SUPPLEMENTED MORPHISMS

ARDA KÖR, TRUONG CONG QUYNH, SERAP ŞAHINKAYA AND MUHAMMET TAMER KOŞAN

Abstract. In the present paper, left R-modules M and N are studied under the assumptions that $\text{Hom}_R(M, N)$ is supplemented. It is shown that $\text{Hom}(M, N)$ is $(\oplus, \mathcal{G}^*, \text{amply})$-supplemented if and only if N is $(\oplus, \mathcal{G}^*, \text{amply})$-supplemented. Some applications to cosemisimple modules, refinable modules and UCC-modules are presented. Finally, the relationship between the Jacobson radical $J[M, N]$ of $\text{Hom}_R(M, N)$ and $\text{Hom}_R(M, N)$ is supplemented are investigated. Let M be a finitely generated, self-projective left R-module and $N \in \text{Gen}(M)$. We show that if $\text{Hom}(M, N)$ is supplemented and N has GD2 then $\text{Hom}(M, N)/J(M, N)$ is semisimple as a left E_M-module.

1. **Introduction**

Throughout this article, all rings are associative with unity, and all modules are unital left modules. Let R be a ring. If R_M and R_N are modules, we use the following notations: $E_M = \text{End}(M_R)$. If $N \subseteq M$, then $N \leq M$, $N \ll M$, $N \leq_d M$ and $\text{Rad}(M)$ denote N is a submodule of M, N is a small submodule of M, N is a direct summand of M and the Jacobson radical of M, respectively.

We recall the fundamental terminology for our paper. Let U be a submodule of an R-module M. A submodule V of M is called *supplement* of U in M if V is a minimal element in the set of submodules L of M with $U + L = M$. V is a supplement of U if and only if $U + V = M$ and $U \cap V$ is small in V. An R-module M is *supplemented* if every submodule of M has a supplement in M. The module M is *amply supplemented* if, for any submodules A and B of M with $M = A + B$, there exists a supplement P of A such that $P \leq B$.

For the other definitions in this note, we refer to [1], [14] and [17].

In the present paper, we establish an order-preserving bijective correspondence between the sets of coclosed left R-submodules of N and coclosed left E_M-submodules of $\text{Hom}_R(M, N)$. This concept is extremely useful in analyzing the structure of the endomorphism ring of a supplemented module. For instance, by definitions of supplemented modules, one easily checks that there is no any direct implication between the notions supplemented modules and when $\text{Hom}_R(M, N)$ is supplemented. But we prove that if.

Mathematics Subject Classification. 16D10, 16P70.

Key words and phrases. regular module, supplemented module.
M is a finitely generated, self-projective left R-module and $N \in \text{Gen}(M)$, then $\text{Hom}(M, N)$ is $(\oplus, \text{amply}, G^*)$-supplemented if and only if N is $(\oplus, \text{amply}, G^*)$-supplemented.

Beidar and Kasch [2] defined and studied substructures, the singular ideal $\Delta(M, N)$ and the co-singular ideal $\nabla(M, N)$, of $\text{Hom}_R(M, N)$ such as:

\[
\Delta(M, N) = \{ f \in \text{Hom}_R(M, N) : \ker(f) \leq^e M \}
\]

\[
\nabla(M, N) = \{ f \in \text{Hom}_R(M, N) : \im(f) \ll N \}.
\]

The other substructure, radical, of $\text{Hom}(M, N)$ was introduced and studied by Kasch-Mader [11] and Nicholson-Zhou [15]. They have shown that:

\[
J(M, N) = \{ \alpha \in \text{Hom}_R(M, N) : 1_M - \alpha \beta \in \text{Aut}(M), \forall \beta \in \text{Hom}_R(N, M) \} = \{ \alpha \in \text{Hom}_R(M, N) : \alpha \beta \in J(E_M), \forall \beta \in \text{Hom}_R(N, M) \} = \{ \alpha \in \text{Hom}_R(M, N) : \beta \alpha \in J(E_N), \forall \beta \in \text{Hom}_R(N, M) \}.
\]

Thus, we have $J[M, M] = J(E_M)$, which is similar to well known notion $J[R, R] = J(R)$. For the other new properties of these substructures, we refer to [12], [13] and [18]. Let M be a finitely generated, self-projective left R-module and $N \in \text{Gen}(M)$. We show that if $\text{Hom}_R(M, N)$ is supplemented, then $\text{Hom}_R(M, N)/\nabla(M, N)$ is semisimple as a left E_M-module.

