SUPPLEMENTED MORPHISMS

ARDA KÖR, TRUONG CONG QUYNH, SERAP ŞAHINKAYA and MUHAMMET TAMER KOŞAN

ABSTRACT. In the present paper, left R-modules M and N are studied under the assumptions that $\operatorname{Hom}_R(M, N)$ is supplemented. It is shown that $\operatorname{Hom}(M, N)$ is $(\oplus, \mathcal{G}^*, \operatorname{amply})$ -supplemented if and only if N is $(\oplus, \mathcal{G}^*, \operatorname{amply})$ -supplemented. Some applications to cosemisimple modules, refinable modules and UCC-modules are presented. Finally, the relationship between the Jacobson radical J[M, N] of $\operatorname{Hom}_R(M, N)$ and $\operatorname{Hom}_R(M, N)$ is supplemented are investigated. Let M be a finitely generated, self-projective left R-module and $N \in Gen(M)$. We show that if $\operatorname{Hom}(M, N)$ is supplemented and N has GD2 then $\operatorname{Hom}(M, N)/J(M, N)$ is semisimple as a left E_M -module.

1. INTRODUCTION

Throughout this article, all rings are associative with unity, and all modules are unital left modules. Let R be a ring. If $_RM$ and $_RN$ are modules, we use the following notations: $E_M = \text{End}(M_R)$. If $N \subseteq M$, then $N \leq M$, $N \ll M$, $N \leq_d M$ and Rad(M) denote N is a submodule of M, N is a small submodule of M, N is a direct summand of M and the Jacobson radical of M, respectively.

We recall the fundamental terminology for our paper. Let U be a submodule of an R-module M. A submodule V of M is called *supplement* of U in M if V is a minimal element in the set of submodules L of M with U + L = M. V is a supplement of U if and only if U + V = M and $U \cap V$ is small in V. An R-module M is *supplemented* if every submodule of Mhas a supplement in M. The module M is *amply supplemented* if, for any submodules A and B of M with M = A + B, there exists a supplement Pof A such that $P \leq B$.

For the other definitions in this note, we refer to [1], [14] and [17].

In the present paper, we establish an order-preserving bijective correspondence between the sets of coclosed left R-submodules of N and coclosed left E_M -submodules of $\operatorname{Hom}_R(M, N)$. This concept is extremely useful in analyzing the structure of the endomorphism ring of a supplemented module. For instance, by definitions of supplemented modules, one easily checks that there is no any direct implication between the notions supplemented modules and when $\operatorname{Hom}_R(M, N)$ is supplemented. But we prove that if

Mathematics Subject Classification. 16D10, 16P70.

Key words and phrases. regular module, supplemented module.

M is a finitely generated, self-projective left R-module and $N \in Gen(M)$, then Hom(M, N) is $(\oplus, amply, \mathcal{G}^*)$ -supplemented if and only if N is $(\oplus, amply, \mathcal{G}^*)$ -supplemented.

Beidar and Kasch [2] defined and studied substructures, the singular ideal $\Delta(M, N)$ and the co-singular ideal $\nabla(M, N)$, of $\operatorname{Hom}_R(M, N)$ such as:

$$\Delta(M,N) = \{ f \in \operatorname{Hom}_R(M,N) : Ker(f) \leq^e M \}$$

$$\nabla(M,N) = \{ f \in \operatorname{Hom}_R(M,N) : Im(f) \ll N \}.$$

The other substructure, radical, of Hom(M, N) was introduced and studied by Kasch-Mader [11] and Nicholson-Zhou [15]. They have shown that:

$$J(M,N) = \{ \alpha \in \operatorname{Hom}_R(M,N) : 1_M - \alpha\beta \in Aut(M), \forall\beta \in \operatorname{Hom}_R(N,M) \}$$

= $\{ \alpha \in \operatorname{Hom}_R(M,N) : 1_N - \beta\alpha \in Aut(N), \forall\beta \in \operatorname{Hom}_R(N,M) \}$
= $\{ \alpha \in \operatorname{Hom}_R(M,N) : \alpha\beta \in J(E_M), \forall\beta \in \operatorname{Hom}_R(N,M) \}$
= $\{ \alpha \in \operatorname{Hom}_R(M,N) : \beta\alpha \in J(E_N), \forall\beta \in \operatorname{Hom}_R(N,M) \}.$

Thus, we have $J[M, M] = J(E_M)$, which is similar to well known notion J[R, R] = J(R). For the other new properties of these substructures, we refer to [12], [13] and [18]. Let M be a finitely generated, self-projective left R-module and $N \in Gen(M)$. We show that if $\operatorname{Hom}_R(M, N)$ is supplemented, then $\operatorname{Hom}_R(M, N)/\nabla(M, N)$ is semisimple as a left E_M -module.

