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ON A DUALITY OF GRAS BETWEEN TOTALLY

POSITIVE AND PRIMARY CYCLOTOMIC UNITS

Humio Ichimura

Abstract. Let K be a real abelian field of odd degree over Q, and C
the group of cyclotomic units of K. We denote by C+ and C0 the totally
positive and primary elements of C, respectively. G. Gras found a du-
ality between the Galois modules C+/C

2 and C0/C
2 by some ingenious

calculation on cyclotomic units. We give an alternative proof using a
consequence (=“Gras conjecture”) of the Iwasawa main conjecture and
the standard reflection argument. We also give some related topics.

1. Introduction

LetK be a real abelian field with [K : Q] odd, and let ∆ = Gal(K/Q). Let
E be the group of units of K, E+ the subgroup consisting of totally positive
units, and E0 the subgroup consisting of units ǫ satisfying ǫ ≡ u2 mod 4 for
some u ∈ K×. (A unit satisfying this congruence is often called a “primary”
unit.) Denote by C the group of cyclotomic units in the sense of Sinnott [11,
page 209]. We put C+ = C ∩ E+ and C0 = C ∩ E0. Let χ be a nontrivial
Q̄2-valued character of ∆, and O = Oχ the subring of Q̄2 generated over
Z2 by the values of χ. Here, Q̄2 is a fixed algebraic closure of the 2-adic
rationals Q2, and Z2 is the ring of 2-adic integers. For a Z2[∆]-module M ,
we denote by M(χ) = M ⊗O the χ-part of M , where the tensor product is
taken over Z2[∆] regarding O as a Z2[∆]-module via χ. We naturally regard
M(χ) as an O-module. We see that (E/E2)(χ) ∼= O/2O by a theorem of
Minkowski on units of a Galois extension over Q (cf. Narkiewicz [9, Theorem
3.26]). Since the index [E : C] is finite ([11, Theorem 4.1]), it follows
that (C/C2)(χ) ∼= O/2O. Therefore, each of the O-modules (E+/E

2)(χ),
(E0/E

2)(χ), (C+/C
2)(χ) and (C0/C

2)(χ) is either trivial or isomorphic to
O/2O. In [4, Théorème III.2], Georges Gras found the following beautiful
relation between the Galois modules C+/C

2 and C0/C
2.

Theorem 1 (Gras). Under the above setting, we have (C+/C
2)(χ) ∼= O/2O

if and only if (C0/C
2)(χ−1) ∼= O/2O.

Gras proved this duality by some ingenious calculation on the “Fermat quo-
tient” of certain cyclotomic units. The main purpose of this paper is to give
a modern alternative proof using a consequence (=“Gras conjecture”) of the
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Iwasawa main conjecture and the standard reflection argument.
As for the groups E+ and E0, Taylor [12] proved the following

Theorem 2 (Taylor). Under the above setting, the following conditions are

equivalent:

(I) At least one of (E+/E
2)(χ) and (E+/E

2)(χ−1) is nontrivial.

(II) At least one of (E0/E
2)(χ) and (E0/E

2)(χ−1) is nontrivial.

Taylor proved this theorem by effectively using some properties of norm
residue symbols including the product formula. We give an alternative proof
using the reflection argument.

Remark 1. Assertion (∗) of [12, page 157] reads that if both of (E+/E
2)(χ)

and (E+/E
2)(χ−1) are nontrivial, then the condition (II) in Theorem 2

holds. However, what Taylor actually proved in his paper is the above
stronger version.

In §2, we recall some fundamental facts on the reflection argument, which
is a basic tool of this paper. In §3, we prove Theorem 1. In §4, we prove
Theorem 2 and give an example which shows that a duality corresponding
to Theorem 1 does not hold in general for E+ and E0. In §5, we give a slight
generalization of a theorem of Cornacchia [2, Theorem 1] on the triviality
of the minus and plus class groups of a cyclotomic field of prime conductor
by using a reflection theorem and “genus theory”,

2. Reflection

In this section, we recall some fundamental facts on the reflection argu-
ment for the 2-parts of ideal class groups. Typical literatures on this topic
are [8, 10, 12]. We use the same notation as in §1. In particular, K denotes
a real abelian field of odd degree over Q. For a number field N , let AN (resp.