2. Results.

Let M and N be R-modules. If there is an epimorphism $f : M^{(\Lambda)} \longrightarrow N$ for some set Λ, then N is said to be an M-generated module, denoted by $N \in \text{Gen}(M)$, (see [17]). We denote

\[
N_M = M\text{Hom}(M, N) = \{ \sum_{i=1}^k m_i f_i : m_i \in M, f_i \in \text{Hom}(M, N) \}.
\]

Clearly, if $N_M = N$ then N is M-generated.

Lemma 2.1. (1) Let N and M be two left R-modules. Then N is an M-generated R-module if and only if, for all non-zero R-homomorphism $f : N \to K$, there exists $h : M \to N$ such that $hf \neq 0$.

(2) If N_1 and N_2 are M-generated modules with $N = N_1 + N_2$, then N is also M-generated.

Proof. Clear. \qed

The class of supplemented modules under Hom need not closed under taking factor modules, in general.

Proposition 2.2. Let M be a P-projective module and $P \in \text{Gen}(M)$. If $\text{Hom}(M, P)$ is supplemented then every homomorphic image of P is again supplemented under Hom.
Proof. Let X be a submodule of P. We will prove that $\text{Hom}(M, P/X)$ is a supplemented E_M-module. Let A be a submodule of $\text{Hom}(M, P/X)$. For every element $f \in A$, there exists $g \in \text{Hom}(M, P)$ such that $gs = f$, where $s : P \to P/X$ is the canonical projection. Let B be the set of all $h \in \text{Hom}(M, P)$ such that h extends an elements in A. It is a simple matter to prove that B is a submodule of $\text{Hom}(M, P)$. Since $\text{Hom}(M, P)$ is supplemented, there exists a submodule C of $\text{Hom}(M, P)$ such that C is minimal for the property $\text{Hom}(M, P) = B + C$. Let $D = \{fs \mid f \in C\}$. It is clear that D is a submodule of $\text{Hom}(M, P/X)$ and $\text{Hom}(M, P/X) = A + D$. Let E be a submodule of $\text{Hom}(M, P/X)$ contained in D such that $\text{Hom}(M, P/X) = A + E$. Therefore

$\text{Hom}(M, P) = \text{Hom}(M, X) + B + F$,

where $F = \{f \in C \mid fs \in E\}$ and it is a submodule of C. But $\text{Hom}(M, X) \leq B$. Then $\text{Hom}(M, P) = B + F$. Since $F \leq C$, we have $F = C$. Consequently, D is a supplement of A in $\text{Hom}(M, P/X)$. Hence $\text{Hom}(M, P/X)$ is a supplemented E_M-module. □

Let $K \subset L \subset M$. Recall that K is said to be cosmall of L in M if $L/K \ll M/K$ and we denote it by $K \overset{cs}{\rightarrow} L$. A submodule L of the module M is called co-closed in M if $K \overset{cs}{\rightarrow} L$ implies $K = L$.

Lemma 2.3. Let $K \subset L \subset M$. Then $K \overset{cs}{\rightarrow} L$ if and only if, for any submodule X of M, $M = L + X$ implies $M = K + X$.

Proof. It is well known. □

Let M be an R-module and $X, Y \leq M$. In [3], the notion of β^* relation on submodules X, Y of M, denoted by $X \beta^* Y$, is defined such as $(X + Y)/Y \ll M/Y$ and $(X + Y)/X \ll M/X$. We notice that β^* is an equivalence relation by [3, Lemma 2.2].