2. Results.

Let M and N be R-modules. If there is an epimorphism $f: M^{(\Lambda)} \longrightarrow N$ for some set Λ , then N is said to be an M-generated module, denoted by $N \in Gen(M)$, (see [17]). We denote

$$N_M = M \operatorname{Hom}(M, N) = \{ \sum_{i=1}^k m_i f_i : m_i \in M, f_i \in \operatorname{Hom}(M, N) \}.$$

Clearly, if $N_M = N$ then N is M-generated.

Lemma 2.1. (1) Let N and M be two left R-modules. Then N is an M-generated R-module if and only if, for all non-zero R-homomorphism $f: N \to K$, there exists $h: M \to N$ such that $hf \neq 0$.

(2) If N_1 and N_2 are *M*-generated modules with $N = N_1 + N_2$, then *N* is also *M*-generated.

Proof. Clear.

The class of supplemented modules under Hom need not closed under taking factor modules, in general.

Proposition 2.2. Let M be a P-projective module and $P \in Gen(M)$. If Hom(M, P) is supplemented then every homomorphic image of P is again supplemented under Hom.

Proof. Let X be a submodule of P. We will prove that $\operatorname{Hom}(M, P/X)$ is a supplemented E_M -module. Let A be a submodule of $\operatorname{Hom}(M, P/X)$. For every element $f \in A$, there exists $g \in \operatorname{Hom}(M, P)$ such that gs = f, where $s : P \to P/X$ is the canonical projection. Let B be the set of all $h \in \operatorname{Hom}(M, P)$ such that h extends an elements in A. It is a simple matter to prove that B is a submodule of $\operatorname{Hom}(M, P)$. Since $\operatorname{Hom}(M, P)$ is supplemented, there exists a submodule C of $\operatorname{Hom}(M, P)$ such that C is minimal for the property $\operatorname{Hom}(M, P) = B + C$. Let $D = \{fs \mid f \in C\}$. It is clear that D is a submodule of $\operatorname{Hom}(M, P/X)$ and $\operatorname{Hom}(M, P/X) =$ A + D. Let E be a submodule of $\operatorname{Hom}(M, P/X)$ contained in D such that $\operatorname{Hom}(M, P/X) = A + E$. Therefore

$$\operatorname{Hom}(M, P) = \operatorname{Hom}(M, X) + B + F,$$

where $F = \{f \in C \mid fs \in E\}$ and it is a submodule of C. But $\operatorname{Hom}(M, X) \leq B$. Then $\operatorname{Hom}(M, P) = B + F$. Since $F \leq C$, we have F = C. Consequently, D is a supplement of A in $\operatorname{Hom}(M, P/X)$. Hence $\operatorname{Hom}(M, P/X)$ is a supplemented E_M -module.

Let $K \subset L \subset M$. Recall that K is said to be *cosmall* of L in M if $L/K \ll M/K$ and we denote it by $K \stackrel{cs}{\hookrightarrow} L$. A submodule L of the module M is called *co-closed* in M if $K \stackrel{cs}{\hookrightarrow} L$ implies K = L.

Lemma 2.3. Let $K \subset L \subset M$. Then $K \stackrel{cs}{\hookrightarrow} L$ if and only if, for any submodule X of M, M = L + X implies M = K + X.

Proof. It is well known.

Let M be an R-module and $X, Y \leq M$. In [3], the notion of β^* relation on submodules X, Y of M, denoted by $X\beta^*Y$, is defined such as $X\beta^*Y$ if and only if $(X + Y)/Y \ll M/Y$ and $(X + Y)/X \ll M/X$. We notice that β^* is an equivalence relation by [3, Lemma 2.2].

Lemma 2.4. Let M be an R-module and $X, Y \leq M$. Then $X\beta^*Y$ if and only if for each $A \leq M$ such that M = X + Y + A then M = X + A and M = Y + A

Proof. See [3, Theorem 2.3].

Proposition 2.5. Let M be a finitely generated self-projective R-module and $N \in Gen(M)$. Then the following conditions hold.

(1) For every $K, L \leq N$, $\operatorname{Hom}(M, K + L) = \operatorname{Hom}(M, K) + \operatorname{Hom}(M, L)$.

