ON A DUALITY OF GRAS BETWEEN TOTALLY POSITIVE AND PRIMARY CYCLOTOMIC UNITS

Humio Ichimura

ABSTRACT. Let K be a real abelian field of odd degree over \mathbb{Q} , and C the group of cyclotomic units of K. We denote by C_+ and C_0 the totally positive and primary elements of C, respectively. G. Gras found a duality between the Galois modules C_+/C^2 and C_0/C^2 by some ingenious calculation on cyclotomic units. We give an alternative proof using a consequence (="Gras conjecture") of the Iwasawa main conjecture and the standard reflection argument. We also give some related topics.

1. INTRODUCTION

Let K be a real abelian field with $[K:\mathbb{Q}]$ odd, and let $\Delta = \operatorname{Gal}(K/\mathbb{Q})$. Let E be the group of units of K, E_+ the subgroup consisting of totally positive units, and E_0 the subgroup consisting of units ϵ satisfying $\epsilon \equiv u^2 \mod 4$ for some $u \in K^{\times}$. (A unit satisfying this congruence is often called a "primary" unit.) Denote by C the group of cyclotomic units in the sense of Sinnott [11, page 209]. We put $C_+ = C \cap E_+$ and $C_0 = C \cap E_0$. Let χ be a nontrivial $\overline{\mathbb{Q}}_2$ -valued character of Δ , and $\mathcal{O} = \mathcal{O}_{\chi}$ the subring of $\overline{\mathbb{Q}}_2$ generated over \mathbb{Z}_2 by the values of χ . Here, $\overline{\mathbb{Q}}_2$ is a fixed algebraic closure of the 2-adic rationals \mathbb{Q}_2 , and \mathbb{Z}_2 is the ring of 2-adic integers. For a $\mathbb{Z}_2[\Delta]$ -module M, we denote by $M(\chi) = M \otimes \mathcal{O}$ the χ -part of M, where the tensor product is taken over $\mathbb{Z}_2[\Delta]$ regarding \mathcal{O} as a $\mathbb{Z}_2[\Delta]$ -module via χ . We naturally regard $M(\chi)$ as an \mathcal{O} -module. We see that $(E/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$ by a theorem of Minkowski on units of a Galois extension over \mathbb{Q} (cf. Narkiewicz [9, Theorem (3.26]). Since the index [E : C] is finite ([11, Theorem 4.1]), it follows that $(C/C^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$. Therefore, each of the \mathcal{O} -modules $(E_+/E^2)(\chi)$, $(E_0/E^2)(\chi)$, $(C_+/C^2)(\chi)$ and $(C_0/C^2)(\chi)$ is either trivial or isomorphic to $\mathcal{O}/2\mathcal{O}$. In [4, Théorème III.2], Georges Gras found the following beautiful relation between the Galois modules C_+/C^2 and C_0/C^2 .

Theorem 1 (Gras). Under the above setting, we have $(C_+/C^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$ if and only if $(C_0/C^2)(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$.

Gras proved this duality by some ingenious calculation on the "Fermat quotient" of certain cyclotomic units. The main purpose of this paper is to give a modern alternative proof using a consequence (="Gras conjecture") of the

Mathematics Subject Classification. Primary 11R18.

Key words and phrases. cyclotomic units, reflection argument, ideal class group.

H. ICHIMURA

Iwasawa main conjecture and the standard reflection argument.

As for the groups E_+ and E_0 , Taylor [12] proved the following

Theorem 2 (Taylor). Under the above setting, the following conditions are equivalent:

- (I) At least one of $(E_+/E^2)(\chi)$ and $(E_+/E^2)(\chi^{-1})$ is nontrivial. (II) At least one of $(E_0/E^2)(\chi)$ and $(E_0/E^2)(\chi^{-1})$ is nontrivial.

Taylor proved this theorem by effectively using some properties of norm residue symbols including the product formula. We give an alternative proof using the reflection argument.

Remark 1. Assertion (*) of [12, page 157] reads that if both of $(E_+/E^2)(\chi)$ and $(E_+/E^2)(\chi^{-1})$ are nontrivial, then the condition (II) in Theorem 2 holds. However, what Taylor actually proved in his paper is the above stronger version.