Lemma 2.4. Let M be an R-module and $X, Y \leq M$. Then $X \beta^* Y$ if and only if for each $A \leq M$ such that $M = X + Y + A$ then $M = X + A$ and $M = Y + A$.

Proof. See [3, Theorem 2.3]. □

Proposition 2.5. Let M be a finitely generated self-projective R-module and $N \in \text{Gen}(M)$. Then the following conditions hold.

1. For every $K, L \leq N$, $\text{Hom}(M, K + L) = \text{Hom}(M, K) + \text{Hom}(M, L)$.
2. For every $I \leq \text{Hom}(M, N)$, $I = \text{Hom}(M, MI)$.
3. If $K \leq N$, then $K_M \beta^* K$ and $K_M \overset{cs}{\rightarrow} K$ in N.
4. Let $K \leq L \leq N$.
 a) If $K \overset{cs}{\rightarrow} L$ in N, then $\text{Hom}(M, K) \overset{cs}{\rightarrow} \text{Hom}(M, L)$ in $\text{Hom}(M, N)$.

(1) For every $K, L \leq N$, $\text{Hom}(M, K + L) = \text{Hom}(M, K) + \text{Hom}(M, L)$.
(2) For every $I \leq \text{Hom}(M, N)$, $I = \text{Hom}(M, MI)$.
(3) If $K \leq N$, then $K_M \beta^* K$ and $K_M \overset{cs}{\rightarrow} K$ in N.
(4) Let $K \leq L \leq N$.
 a) If $K \overset{cs}{\rightarrow} L$ in N, then $\text{Hom}(M, K) \overset{cs}{\rightarrow} \text{Hom}(M, L)$ in $\text{Hom}(M, N)$.
b) If $K\beta^*L$, then $\text{Hom}(M, K)\beta^*\text{Hom}(M, L)$.

(5) Let $A, B \leq \text{Hom}(M, N)$.
 a) If $A \overset{cs}{\hookrightarrow} B$ in $\text{Hom}(M, N)$, then $MA \overset{cs}{\hookrightarrow} MB$ in N.
 b) If $A\beta^*B$, then $(MA)\beta^*(MB)$.

(6) If $K \leq \text{cs} N$, then $K \in \text{Gen}(M)$.

Proof. (1) and (2) have been shown in [17, 18.4].

(3) For two submodules X and Y of M with $X \leq Y$, it is clear that $X\beta^*Y$ and $X \overset{cs}{\hookrightarrow} Y$ in M are equivalent. Let $K \leq N$ and $N = K + L$ for some $L \leq N$. Since $N \in \text{Gen}(M)$, we can obtain that

$$N = M\text{Hom}(M, N) = M\text{Hom}(M, K) + M\text{Hom}(M, L) \subseteq K_M + L$$

by (1). It follows that $N = K_M + L$. By Lemma 2.3, we can obtain that $K_M \overset{cs}{\hookrightarrow} K$ in N.

(4) Let $K \overset{cs}{\hookrightarrow} L$ in N (or $K\beta^*L$, respectively) and $\text{Hom}(M, N) = \text{Hom}(M, L) + A$ for some $A \leq \text{Hom}(M, N)$. Since $N \in \text{Gen}(M)$, we can obtain that

$$N = M\text{Hom}(M, N) = M\text{Hom}(M, L) + MA \subseteq L + MA$$

by (1). We note that $MA \leq N$. Then $N = L + MA$.

(a) Since $K \overset{cs}{\hookrightarrow} L$ in N, by Lemma 2.3, we have $N = K + MA$. By (1) and (2),

$$\text{Hom}(M, N) = \text{Hom}(M, K) + \text{Hom}(M, MA) \ldots \text{(*)}$$

$$= \text{Hom}(M, K) + A.$$

(b) By Lemma 2.4, $N = L + MA$ implies that $N = K + MA$. By (1), (2) and the equation (*), we can obtain that

$$\text{Hom}(M, N) = \text{Hom}(M, K) + \text{Hom}(M, MA)$$

$$= \text{Hom}(M, K) + A.$$

Next, we assume that $\text{Hom}(M, N) = \text{Hom}(M, K) + H$ for some $H \leq \text{Hom}(M, N)$. Since $N \in \text{Gen}(M)$, we can obtain that