- (2) For every $I \leq \operatorname{Hom}(M, N)$, $I = \operatorname{Hom}(M, MI)$.
- (3) If $K \leq N$, then $K_M \beta^* K$ and $K_M \stackrel{cs}{\hookrightarrow} K$ in N.

(4) Let
$$K \leq L \leq N$$
.
a) If $K \stackrel{cs}{\hookrightarrow} L$ in N , then $\operatorname{Hom}(M, K) \stackrel{cs}{\hookrightarrow} \operatorname{Hom}(M, L)$ in $\operatorname{Hom}(M, N)$.

b) If $K\beta^*L$, then $\operatorname{Hom}(M, K)\beta^*\operatorname{Hom}(M, L)$.

(5) Let A, B ≤ Hom(M, N).
a) If A → B in Hom(M, N), then MA → MB in N.
b) If Aβ*B, then (MA)β*(MB).
(6) If K ≤_{cc} N, then K ∈ Gen(M).

Proof. (1) and (2) have been shown in [17, 18.4].

(3) For two submodules X and Y of M with $X \leq Y$, it is clear that $X\beta^*Y$ and $X \stackrel{cs}{\hookrightarrow} Y$ in M are equivalent. Let $K \leq N$ and N = K + L for some $L \leq N$. Since $N \in Gen(M)$, we can obtain that

$$N = M \operatorname{Hom}(M, N)$$

= M Hom(M, K) + M Hom(M, L) \subset K_M + L

by (1). It follows that $N = K_M + L$. By Lemma 2.3, we can obtain that $K_M \stackrel{cs}{\hookrightarrow} K$ in N.

(4) Let $K \xrightarrow{cs} L$ in N (or $K\beta^*L$, respectively) and Hom(M, N) = Hom(M, L) + A for some $A \leq \text{Hom}(M, N)$. Since $N \in Gen(M)$, we can obtain that

$$N = M \operatorname{Hom}(M, N)$$

= M Hom(M, L) + MA \subset L + MA

by (1). We note that $MA \leq N$. Then N = L + MA. (a) Since $K \stackrel{cs}{\hookrightarrow} L$ in N, by Lemma 2.3, we have N = K + MA. By (1) and (2),

$$\operatorname{Hom}(M, N) = \operatorname{Hom}(M, K) + \operatorname{Hom}(M, MA) \dots (*)$$
$$= \operatorname{Hom}(M, K) + A.$$

(b)By Lemma 2.4, N = L + MA implies that N = K + MA. By (1),(2) and the equation (*), we can obtain that

$$\operatorname{Hom}(M, N) = \operatorname{Hom}(M, K) + \operatorname{Hom}(M, MA)$$
$$= \operatorname{Hom}(M, K) + A.$$

Next, we assume that $\operatorname{Hom}(M, N) = \operatorname{Hom}(M, K) + H$ for some $H \leq \operatorname{Hom}(M, N)$. Since $N \in \operatorname{Gen}(M)$, we can obtain that

$$N = M \operatorname{Hom}(M, N) = M \operatorname{Hom}(M, K) + M H.$$

By Lemma 2.4, we have N = L + MH. Then, by (1) and (2),

$$\operatorname{Hom}(M, N) = \operatorname{Hom}(M, L) + \operatorname{Hom}(M, MH)$$
$$= \operatorname{Hom}(M, L) + H.$$

They imply that $\operatorname{Hom}(M, K)\beta^*\operatorname{Hom}(M, L)$ by [3, Theorem 2.3]. (5) We only give a proof of (a). Let $A \stackrel{cs}{\hookrightarrow} B$ in $\operatorname{Hom}(M, N)$ and let N = MB + L for some $L \leq N$. By (1) and (2),

$$\operatorname{Hom}(M, N) = \operatorname{Hom}(M, MB) + \operatorname{Hom}(M, L)$$
$$= B + \operatorname{Hom}(M, L).$$

Since $A \xrightarrow{cs} B$ in Hom(M, N) and $N \in Gen(M)$, we can obtain that Hom(M, N) = A + Hom(M, L) and so

$$N = M \operatorname{Hom}(M, N)$$

= $M(A + \operatorname{Hom}(M, L)) \subseteq MA + L_M \subseteq MA + L.$

Thus N = MA + L. By Lemma 2.3, $MA \stackrel{cs}{\hookrightarrow} MB$ in N. (6) Assume that $K \leq_{cc} N$. Since $K_M \stackrel{cs}{\hookrightarrow} K$ in N by (3), we obtain $K = K_M$, that is $K \in Gen(M)$

The proof of the following theorem can be seen also from [5, Corollary 4.2], and we give the proof for the sake of completeness.