In $\S2$, we recall some fundamental facts on the reflection argument, which is a basic tool of this paper. In $\S3$, we prove Theorem 1. In $\S4$, we prove Theorem 2 and give an example which shows that a duality corresponding to Theorem 1 does not hold in general for E_+ and E_0 . In §5, we give a slight generalization of a theorem of Cornacchia [2, Theorem 1] on the triviality of the minus and plus class groups of a cyclotomic field of prime conductor by using a reflection theorem and "genus theory",

2. Reflection

In this section, we recall some fundamental facts on the reflection argument for the 2-parts of ideal class groups. Typical literatures on this topic are [8, 10, 12]. We use the same notation as in §1. In particular, K denotes a real abelian field of odd degree over \mathbb{Q} . For a number field N, let A_N (resp. \tilde{A}_N) be the 2-part of the ideal class group of N in the ordinary (resp. narrow) sense. We often abbreviate as $A = A_K$ and $\tilde{A} = \tilde{A}_K$ in the following. For an ideal \mathfrak{A} of K, we denote by $[\mathfrak{A}]_0$ (resp. $[\mathfrak{A}]_{\infty}$) the ideal class in the ordinary (resp. narrow) sense containing \mathfrak{A} . Let H/K and H/K be the class fields corresponding to the quotients A/A^2 and \tilde{A}/\tilde{A}^2 , respectively. Then the Galois group $\operatorname{Gal}(H/K)$ (resp. $\operatorname{Gal}(\tilde{H}/K)$) is canonically isomorphic to A/A^2 (resp. \tilde{A}/\tilde{A}^2) via the reciprocity law map which is compatible with the action of Δ . For a multiplicative abelian group X and an element $x \in X$, we denote by [x] the class in the quotient X/X^2 represented by x. Let V and \tilde{V} be the subgroups of $K^{\times}/(K^{\times})^2$ such that

$$H = K(v^{1/2} \mid [v] \in V) \text{ and } \tilde{H} = K(v^{1/2} \mid [v] \in \tilde{V}),$$

126

respectively. Clearly, we have

$$V = \{ [v] \in \tilde{V} \mid v \gg 0 \}.$$

Here, we write $x \gg 0$ when an element $x \in K^{\times}$ is totally positive. We can naturally regard the groups V and \tilde{V} as modules over $\mathbb{Z}_2[\Delta]$. It is well known that

$$(E(K^{\times})^2/(K^{\times})^2) \cap \tilde{V} = E_0(K^{\times})^2/(K^{\times})^2 (= E_0/E^2)$$

and that

$$(E(K^{\times})^{2}/(K^{\times})^{2}) \cap V = (E_{+} \cap E_{0})(K^{\times})^{2}/(K^{\times})^{2} (= (E_{+} \cap E_{0})/E^{2})$$

(cf. Washington [13, Excercise 9.3]). We have a nondegenerate pairing

$$\tilde{A}/\tilde{A}^2 \times \tilde{V} \to \{\pm 1\}; \quad ([c], [v]) \to \langle c, v \rangle = (v^{1/2})^{\rho_c - 1}$$

where ρ_c denotes the automorphism of \tilde{H}/K corresponding to the ideal class c. It is well known and easy to show that the pairing satisfies $\langle c^{\delta}, v^{\delta} \rangle = \langle c, v \rangle$ for any $c \in \tilde{A}$, $[v] \in \tilde{V}$ and $\delta \in \Delta$. Because of this relation, the above pairing induces a nondegenerate subpairing

(1)
$$(\tilde{A}/\tilde{A}^2)(\chi) \times \tilde{V}(\chi^{-1}) \to \{\pm 1\}$$

for each $\overline{\mathbb{Q}}_2$ -valued character χ of Δ . Similarly, we have a nondegenerate pairing

(2)
$$(A/A^2)(\chi) \times V(\chi^{-1}) \to \{\pm 1\}.$$

For each element [v] of V or \tilde{V} , we have $v\mathcal{O}_K = \mathfrak{A}^2$ for some ideal \mathfrak{A} of K where \mathcal{O}_K is the ring of integers of K. By mapping [v] to the ideal class $[\mathfrak{A}]_0 \in A$, we obtain exact sequences