$$N = M\text{Hom}(M, N) = M\text{Hom}(M, K) + MH.$$

By Lemma 2.4, we have $N = L + MH$. Then, by (1) and (2),

$$\text{Hom}(M, N) = \text{Hom}(M, L) + \text{Hom}(M, MH)$$

$$= \text{Hom}(M, L) + H.$$

They imply that $\text{Hom}(M, K)\beta^*\text{Hom}(M, L)$ by [3, Theorem 2.3].

(5) We only give a proof of (a). Let $A \overset{cs}{\hookrightarrow} B$ in $\text{Hom}(M, N)$ and let $N =$
MB + L for some L ≤ N. By (1) and (2),
\[\text{Hom}(M, N) = \text{Hom}(M, MB) + \text{Hom}(M, L) = B + \text{Hom}(M, L). \]

Since \(A \xrightarrow{cs} B \) in Hom\((M, N)\) and \(N \in \text{Gen}(M) \), we can obtain that \(\text{Hom}(M, N) = A + \text{Hom}(M, L) \) and so
\[N = M\text{Hom}(M, N) = M(A + \text{Hom}(M, L)) \subseteq MA + L \subseteq MA + L. \]

Thus \(N = MA + L \). By Lemma 2.3, \(MA \xrightarrow{cs} MB \) in \(N \).

(6) Assume that \(K \leq_{cc} N \). Since \(K_M \xrightarrow{cs} K \) in \(N \) by (3), we obtain \(K = K_M \), that is \(K \in \text{Gen}(M) \). □

The proof of the following theorem can be seen also from [5, Corollary 4.2], and we give the proof for the sake of completeness.

Theorem 2.6. Let \(M \) be a finitely generated self-projective \(R \)-module and \(N \in \text{Gen}(M) \). If \(K \) is a co-closed submodule of \(N \), then \(\text{Hom}(M, K) \) is coclosed in \(\text{Hom}(M, N) \), and, conversely, if \(A \) is a co-closed submodule of \(\text{Hom}(M, K) \) in \(\text{Hom}(M, N) \) then \(MA \) is coclosed in \(N \). Furthermore, there exists a bijection between the direct summands of \(N \) and the direct summands of \(\text{Hom}(M, N) \).

Proof. Let \(K \) be a coclosed submodule of \(N \) and \(A \xrightarrow{cs} \text{Hom}(M, K) \) in \(\text{Hom}(M, N) \). By Proposition 2.5 (5), \(MA \xrightarrow{cs} M\text{Hom}(M, K) = K_M \) in \(N = M\text{Hom}(M, N) \). By Proposition 2.5 (3) and [4, 3.2], we can obtain that \(MA \xrightarrow{cs} K \) in \(N \). Since \(K \) is a coclosed submodule of \(N \), \(MA = K_M = K \) and so \(\text{Hom}(M, K) = \text{Hom}(M, MA) = A \) by Proposition 2.5 (3). This implies that \(\text{Hom}(M, K) \) is a coclosed submodule of \(\text{Hom}(M, N) \).

For converse, let \(A \) be a coclosed submodule of \(\text{Hom}(M, N) \) and \(L \xrightarrow{cs} MA \) in \(N \). By Proposition 2.5 (3) and (4), \(\text{Hom}(M, L) \xrightarrow{cs} A = \text{Hom}(M, MA) \) in \(\text{Hom}(M, N) \). Since \(A \) is a coclosed submodule of \(\text{Hom}(M, N) \), we can obtain that \(A = \text{Hom}(M, L) \) and so \(MA = M\text{Hom}(M, L) = L_M \subseteq L \). It follows that \(L = MA \). Hence \(MA \) is a coclosed submodule of \(N \). □

Corollary 2.7. Let \(M \) be a finitely generated, self-projective left \(R \)-module and \(N \in \text{Gen}(M) \).