Theorem 2.6. Let M be a finitely generated self-projective R-module and $N \in Gen(M)$. If K is a co-closed submodule of N, then Hom(M, K) is coclosed in Hom(M, N), and, conversely, if A is a co-closed submodule of Hom(M, K) in Hom(M, N) then MA is coclosed in N. Furthermore, there exists a bijection between the direct summands of N and the direct summands of Hom(M, N).

Proof. Let K be a coclosed submodule of N and $A \stackrel{cs}{\hookrightarrow} \operatorname{Hom}(M, K)$ in $\operatorname{Hom}(M, N)$. By Proposition 2.5 (5), $MA \stackrel{cs}{\hookrightarrow} M\operatorname{Hom}(M, K) = K_M$ in $N = M\operatorname{Hom}(M, N)$. By Proposition 2.5 (3) and [4, 3.2], we can obtain that $MA \stackrel{cs}{\hookrightarrow} K$ in N. Since K is a coclosed submodule of N, $MA = K_M = K$ and so $\operatorname{Hom}(M, K) = \operatorname{Hom}(M, MA) = A$ by Proposition 2.5 (3). This implies that $\operatorname{Hom}(M, K)$ is a coclosed submodule of $\operatorname{Hom}(M, N)$.

For converse, let A be a coclosed submodule of $\operatorname{Hom}(M, N)$ and $L \xrightarrow{cs} MA$ in N. By Proposition 2.5 (3) and (4), $\operatorname{Hom}(M, L) \xrightarrow{cs} A = \operatorname{Hom}(M, MA)$ in $\operatorname{Hom}(M, N)$. Since A is a coclosed submodule of $\operatorname{Hom}(M, N)$, we can obtain that $A = \operatorname{Hom}(M, L)$ and so $MA = M\operatorname{Hom}(M, L) = L_M \subseteq L$. It follows that L = MA. Hence MA is a coclosed submodule of N. \Box

Corollary 2.7. Let M be a finitely generated, self-projective left R-module and $N \in Gen(M)$.

(1) $\operatorname{Hom}(M, N)$ is supplemented if and only if N is supplemented.

(2) Hom(M, N) is \oplus -supplemented if and only if N is \oplus -supplemented.

(3) $\operatorname{Hom}(M, N)$ is amply supplemented if and only if N is amply supplemented.

Proof. (1) It follows from [5, Corollary 4.1(ii)]. (2) This is similar to (3). (3) Assume that N is an amply supplemented module and let $I \leq \text{Hom}(M, N)$. By [10, Proposition 1.5], let K be a coclosure of MI in N, i.e., $K \stackrel{cs}{\hookrightarrow} MI$ in N and K is coclosed in N. By hierarchy, there exists a supplemented submodule X of K such that $X \stackrel{cs}{\hookrightarrow} K$ in N. It follows that X = K, and so K is supplemented and $K \in Gen(M)$ by Proposition 2.5(6). By (1), Hom(M, K) is supplemented. Now, by Proposition 2.5(2) and (4), we can obtain that Hom $(M, K) \stackrel{cs}{\hookrightarrow}$ Hom(M, MI) = I in Hom(M, N). This implies that Hom(M, N) is amply supplemented.

For converse, assume that $\operatorname{Hom}(M, N)$ is amply supplemented. Let $L \leq N$. Then $\operatorname{Hom}(M, L) \leq \operatorname{Hom}(M, N)$ and we assume that I is a coclosure of $\operatorname{Hom}(M, L)$ in $\operatorname{Hom}(M, N)$ by [10, Proposition 1.5]. Hence $I \stackrel{cs}{\hookrightarrow} \operatorname{Hom}(M, L)$ in $\operatorname{Hom}(M, N)$ and I is coclosed in $\operatorname{Hom}(M, N)$. By Theorem 2.6, NI is coclosed in N. Since $MI \in Gen(M)$ by Proposition 2.5(6), we can obtain that there is a supplemented submodule I' of I such that $I' \stackrel{cs}{\hookrightarrow} I$ in $\operatorname{Hom}(M, N)$. Then I' = I and $I = \operatorname{Hom}(M, MI)$ is supplemented. By Theorem 2.6, MI is supplemented. On the other hand, we can obtain that $MI \stackrel{cs}{\hookrightarrow} M\operatorname{Hom}(M, L) = L_M$ in N by Proposition 2.5(5). But we know that $L_M \stackrel{cs}{\hookrightarrow} L$ in N by Proposition 2.5(3), whence $MI \stackrel{cs}{\hookrightarrow} L$ in N by [4, 3.2]. This implies that N is amply supplemented.