(3)
$$\{0\} \to E_0/E^2 \to V \to {}_2A$$

and

(4)
$$\{0\} \to (E_+ \cap E_0)/E^2 \to V \to {}_2A$$

compatible with the action of Δ . Here, $_2A$ denotes the elements c of A with $c^2 = 1$. Let $K_{>0}$ be the subgroup of K^{\times} consisting of totally positive elements. We also need the following natural exact sequence

(5)
$$\{0\} \to K^{\times}/EK_{>0} \xrightarrow{f} \tilde{A} \xrightarrow{g} A \to \{0\}$$

which is compatible with the action of Δ . For an element $\alpha \in K^{\times}$, let $[\alpha]_{\infty}$ be the class in $K^{\times}/EK_{>0}$ containing α . The maps f and g are defined by $f([\alpha]_{\infty}) = [\alpha \mathcal{O}_K]_{\infty}$ and $g([\mathfrak{A}]_{\infty}) = [\mathfrak{A}]_0$, respectively. It is known that the \mathcal{O} -module $(K^{\times}/EK_{>0})(\chi)$ is either trivial or isomorphic to $\mathcal{O}/2\mathcal{O}$ and that the following equivalence holds.

(6)
$$(K^{\times}/EK_{>0})(\chi) = \{0\} \iff (E_{+}/E^{2})(\chi) = \{0\}.$$

This is because the Galois module $K^{\times}/K_{>0}$ is isomorphic to $\mathbb{F}_2[\Delta]$ via the sign map where \mathbb{F}_2 is the finite field of 2 elements.

Lemma 1. Under the above setting, if $A(\chi)$ is trivial and $A(\chi^{-1})$ is nontrivial, then we have $(E_+/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$.

Proof. As $A(\chi^{-1})$ is nontrivial, $V(\chi)$ is nontrivial by (2). Then, since $A(\chi)$ is trivial, it follows from (4) that

$$((E_+ \cap E_0)/E^2)(\chi) = V(\chi) \cong \mathcal{O}/2\mathcal{O}.$$

Hence, we obtain $(E_+/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$.

Theorem 3. Under the above setting, the following conditions are equivalent.

(I) At least one of $\tilde{A}(\chi)$ and $\tilde{A}(\chi^{-1})$ is trivial. (II) The groups $A(\chi)$ and $A(\chi^{-1})$ are both trivial.

Proof. The implication (II) \Rightarrow (I) follows immediately from [10, Théorème 2]. To show (I) \Rightarrow (II), assume that $A(\chi)$ is trivial. We see that $A(\chi)$ is also trivial, and that $(E_+/E^2)(\chi) = \{0\}$ from (5) and (6). Then it follows from Lemma 1 that $A(\chi^{-1})$ is trivial.

Remark 2. Theorem 3 is a refinement of [10, Corollary 2c].

3. Proof of Theorem 1

We use the same notation as in the previous sections. In particular, χ denotes a nontrivial \mathbb{Q}_2 -valued character of Δ . The following consequence of the Iwasawa main conjecture was proved in Greither [5, Theorem 4.14]:

(7)
$$|(E/C)(\chi)| = |A(\chi)|,$$

which is called a conjecture of Gras. Here, we abbreviate the χ -part of the $\mathbb{Z}_2[\Delta]$ -module $(E/C) \otimes \mathbb{Z}_2$ as $(E/C)(\chi)$, the tensor product being taken over $\mathbb{Z}.$

Lemma 2. If $|(E/C)(\chi)| > 1$, then $((C_+ \cap C_0)/C^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$.

Proof. Assume that $|(E/C)(\chi)| > 1$. Then, as $(E/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$, it follows that there exists a nontrivial class $[c] \in (C/C^2)(\chi)$ for which c is a square in E. Hence, $c \in C_+ \cap C_0$, and the assertion follows.