ÃN ) be the 2-part of the ideal class group of N in the ordinary (resp. nar-

row) sense. We often abbreviate as A = AK and Ã = ÃK in the following.
For an ideal A of K, we denote by [A]0 (resp. [A]∞) the ideal class in the

ordinary (resp. narrow) sense containing A. Let H/K and H̃/K be the class

fields corresponding to the quotients A/A2 and Ã/Ã2, respectively. Then

the Galois group Gal(H/K) (resp. Gal(H̃/K)) is canonically isomorphic to

A/A2 (resp. Ã/Ã2) via the reciprocity law map which is compatible with
the action of ∆. For a multipicative abelian group X and an element x ∈ X,
we denote by [x] the class in the quotient X/X2 represented by x. Let V

and Ṽ be the subgroups of K×/(K×)2 such that

H = K(v1/2
∣

∣ [v] ∈ V ) and H̃ = K(v1/2
∣

∣ [v] ∈ Ṽ ),
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respectively. Clearly, we have

V = {[v] ∈ Ṽ
∣

∣ v ≫ 0}.

Here, we write x ≫ 0 when an element x ∈ K× is totally positive. We
can naturally regard the groups V and Ṽ as modules over Z2[∆]. It is well
known that

(E(K×)2/(K×)2) ∩ Ṽ = E0(K
×)2/(K×)2 (= E0/E

2)

and that

(E(K×)2/(K×)2) ∩ V = (E+ ∩E0)(K
×)2/(K×)2 (= (E+ ∩ E0)/E

2)

(cf. Washington [13, Excercise 9.3]). We have a nondegenerate pairing

Ã/Ã2 × Ṽ → {±1}; ([c], [v]) → 〈c, v〉 = (v1/2)ρc−1,

where ρc denotes the automorphism of H̃/K corresponding to the ideal class
c. It is well known and easy to show that the pairing satisfies 〈cδ , vδ〉 = 〈c, v〉

for any c ∈ Ã, [v] ∈ Ṽ and δ ∈ ∆. Because of this relation, the above pairing
induces a nondegenerate subpairing

(1) (Ã/Ã2)(χ)× Ṽ (χ−1) → {±1}

for each Q̄2-valued character χ of ∆. Similarly, we have a nondegenerate
pairing

(2) (A/A2)(χ)× V (χ−1) → {±1}.

For each element [v] of V or Ṽ , we have vOK = A
2 for some ideal A of K

where OK is the ring of integers of K. By mapping [v] to the ideal class
[A]0 ∈ A, we obtain exact sequences

(3) {0} → E0/E
2 → Ṽ → 2A

and

(4) {0} → (E+ ∩E0)/E
2 → V → 2A

compatible with the action of ∆. Here, 2A denotes the elements c of A
with c2 = 1. Let K>0 be the subgroup of K× consisting of totally positive
elements. We also need the following natural exact sequence

(5) {0} → K×/EK>0

f
→ Ã

g
→ A → {0}

which is compatible with the action of ∆. For an element α ∈ K×, let [α]∞
be the class in K×/EK>0 containing α. The maps f and g are defined by
f([α]∞) = [αOK ]∞ and g([A]∞) = [A]0, respectively. It is known that the
O-module (K×/EK>0)(χ) is either trivial or isomorphic to O/2O and that
the following equivalence holds.

(6) (K×/EK>0)(χ) = {0} ⇐⇒ (E+/E
2)(χ) = {0}.
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This is because the Galois module K×/K>0 is isomorphic to F2[∆] via the
sign map where F2 is the finite field of 2 elements.

Lemma 1. Under the above setting, if A(χ) is trivial and A(χ−1) is non-

trivial, then we have (E+/E
2)(χ) ∼= O/2O.

Proof. As A(χ−1) is nontrivial, V (χ) is nontrivial by (2). Then, since A(χ)
is trivial, it follows from (4) that

((E+ ∩ E0)/E
2)(χ) = V (χ) ∼= O/2O.

Hence, we obtain (E+/E
2)(χ) ∼= O/2O. �

Theorem 3. Under the above setting, the following conditions are equiva-

lent.

(I) At least one of Ã(χ) and Ã(χ−1) is trivial.

(II) The groups A(χ) and A(χ−1) are both trivial.

Proof. The implication (II) ⇒ (I) follows immediately from [10, Théorème

2]. To show (I) ⇒ (II), assume that Ã(χ) is trivial. We see that A(χ) is also
trivial, and that (E+/E

2)(χ) = {0} from (5) and (6). Then it follows from
Lemma 1 that A(χ−1) is trivial. �

Remark 2. Theorem 3 is a refinement of [10, Corollary 2c].

3. Proof of Theorem 1

We use the same notation as in the previous sections. In particular, χ
denotes a nontrivial Q̄2-valued character of ∆. The following consequence
of the Iwasawa main conjecture was proved in Greither [5, Theorem 4.14]:

(7) |(E/C)(χ)| = |A(χ)|,

which is called a conjecture of Gras. Here, we abbreviate the χ-part of the
Z2[∆]-module (E/C)⊗Z2 as (E/C)(χ), the tensor product being taken over
Z.