1. \(\text{Hom}(M, N) \) is supplemented if and only if \(N \) is supplemented.
2. \(\text{Hom}(M, N) \) is \(\oplus \)-supplemented if and only if \(N \) is \(\oplus \)-supplemented.
3. \(\text{Hom}(M, N) \) is amply supplemented if and only if \(N \) is amply supplemented.
Proof. (1) It follows from [5, Corollary 4.1(ii)]. (2) This is similar to (3).
(3) Assume that N is an amply supplemented module and let $I \leq \text{Hom}(M, N)$.
By [10, Proposition 1.5], let K be a coclosure of MI in N, i.e., $K \overset{cs}{\rightarrow} MI$ in N and K is coclosed in N. By hierarchy, there exists a supplemented submodule X of K such that $X \overset{cs}{\rightarrow} K$ in N. It follows that $X = K$, and so K is supplemented and $K \in \text{Gen}(M)$ by Proposition 2.5(6). By (1), $\text{Hom}(M, K)$ is supplemented. Now, by Proposition 2.5(2) and (4), we can obtain that $\text{Hom}(M, K) \overset{cs}{\rightarrow} \text{Hom}(M, MI) = I$ in $\text{Hom}(M, N)$. This implies that $\text{Hom}(M, N)$ is amply supplemented.

For converse, assume that $\text{Hom}(M, N)$ is amply supplemented. Let $L \leq N$. Then $\text{Hom}(M, L) \leq \text{Hom}(M, N)$ and we assume that I is a coclosure of $\text{Hom}(M, L)$ in $\text{Hom}(M, N)$ by [10, Proposition 1.5]. Hence $I \overset{cs}{\rightarrow} \text{Hom}(M, L)$ in $\text{Hom}(M, N)$ and I is coclosed in $\text{Hom}(M, N)$. By Theorem 2.6, NI is coclosed in N. Since $MI \in \text{Gen}(M)$ by Proposition 2.5(6), we can obtain that there is a supplemented submodule I' of I such that $I' \overset{cs}{\rightarrow} I$ in $\text{Hom}(M, N)$. Then $I' = I$ and $I = \text{Hom}(M, MI)$ is supplemented. By Theorem 2.6, MI is supplemented. On the other hand, we can obtain that $MI \overset{cs}{\rightarrow} M\text{Hom}(M, L) = L_M$ in N by Proposition 2.5(5). But we know that $L_M \overset{cs}{\rightarrow} L$ in N by [4, 3.2]. This implies that N is amply supplemented. □

We have the following corollary.

Corollary 2.8. Let H be a hollow projective module and K be a finitely H-generated module. Then K is a supplemented module and $\text{Hom}(H, K)$ is supplemented.

In [3], the authors used the β^* equivalence relation to define the class of G^*-lifting modules and the class of G^*-supplemented modules. M is called G^*-lifting if, for each X of M, there exists a direct summand D of M such that $X\beta^*D$, and M is G^*-supplemented if, for each X submodule of M, there exists a supplement S of M such that $X\beta^*S$.

By [3, Theorem 3.6], we have the following hierarchy:

lifting \Rightarrow G^* - lifting $\iff H$ - supplemented \Rightarrow G^* - supplemented \Rightarrow supplemented.

Theorem 2.9. Let M be a finitely generated self-projective R-module and $N \in \text{Gen}(M)$. Then;

(a) N is G^*-lifting (H-supplemented) if and only if $\text{Hom}_R(M, N)$ is G^*-lifting (H-supplemented) as an E_M-module.

(b) N is G^*-supplemented if and only if $\text{Hom}_R(M, N)$ is G^*-supplemented as an E_M-module.
Proof. (a) This is similar to (b).