We have the following corollary.

Corollary 2.8. Let H be a hollow projective module and K be a finitely H-generated module. Then K is a supplemented module and Hom(H, K) is supplemented.

In [3], the authors used the β^* equivalence relation to define the class of \mathcal{G}^* -lifting modules and the class of \mathcal{G}^* -supplemented modules. M is called \mathcal{G}^* -lifting if, for each X of M, there exists a direct summand D of M such that $X\beta^*D$, and M is \mathcal{G}^* -supplemented if, for each X submodule of M, there exists a supplement S of M such that $X\beta^*S$.

By [3, Theorem 3.6], we have the following hierarchy:

lifting $\Rightarrow \mathcal{G}^*$ – lifting $\Leftrightarrow H$ – supplemented $\Rightarrow \mathcal{G}^*$ – supplemented \Rightarrow supplemented .

Theorem 2.9. Let M be a finitely generated self-projective R-module and $N \in Gen(M)$. Then;

(a) N is \mathcal{G}^* -lifting (H-supplemented) if and only if $\operatorname{Hom}_R(M, N)$ is \mathcal{G}^* -lifting (H-supplemented) as an E_M -module.

(b) N is \mathcal{G}^* -supplemented if and only if $\operatorname{Hom}_R(M, N)$ is \mathcal{G}^* -supplemented as an E_M -module.

Proof. (a) This is similar to (b).

(b) Assume that N is a \mathcal{G}^* -supplemented module. Let $I \subset \operatorname{Hom}_R(M, N)$ be an E_M -submodule. Then MI is a submodule of N. Since N is \mathcal{G}^* -supplemented, there exists a supplement submodule, say A, in N such that $A\beta^*(MI)$. Hence there exists $W \leq N$ such that N = A + W and A is minimal with respect to this property. We show that $\operatorname{Hom}(M, A)$ is a supplement of $\operatorname{Hom}(M, W)$ in $\operatorname{Hom}(M, N)$ and $\operatorname{Hom}(M, A)\beta^*I$. By Proposition 2.5,

$$\operatorname{Hom}(M, N) = \operatorname{Hom}(M, A + W) = \operatorname{Hom}(M, A) + \operatorname{Hom}(M, W).$$

Let
$$\operatorname{Hom}(M, N) = S + \operatorname{Hom}(M, W)$$
 for $S \subseteq \operatorname{Hom}(M, A)$. Then

$$N = M \operatorname{Hom}(M, N) = M(S + \operatorname{Hom}(M, W))$$

= $MS + M \operatorname{Hom}(M, W) \subseteq MS + W_M \subseteq N$

by Proposition 2.5. Minimality of A implies that A = MS. By Proposition 2.5, we obtain that $\operatorname{Hom}(M, A) = S$. Hence $\operatorname{Hom}(M, A)$ is a supplement of $\operatorname{Hom}(M, W)$ in $\operatorname{Hom}(M, N)$. On the other hand, $A\beta^*(MI)$ implies that $\operatorname{Hom}(M, A)\beta^*\operatorname{Hom}(M, MI) = I$ by Proposition 2.5. Hence $\operatorname{Hom}_R(M, N)$ is \mathcal{G}^* -supplemented as an E_M -module.

Conversely, assume that $\operatorname{Hom}_R(M, N)$ is \mathcal{G}^* -supplemented as an E_M module. Let $X \leq N$. Then $\operatorname{Hom}(M, X) \subset \operatorname{Hom}(M, N)$. Since $\operatorname{Hom}_R(M, N)$ is \mathcal{G}^* -supplemented as an E_M -module, there exists a supplement submodule, say I, in $\operatorname{Hom}(M, N)$ such that $I\beta^*\operatorname{Hom}(M, X)$. Hence there exists $Y \leq \operatorname{Hom}(M, N)$ such that $\operatorname{Hom}(M, N) = I + Y$ and I is minimal with respect to this property. We show that MI is a supplement of MY and $(MI)\beta^*X$. By Proposition 2.5;

$$N = M \operatorname{Hom}(M, N) = M(I + Y)$$
$$= MI + MY.$$

Let N = K + MY for $K \subseteq MI$. Then

$$N = M \operatorname{Hom}(M, N) = M \operatorname{Hom}(M, K + MY)$$

= $M \operatorname{Hom}(M, K) + M \operatorname{Hom}(M, MY)$
 $\subseteq K_M + MY \subseteq K + MY \subseteq N$

by Proposition 2.5. Minimality of MI implies that K = MI. By Proposition 2.5, we can also obtain that $(MI)\beta^*X$. Hence N is \mathcal{G}^* -supplemented. \Box