Lemma 2. If |(E/C)(χ)| > 1, then ((C+ ∩ C0)/C
2)(χ) ∼= O/2O.

Proof. Assume that |(E/C)(χ)| > 1. Then, as (E/E2)(χ) ∼= O/2O, it
follows that there exists a nontrivial class [c] ∈ (C/C2)(χ) for which c is a
square in E. Hence, c ∈ C+ ∩C0, and the assertion follows. �

Proof of Theorem 1. First we assume that (C+/C
2)(χ) ∼= O/2O and show

the “only if” part. Namely, we show that (C0/C
2)(χ−1) ∼= O/2O. If A(χ−1)

is nontrivial, then it follows from (7) and Lemma 2 that (C0/C
2)(χ−1) ∼=

O/2O. Therefore, we may further assume that A(χ−1) is trivial. Let us

show that Ã(χ) is nontrivial. For this, we choose a cyclotomic unit η ∈ C+

for which the class [η] generates (C+/C
2)(χ) (∼= O/2O). If η is a square
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in K, then |(E/C)(χ)| > 1. Therefore, it follows from (7) that A(χ) is

nontrivial, and hence so is Ã(χ). If η is not a square in K, then, as
(E/E2)(χ) ∼= O/2O, (E/C)(χ) is trivial. As η is totally positive, this im-
plies that (E/E2)(χ) = (E+/E

2)(χ) ∼= O/2O. Then it follows from (5) and

(6) that Ã(χ) is nontrivial also when η is nonsquare. Now, we see from (1)

that Ṽ (χ−1) is nontrivial. However, since A(χ−1) is trivial, it follows from
(3) that

(E0/E
2)(χ−1) = Ṽ (χ−1) ∼= O/2O.

Again as A(χ−1) is trivial, we obtain from this and (7) that (C0/C
2)(χ−1) ∼=

O/2O.
We assume that (C0/C

2)(χ) ∼= O/2O and show that (C+/C
2)(χ−1) ∼=

O/2O. Similarly as in the proof of the “only if” part, we may as well
assume that A(χ−1) is trivial because of (7) and Lemma 2. We choose a
cyclotomic unit η ∈ C0 for which the class [η] generates (C0/C

2)(χ). First,
we deal with the case where η is a square in K. In this case, we have
(E/C)(χ) 6= {0} and hence A(χ) is nontrivial by (7). Then, by Lemma
1, we see that (E+/E

2)(χ−1) ∼= O/2O. Since A(χ−1) is trivial, it follows
from this and (7) that (C+/C

2)(χ−1) ∼= O/2O. Next, we deal with the

case where η is not a square. Then, [η] is a nontrivial element of Ṽ (χ). If
η ≫ 0, then as [η] ∈ V (χ), it follows from (2) that A(χ−1) is nontrivial, a

contradiction. If η is not totally positive, we have [η] ∈ Ṽ (χ)\V (χ). Hence,

|(Ã/Ã2)(χ−1)| > |(A/A2)(χ−1)| by (1) and (2). Then, by (5) and (6), we
see that (E/E2)(χ−1) = (E+/E

2)(χ−1) ∼= O/2O. Since A(χ−1) is trivial, it
follows from this and (7) that (C+/C

2)(χ−1) ∼= O/2O. �

4. Proof of Theorem 2

In this section, we show Theorem 2 by using the reflection argument.

Proof of (II) ⇒ (I). Assume that (E0/E
2)(χ) ∼= O/2O but (E+/E

2)(χ−1)

is trivial. Then we see that Ã(χ−1) = A(χ−1) from (5) and (6), and hence

Ṽ (χ) = V (χ). Since (E0/E
2)(χ) is contained in Ṽ (χ), this implies that

(E0/E
2)(χ) = ((E+ ∩ E0)/E

2)(χ) ⊆ (E+/E
2)(χ).

Thus we obtain (E+/E
2)(χ) ∼= O/2O. �

Proof of (I) ⇒ (II). Assume that (E+/E
2)(χ) ∼= O/2O but that both of

(E0/E
2)(χ) and (E0/E

2)(χ−1) are trivial. Then, from (3), we obtain inclu-
sions

(8) V (χ) ⊆ Ṽ (χ) →֒ 2A(χ) and V (χ−1) ⊆ Ṽ (χ−1) →֒ 2A(χ
−1).