(b) Assume that N is a G^*-supplemented module. Let $I \subseteq \text{Hom}_R(M, N)$ be an E_M-submodule. Then MI is a submodule of N. Since N is G^*-supplemented, there exists a supplement submodule, say A, in N such that $A^*(MI)$. Hence there exists $W \leq N$ such that $N = A + W$ and A is minimal with respect to this property. We show that $\text{Hom}(M, A)$ is a supplement of $\text{Hom}(M, W)$ in $\text{Hom}(M, N)$ and $\text{Hom}(M, A)^* I$. By Proposition 2.5,$$
\text{Hom}(M, N) = \text{Hom}(M, A + W) = \text{Hom}(M, A) + \text{Hom}(M, W).
$$Let $\text{Hom}(M, N) = S + \text{Hom}(M, W)$ for $S \subseteq \text{Hom}(M, A)$. Then$$N = M\text{Hom}(M, N) = M(S + \text{Hom}(M, W)) = MS + M\text{Hom}(M, W) \subseteq MS + W_M \subseteq N$$by Proposition 2.5. Minimality of A implies that $A = MS$. By Proposition 2.5, we obtain that $\text{Hom}(M, A) = S$. Hence $\text{Hom}(M, A)$ is a supplement of $\text{Hom}(M, W)$ in $\text{Hom}(M, N)$. On the other hand, $A^*(MI)$ implies that $\text{Hom}(M, A)^* \text{Hom}(M, MI) = I$ by Proposition 2.5. Hence $\text{Hom}_R(M, N)$ is G^*-supplemented as an E_M-module.

Conversely, assume that $\text{Hom}_R(M, N)$ is G^*-supplemented as an E_M-module. Let $X \leq N$. Then $\text{Hom}(M, X) \subseteq \text{Hom}(M, N)$. Since $\text{Hom}_R(M, N)$ is G^*-supplemented as an E_M-module, there exists a supplement submodule, say I, in $\text{Hom}(M, N)$ such that $I^* \text{Hom}(M, X)$. Hence there exists $Y \leq \text{Hom}(M, N)$ such that $\text{Hom}(M, N) = I + Y$ and I is minimal with respect to this property. We show that MI is a supplement of MY and $(MI)^* X$. By Proposition 2.5,$$\begin{align*}
N &= M\text{Hom}(M, N) = M(I + Y) \\
&= MI + MY.
\end{align*}$$Let $N = K + MY$ for $K \subseteq MI$. Then$$\begin{align*}
N &= M\text{Hom}(M, N) = M\text{Hom}(M, K + MY) \\
&= M\text{Hom}(M, K) + M\text{Hom}(M, MY) \\
&\subseteq K_M + MY \subseteq K + MY \subseteq N
\end{align*}$$by Proposition 2.5. Minimality of MI implies that $K = MI$. By Proposition 2.5, we can also obtain that $(MI)^* X$. Hence N is G^*-supplemented. □

Recall that an R-module M is said to be cosemisimple if all simple modules are M-injective. By [4, 3.8], M is a cosemisimple module iff every submodule of M is coclosed in M.

Theorem 2.10. Let M be a a finitely generated, self-projective R-module. Then the following cases are equivalent for the module $N \in \text{Gen}(M)$.
An R-module M is said to be refinable if, for any submodules U, V of M with $M = U + V$, there exists a direct summand D of M with $D \subseteq U$ and $M = D + V$ ([4]). A ring R is called left refinable if RR is a refinable module.

Theorem 2.11. Let M be a finitely generated, self-projective left R-module and $N \in \text{Gen}(M)$. Then:

1. $\text{Hom}(M, N)$ is refinable if and only if N is refinable.
2. If N is a refinable module, then the following are equivalent.
 - (i) N is \oplus-supplemented
 - (ii) $\text{Hom}(M, N)$ is \oplus-supplemented
 - (iii) N is supplemented.
 - (iv) $\text{Hom}(M, N)$ is supplemented.

Proof. We only prove (1). The rest is clear.

(1) (\Rightarrow) Let $U, V \leq N$ with $N = U + V$. Then

\[
\text{Hom}(M, N) = \text{Hom}(M, U + V) = \text{Hom}(M, U) + \text{Hom}(M, V)
\]

by Proposition 2.5. Since $\text{Hom}(M, N)$ is refinable as a left E_M-module, there exists a direct summand D of $\text{Hom}(M, N)$ such that $\text{Hom}(M, N) = D + \text{Hom}(M, V)$. By Theorem 2.6, we can obtain that MD is a direct summand of N. Now, it is easy to see that $N = MD + V$.