Proof of Theorem 1. First we assume that $(C_+/C^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$ and show the "only if" part. Namely, we show that $(C_0/C^2)(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$. If $A(\chi^{-1})$ is nontrivial, then it follows from (7) and Lemma 2 that $(C_0/C^2)(\chi^{-1}) \cong$ $\mathcal{O}/2\mathcal{O}$. Therefore, we may further assume that $A(\chi^{-1})$ is trivial. Let us show that $A(\chi)$ is nontrivial. For this, we choose a cyclotomic unit $\eta \in C_+$ for which the class $[\eta]$ generates $(C_+/C^2)(\chi) \cong \mathcal{O}/2\mathcal{O})$. If η is a square

128

in K, then $|(E/C)(\chi)| > 1$. Therefore, it follows from (7) that $A(\chi)$ is nontrivial, and hence so is $\tilde{A}(\chi)$. If η is not a square in K, then, as $(E/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}, (E/C)(\chi)$ is trivial. As η is totally positive, this implies that $(E/E^2)(\chi) = (E_+/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$. Then it follows from (5) and (6) that $\tilde{A}(\chi)$ is nontrivial also when η is nonsquare. Now, we see from (1) that $\tilde{V}(\chi^{-1})$ is nontrivial. However, since $A(\chi^{-1})$ is trivial, it follows from (3) that

$$(E_0/E^2)(\chi^{-1}) = \tilde{V}(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}.$$

Again as $A(\chi^{-1})$ is trivial, we obtain from this and (7) that $(C_0/C^2)(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$.

We assume that $(C_0/C^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$ and show that $(C_+/C^2)(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$. Similarly as in the proof of the "only if" part, we may as well assume that $A(\chi^{-1})$ is trivial because of (7) and Lemma 2. We choose a cyclotomic unit $\eta \in C_0$ for which the class $[\eta]$ generates $(C_0/C^2)(\chi)$. First, we deal with the case where η is a square in K. In this case, we have $(E/C)(\chi) \neq \{0\}$ and hence $A(\chi)$ is nontrivial by (7). Then, by Lemma 1, we see that $(E_+/E^2)(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$. Since $A(\chi^{-1})$ is trivial, it follows from this and (7) that $(C_+/C^2)(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$. Next, we deal with the case where η is not a square. Then, $[\eta]$ is a nontrivial element of $\tilde{V}(\chi)$. If $\eta \gg 0$, then as $[\eta] \in V(\chi)$, it follows from (2) that $A(\chi^{-1})$ is nontrivial, a contradiction. If η is not totally positive, we have $[\eta] \in \tilde{V}(\chi) \setminus V(\chi)$. Hence, $|(\tilde{A}/\tilde{A}^2)(\chi^{-1})| > |(A/A^2)(\chi^{-1})|$ by (1) and (2). Then, by (5) and (6), we see that $(E/E^2)(\chi^{-1}) = (E_+/E^2)(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$. Since $A(\chi^{-1})$ is trivial, it follows from this and (7) that $(C_+/C^2)(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$.

4. Proof of Theorem 2

In this section, we show Theorem 2 by using the reflection argument.

Proof of (II) \Rightarrow (I). Assume that $(E_0/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$ but $(E_+/E^2)(\chi^{-1})$ is trivial. Then we see that $\tilde{A}(\chi^{-1}) = A(\chi^{-1})$ from (5) and (6), and hence $\tilde{V}(\chi) = V(\chi)$. Since $(E_0/E^2)(\chi)$ is contained in $\tilde{V}(\chi)$, this implies that

$$(E_0/E^2)(\chi) = ((E_+ \cap E_0)/E^2)(\chi) \subseteq (E_+/E^2)(\chi).$$

Thus we obtain $(E_+/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$.