Combining these inclusions with (1) and (2), we see that

rk(2A(χ)) = rk(V (χ−1)) ≤ rk(2A(χ
−1)) = rk(V (χ)) ≤ rk(2A(χ)).
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Here, for an O-module M , rk(M) denotes the dimension of M/M2 over the
finite field O/2O. Thus, the inclusions (8) yield the isomorphisms

(9) V (χ) = Ṽ (χ) ∼= 2A(χ) and V (χ−1) = Ṽ (χ−1) ∼= 2A(χ
−1)

and the equalities

(10) rk(2A(χ)) = rk(2Ã(χ)) and rk(2A(χ
−1)) = rk(2Ã(χ

−1)).

Since we are assuming that (E+/E
2)(χ) ∼= O/2O, we see from (6) that

(K×/EK>0)(χ) ∼= O/2O. Hence, there exists a nontrivial class [α]∞ in
(K×/EK>0)(χ) with α ∈ K×. By the exact sequence (5) and the first
equality in (10), we see that f([α]∞) = [αOK ]∞ = [A]2

∞
for some ideal A of

K with [A]0 ∈ A(χ). Hence, αxOK = A
2 for some totally positive element

x ∈ K×. By [A]0 ∈ 2A(χ), it follows from the first isomorphism in (9) that
there exists a unit ǫ for which [αxǫ] ∈ V (χ). This implies that αxǫ is totally
positive, and hence the class [α]∞ ∈ (K×/EK>0)(χ) is trivial. This is a
contradiction. �

Example. Let K be the real abelian field of degree 7 and conductor 491.
It is known that A(χ−1) ∼= O/2O but A(χ) is trivial for some nontriv-
ial Q̄2-valued character χ of ∆ = Gal(K/Q). (Note that χ and χ−1 are
not conjugate over Q2.) For this, see Cornacchia [3, §5], or Koyama and
Yoshino [7, §8] combined with [13, page 421]. It follows from (2) that V (χ)
is nontrivial and V (χ−1) is trivial. From the latter, it follows that ((E+ ∩
E0)/E

2)(χ−1) is trivial. Since V (χ) is nontrivial and A(χ) is trivial, we see
from (4) that ((E+ ∩ E0)/E

2)(χ) ∼= O/2O. Therefore, both of (E+/E
2)(χ)

and (E0/E
2)(χ) are nontrivial, while at least one of (E+/E

2)(χ−1) and
(E0/E

2)(χ−1) is trivial. Thus, a duality corresponding to Theorem 1 does
not hold in general for E+ and E0.

5. Minus class group

We use the same notation as in the previous sections. Let k/Q be an
imaginary abelian extension of 2-power degree, and put L = Kk. Let k+

and L+ be the maximal real subfields of k and L, respectively. Let A−

L be
the kernel of the norm map AL → AL+ . We naturally identify the Galois
groups Gal(L/k) and Gal(L+/k+) with ∆ = Gal(K/Q), and regard A−

L and
AL+ as modules over ∆. When L coincides with a cyclotomic field of prime
conductor, Cornacchia [2, Theorem 1] used Theorem 1 and (7) to obtain
a relation between the triviality of A−

L and AK . We slightly generalize his
result as follows. Let S be the set of prime numbers ℓ such that a prime
ideal of k+ over ℓ ramifies in k. Let χ be a nontrivial Q̄2-valued character
of ∆, which we also regard as a primitive Dirichlet character.



DUALITY OF GRAS ON CYCLOTOMIC UNITS 131

Theorem 4. Under the above setting, assume further that at most one

prime ideal of K ramifies in L+. Then the following conditions are equiva-

lent.

(I) At least one of A−

L (χ) and A−

L (χ
−1) is trivial.

(II) The groups AK(χ) and AK(χ−1) are both trivial, and χ(ℓ) 6= 1 for

all ℓ ∈ S.

The case L = Q(ζp) is due to Cornacchia, where p is an odd prime number.
The assumption in Theorem 4 on ramification in L+/K is rather strong.
Actually, when the assumption is satisfied, we see that the conductor of
the real abelian field k+ is an odd prime number or a power of 2, and in
particular k+/Q is cyclic. To show the general case, we use a reflection
theorem (Theorem 3) and “genus theory”, and do not use Theorem 1 nor
(7).

Proof. In [6, Corollary 2], we showed that A−

L (χ) is trivial if and only if the

narrow class group ÃL+(χ) is trivial and χ(ℓ) 6= 1 for all ℓ ∈ S. We obtained
this by using the exact hexagon of Conner and Hurrelbrink [1, Theorem 2.3],
which is a kind of genus theory. By the assumption on ramification, L+/K
is a cyclic 2-extension in which exactly one prime ideal of K is ramified.
Therefore, we see that ÃL+(χ) is trivial if and only if so is ÃK(χ). Now we
obtain the assertion from Theorem 3. �
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