(\Leftarrow) Assume that N is a refinable module. Let $SI_S J \subseteq \text{Hom}(M, N)$ with $\text{Hom}(M, N) = I + J$. By Proposition 2.5, we have $I = \text{Hom}(M, MI)$ and $J = \text{Hom}(M, MJ)$. We also note that MI and MJ are submodule of N and $N = MI + MJ$. Since N is a refinable module, there exists a direct summand D of N such that $N = D + MJ$. By Theorem 2.6, we can obtain that $\text{Hom}(M, D)$ is a direct summand of $\text{Hom}(M, N)$. Now, it is easy to see that $\text{Hom}(M, N) = \text{Hom}(M, D) + J$. □

As a consequence, we have the following result (see [4, 11.28]):

Corollary 2.12. Let M be a finitely generated, self-projective left R-module. Then the following cases are equivalent.

1. E_M is left refinable.
2. M is refinable.

Recall that an R-module M is said to be a unique coclosure module, denoted by UCC, if every submodule of M has a unique coclosure in M (see [7]). By [4, 21.3], M is a UCC module if and only if, given $N \subseteq M$, there exists a coclosure N' of N such that $N' \subseteq L$ whenever $L \subseteq N$ in M.
Theorem 2.13. Let M be a finitely generated, self-projective left R-module and $N \in \text{Gen}(M)$. Then the following cases are equivalent.

(1) $\text{Hom}(M, N)$ is a UCC module.

(2) N is a UCC module.

Proof. (1) \Rightarrow (2) Let $A \leq N$. Then $\text{Hom}(M, A) \leq \text{Hom}(M, N)$. Since $\text{Hom}(M, N)$ is a UCC module, there exists a coclosure, say K, of $\text{Hom}(M, A)$ such that $K \subseteq L$ whenever $L \overset{cs}{\rightarrow} \text{Hom}(M, A)$ in $\text{Hom}(M, N)$, i.e. $K \overset{cs}{\rightarrow} \text{Hom}(M, A)$ in $\text{Hom}(M, N)$ and K is coclosed in $\text{Hom}(M, N)$. By Proposition 2.5 (5) and Theorem 2.6, we can obtain that $MK \overset{cs}{\rightarrow} A$ in N and MK is coclosed in N. It implies that MK is a coclosure of A in N.

(2) \Rightarrow (1) Let $S = \text{Hom}(M, MI) \subset \text{Hom}(M, N)$. Then, by Proposition 2.5 (2), $I = \text{Hom}(M, MI)$ and MI is a submodule of N. Since N is a UCC-module, there exists a coclosure K of MI in N such that $K \subseteq L$ whenever $L \overset{cs}{\rightarrow} MI$ in N. Since K is a coclosure of MI in N, we have $K \overset{cs}{\rightarrow} MI$ in N and K is coclosed in N. By Proposition 2.5 (4) and Theorem 2.6, we can obtain that $MK \overset{cs}{\rightarrow} \text{Hom}(M, MI) = I$ in $\text{Hom}(M, N)$ and $\text{Hom}(M, K)$ is coclosed in $\text{Hom}(M, N)$. They imply that $\text{Hom}(M, K)$ is a coclosure of I in $\text{Hom}(M, N)$.

3. The Substructure $\nabla(M, N)$

In this section, we study the concept of the substructure $\nabla(M, N)$.

Theorem 3.1. Let M be a finitely generated, self-projective left R-module and $N \in \text{Gen}(M)$. If $\text{Hom}(M, N)$ is supplemented as a left E_M-module, then $\text{Hom}(M, N)/\nabla(M, N)$ is semisimple as a left E_M-module.