Proof of (I) \Rightarrow (II). Assume that $(E_+/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$ but that both of $(E_0/E^2)(\chi)$ and $(E_0/E^2)(\chi^{-1})$ are trivial. Then, from (3), we obtain inclusions

(8)
$$V(\chi) \subseteq \tilde{V}(\chi) \hookrightarrow {}_{2}A(\chi) \text{ and } V(\chi^{-1}) \subseteq \tilde{V}(\chi^{-1}) \hookrightarrow {}_{2}A(\chi^{-1}).$$

Combining these inclusions with (1) and (2), we see that

$$\operatorname{rk}_{2}A(\chi)) = \operatorname{rk}(V(\chi^{-1})) \le \operatorname{rk}_{2}A(\chi^{-1})) = \operatorname{rk}(V(\chi)) \le \operatorname{rk}_{2}A(\chi)).$$

 \square

Here, for an \mathcal{O} -module M, $\operatorname{rk}(M)$ denotes the dimension of M/M^2 over the finite field $\mathcal{O}/2\mathcal{O}$. Thus, the inclusions (8) yield the isomorphisms

(9)
$$V(\chi) = \tilde{V}(\chi) \cong {}_{2}A(\chi) \text{ and } V(\chi^{-1}) = \tilde{V}(\chi^{-1}) \cong {}_{2}A(\chi^{-1})$$

and the equalities

(10)
$$\operatorname{rk}(_2A(\chi)) = \operatorname{rk}(_2\tilde{A}(\chi))$$
 and $\operatorname{rk}(_2A(\chi^{-1})) = \operatorname{rk}(_2\tilde{A}(\chi^{-1})).$

Since we are assuming that $(E_+/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$, we see from (6) that $(K^{\times}/EK_{>0})(\chi) \cong \mathcal{O}/2\mathcal{O}$. Hence, there exists a nontrivial class $[\alpha]_{\infty}$ in $(K^{\times}/EK_{>0})(\chi)$ with $\alpha \in K^{\times}$. By the exact sequence (5) and the first equality in (10), we see that $f([\alpha]_{\infty}) = [\alpha \mathcal{O}_K]_{\infty} = [\mathfrak{A}]_{\infty}^2$ for some ideal \mathfrak{A} of K with $[\mathfrak{A}]_0 \in A(\chi)$. Hence, $\alpha x \mathcal{O}_K = \mathfrak{A}^2$ for some totally positive element $x \in K^{\times}$. By $[\mathfrak{A}]_0 \in {}_2A(\chi)$, it follows from the first isomorphism in (9) that there exists a unit ϵ for which $[\alpha x \epsilon] \in V(\chi)$. This implies that $\alpha x \epsilon$ is totally positive, and hence the class $[\alpha]_{\infty} \in (K^{\times}/EK_{>0})(\chi)$ is trivial. This is a contradiction.

Example. Let K be the real abelian field of degree 7 and conductor 491. It is known that $A(\chi^{-1}) \cong \mathcal{O}/2\mathcal{O}$ but $A(\chi)$ is trivial for some nontrivial $\overline{\mathbb{Q}}_2$ -valued character χ of $\Delta = \operatorname{Gal}(K/\mathbb{Q})$. (Note that χ and χ^{-1} are not conjugate over \mathbb{Q}_2 .) For this, see Cornacchia [3, §5], or Koyama and Yoshino [7, §8] combined with [13, page 421]. It follows from (2) that $V(\chi)$ is nontrivial and $V(\chi^{-1})$ is trivial. From the latter, it follows that $((E_+ \cap E_0)/E^2)(\chi^{-1})$ is trivial. Since $V(\chi)$ is nontrivial and $A(\chi)$ is trivial, we see from (4) that $((E_+ \cap E_0)/E^2)(\chi) \cong \mathcal{O}/2\mathcal{O}$. Therefore, both of $(E_+/E^2)(\chi)$ and $(E_0/E^2)(\chi^{-1})$ is trivial. Thus, a duality corresponding to Theorem 1 does not hold in general for E_+ and E_0 .

5. MINUS CLASS GROUP

We use the same notation as in the previous sections. Let k/\mathbb{Q} be an imaginary abelian extension of 2-power degree, and put L = Kk. Let k^+ and L^+ be the maximal real subfields of k and L, respectively. Let A_L^- be the kernel of the norm map $A_L \to A_{L^+}$. We naturally identify the Galois groups $\operatorname{Gal}(L/k)$ and $\operatorname{Gal}(L^+/k^+)$ with $\Delta = \operatorname{Gal}(K/\mathbb{Q})$, and regard A_L^- and A_{L^+} as modules over Δ . When L coincides with a cyclotomic field of prime conductor, Cornacchia [2, Theorem 1] used Theorem 1 and (7) to obtain a relation between the triviality of A_L^- and A_K . We slightly generalize his result as follows. Let S be the set of prime numbers ℓ such that a prime ideal of k^+ over ℓ ramifies in k. Let χ be a nontrivial $\overline{\mathbb{Q}}_2$ -valued character of Δ , which we also regard as a primitive Dirichlet character. **Theorem 4.** Under the above setting, assume further that at most one prime ideal of K ramifies in L^+ . Then the following conditions are equivalent.

