g., a finite
field — satisfies condition (2) in the statement of Theorem A.5.

Remark A.5.2. An example of an fs log point which is not quasi-split is
given as follows: Write M for the monoid obtained by taking the quotient
of N⊕3 by the relation (a, a, 0) ∼ (0, 0, 2a), where a ∈ N. Let us define an

action of the Galois group Gal(C/R) on C××M by σ(z, [a, b, c])
def
= ((−1)c ·

σ(z), [b, a, c]) — where we write σ ∈ Gal(C/R) for the unique nontrivial
element and “[−]” (∈ M) for the image of “(−)” (∈ N⊕3) in M — as well
as a Gal(C/R)-equivariant homomorphism C× × M → C of monoids by
(z, [a, b, c]) 7→ z if (a, b, c) = (0, 0, 0) (respectively, 7→ 0 if (a, b, c) 6= (0, 0, 0)).

Then one verifies immediately that this Gal(C/R)-equivariant homomor-
phism C××M → C determines an fs log structure on Spec(R). Next, let us
verify that the resulting fs log point is not quasi-split, i.e., that there is no
Gal(C/R)-equivariant splitting Mgp → C× ×Mgp of the natural surjection
C××Mgp �Mgp. To this end, assume that there is a Gal(C/R)-equivariant
splitting φ : Mgp → C× ×Mgp. Write s, t, u ∈ Mgp for the respective im-

ages of [1, 0, 0], [0, 1, 0], [0, 0, 1] in Mgp, (zs, s)
def
= φ(s), (zt, t)

def
= φ(t), and

(zu, u)
def
= φ(u). Then since φ is Gal(C/R)-equivariant, it holds that

• (σ(zs), t) = σ(φ(s)) = φ(σ(s)) = (zt, t), i.e., σ(zs) = zt, and that

• (−σ(zu), u) = σ(φ(u)) = φ(σ(u)) = (zu, u), i.e., −σ(zu) = zu.

Moreover, since φ is a homomorphism, it holds that

• s+ t = 2u implies zs · zt = z2u.

Thus, we conclude that

|zs|2 = zs · σ(zs) = zs · zt = z2u = zu · (−σ(zu)) = −|zu|2,

which thus implies that zs = 0, in contradiction to our assumption that
zs ∈ C×. This completes the proof of the fact that our fs log point is not
quasi-split.
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