Proof. Let $\overline{A} = A/\nabla(M, N) \leq \text{Hom}(M, N)/\nabla(M, N)$. There exists $B \leq \text{Hom}(M, N)$ such that $\text{Hom}(M, N) = A + B$ and $A \cap B \ll B$. Then

$$\text{Hom}(M, N)/\nabla(M, N) = A/\nabla(M, N) + (B + \nabla(M, N))/\nabla(M, N).$$

For any $f \in A \cap B$, we note that $E_Mf \leq A \cap B$ and so $E_Mf \ll \text{Hom}(M, N)$. Now we show that $f \in \nabla(M, N)$. Let $H \leq N$ with $N = \text{Im}f + H$. By Proposition 2.5 (1), we can obtain that

$$\text{Hom}(M, N) = \text{Hom}(M, f(M)) + \text{Hom}(M, H).$$
It follows that $E_M f + \text{Hom}(M, H) = \text{Hom}(M, N)$ and hence $\text{Hom}(M, H) = \text{Hom}(M, N)$. On the other hand, $N = M\text{Hom}(M, N) = M\text{Hom}(M, H) \leq H$ since $N \in \text{Gen}(M)$. Therefore $N = H$, i.e. $\text{Im} f \ll N$. Hence $f \in \nabla(M, N)$.

Thus

$$\text{Hom}(M, N) / \nabla(M, N) = A / \nabla(M, N) \oplus (B + \nabla(M, N)) / \nabla(M, N),$$

as desired. \qed

Recall that;

(D2) For any submodule A of M for which M/A is isomorphic to a direct summand of M, then A is a direct summand of M.

(GD2) For any submodule A of M for which M/A is isomorphic to M, then A is a direct summand of M.

A module M is called discrete (respectively, generalized discrete) if M satisfies (D1) and (D2) (respectively, (D1) and (GD2)). Let p be a prime number. Then $M_{\mathbb{Z}} = \mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$ is generalized discrete but not discrete.

Lemma 3.2. ([9, Lemma 3.1]) Let M and N be R-modules. If N satisfies (GD2), then $\nabla(M, N) \subset J[M, N]$.

Proof. Let $\beta \in \nabla(M, N)$ and $f \in \text{Hom}(N, M)$. Then

$$\text{Im} \beta + \text{Im}(1_N - \beta f) = N.$$

Let $\eta := 1_N - \beta f$. Since $\text{Im} \beta \ll N$, we have $\text{Im}(\eta) = N$. It follows that $N \cong N / \text{Ker}(\eta)$. By (GD2), we have $\text{Ker}(\eta)$ is a direct summand of N. Since $\text{Ker}(\eta) \leq \text{Im}(\beta)$, we can obtain that $\text{Ker}(\eta) \ll N$. Hence $\text{Ker}(\eta) = 0$. Now η is an isomorphism. Thus $\beta \in J[M, N]$. \qed

The next result extends Mohammed and Müller [14, Theorem 5.4].

Corollary 3.3. Let M be a finitely generated, self-projective left R-module and $N \in \text{Gen}(M)$. If $\text{Hom}(M, N)$ is supplemented and N satisfies GD2 then $\text{Hom}(M, N) / J[M, N]$ is semisimple as a left E_M-module.

Proof. It is clear from Theorem 3.1 and Lemma 3.2. \qed

Acknowledgment. The authors would like to give their special thanks to the referee for his/her valuable suggestions that have improved the quality of the presentation of this paper. Also it is a pleasure to thank Prof. G.F. Birkenmeier for his helpful comments.
REFERENCES

Arda Köräp
DEPARTMENT OF MATHEMATICS,
GEBZE INSTITUTE OF TECHNOLOGY,
GEBZE- KOCAEI, 41400 TURKEY

Truong Cong Quynh
DEPARTMENT OF MATHEMATICS
DANANG UNIVERSITY
VIETNAM

e-mail address: tcquynh@dce.udn.vn
Serap Şahinkaya
Department of Mathematics,
Gebze Institute of Technology,
Gebze- Kocaeli, 41400 Turkey

M. Tamer Koşan
Department of Mathematics,
Gebze Institute of Technology,
Gebze- Kocaeli, 41400 Turkey

(Received December 6, 2012)
(Revised May 8, 2013)