(I) At least one of $A_L^-(\chi)$ and $A_L^-(\chi^{-1})$ is trivial.

(II) The groups $A_K(\chi)$ and $A_K(\chi^{-1})$ are both trivial, and $\chi(\ell) \neq 1$ for all $\ell \in S$.

The case $L = \mathbb{Q}(\zeta_p)$ is due to Cornacchia, where p is an odd prime number. The assumption in Theorem 4 on ramification in L^+/K is rather strong. Actually, when the assumption is satisfied, we see that the conductor of the real abelian field k^+ is an odd prime number or a power of 2, and in particular k^+/\mathbb{Q} is cyclic. To show the general case, we use a reflection theorem (Theorem 3) and "genus theory", and do not use Theorem 1 nor (7).

Proof. In [6, Corollary 2], we showed that $A_L^-(\chi)$ is trivial if and only if the narrow class group $\tilde{A}_{L^+}(\chi)$ is trivial and $\chi(\ell) \neq 1$ for all $\ell \in S$. We obtained this by using the exact hexagon of Conner and Hurrelbrink [1, Theorem 2.3], which is a kind of genus theory. By the assumption on ramification, L^+/K is a cyclic 2-extension in which exactly one prime ideal of K is ramified. Therefore, we see that $\tilde{A}_{L^+}(\chi)$ is trivial if and only if so is $\tilde{A}_K(\chi)$. Now we obtain the assertion from Theorem 3.

References

- P. E. Conner and J. Hurrelbrink, Class Number Parity, World Sci. Publishing, Singapore, 1988.
- [2] P. Cornacchia, The parity of the class number of the cyclotomic fields of prime conductor, Proc. Amer. Math. Soc., 125 (1997), 3163-3168.
- [3] P. Cornacchia, The 2-ideal class groups of $\mathbb{Q}(\zeta_{\ell})$, Nagoya Math. J., **162** (2001), 1-18.
- [4] G. Gras, Critère de parité du nombre de classes des extensions abéliennes réeles de Q de degré impair, Bull. Soc. Math. France, 103 (1975), 177-190.
- [5] C. Greither, Class groups of abelian fields and the main conjecture, Ann. Inst. Fourier, 42 (1992), 449-499.
- [6] H. Ichimura, Class number parity of a quadratic twist of a cyclotomic field of prime power conductor, Osaka J. Math., 50 (2013), 563-572.
- [7] Y. Koyama and K. Yoshino, Prime divisors of the class number of the real p^rth cyclotomic field and characteristic polynomials attached to them, Algebraic Number Theory and Related Topics 2007, 149-172, RIMS Kôkyûroku Bessatsu B12, Res. Inst. Math. Sci., Kyoto, 2009.
- [8] F. Lemmermeyer, Selmer groups and quadratic reciprocity, Abh. Math. Sem. Univ. Hamburg, 76 (2006), 279-293.
- [9] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers (3rd ed.), Springer, Berlin, 2004.
- [10] B. Oriat, Relation entre les 2-groupes des classes d'idéaux au sens ordinaire et restreint de certains corps nombres, Bull. Soc. Math. France, 104 (1976), 301-307.

H. ICHIMURA

- [11] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., 62 (1980), 181-234.
- [12] M. J. Taylor, Galois module structure of classgroups and units, Mathematika, 22 (1975), 156-160.
- [13] L. C. Washington, Introduction to Cyclotomic Fields (2nd ed.), Springer, New York, 1997.

Humio Ichimura Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, 310-8512, Japan *e-mail address*: hichimur@mx.ibaraki.ac.jp

> (Received September 2, 2013) (Accepted November 8, 2013)

132