Recall that an R-module M is said to be *cosemisimple* if all simple modules are M-injective. By [4, 3.8], M is a cosemisimple module iff every submodule of M is coclosed in M.

Theorem 2.10. Let M be a finitely generated, self-projective R-module. Then the following cases are equivalent for the module $N \in Gen(M)$.

- (1) $\operatorname{Hom}(M, N)$ is cosemisimple.
- (2) N is cosemisimple.

An *R*-module *M* is said to be *refinable* if, for any submodules U, V of *M* with M = U + V, there exits a direct summand *D* of *M* with $D \subset U$ and M = D + V ([4]). A ring *R* is called *left refinable* if _R*R* is a refinable module.

Theorem 2.11. Let M be a finitely generated, self-projective left R-module and $N \in Gen(M)$. Then:

- (1) $\operatorname{Hom}(M, N)$ is refinable if and only if N is refinable.
- (2) If N is a refinable module, then the following are equivalent.
 - (i) N is \oplus -supplemented
 - (ii) Hom(M, N) is \oplus -supplemented
 - (iii) N is supplemented.
 - (iv) Hom(M, N) is supplemented.

Proof. We only prove (1). The rest is clear. (1)(: \Rightarrow) Let $U, V \leq N$ with N = U + V. Then

$$\operatorname{Hom}(M, N) = \operatorname{Hom}(M, U + V) = \operatorname{Hom}(M, U) + \operatorname{Hom}(M, V)$$

by Proposition 2.5. Since $\operatorname{Hom}(M, N)$ is refinable as a left E_M -module, there exists a direct summand D of $\operatorname{Hom}(M, N)$ such that $\operatorname{Hom}(M, N) = D + \operatorname{Hom}(M, V)$. By Theorem 2.6, we can obtain that MD is a direct summand of N. Now, it is easy to see that N = MD + V.

(:⇐)Assume that N is a refinable module. Let ${}_{S}I,{}_{S}J \subset \operatorname{Hom}(M,N)$ with $\operatorname{Hom}(M,N) = I + J$. By Proposition 2.5, we have $I = \operatorname{Hom}(M,MI)$ and $J = \operatorname{Hom}(M,MJ)$. We also note that MI and MJ are submodule of N and N = MI + MJ. Since N is a refinable module, there exists a direct summand D of N such that N = D + MJ. By Theorem 2.6, we can obtain that $\operatorname{Hom}(M,D)$ is a direct summand of $\operatorname{Hom}(M,N)$. Now, it is easy to see that $\operatorname{Hom}(M,N) = \operatorname{Hom}(M,D) + J$.

As a consequence, we have the following result (see [4, 11.28]):

Corollary 2.12. Let M be a finitely generated, self-projective left R-module. Then the following cases are equivalent.

- (1) E_M is left refinable.
- (2) M is refinable.

Recall that an *R*-module M is said to be a unique coclosure module, denoted by UCC, if every submodule of M has a unique coclosure in M (see [7]). By [4, 21.3], M is a UCC module if and only if, given $N \subseteq M$, there exists a coclosure N' of N such that $N' \subseteq L$ whenever $L \stackrel{cs}{\hookrightarrow} N$ in M.

Theorem 2.13. Let M be a finitely generated, self-projective left R-module and $N \in Gen(M)$. Then the following cases are equivalent. (1) Hom(M, N) is a UCC module.

(2) N is a UCC module.

Proof. (1) ⇒ (2) Let $A \leq N$. Then Hom $(M, A) \leq$ Hom(M, N). Since Hom(M, N) is a UCC module, there exists a coclosure, say K, of Hom(M, A) such that $K \subseteq L$ whenever $L \stackrel{cs}{\hookrightarrow}$ Hom(M, A) in Hom(M, N), i.e. $K \stackrel{cs}{\hookrightarrow}$ Hom(M, A) in Hom(M, N) and K is coclosed in Hom(M, N). By Proposition 2.5 (5) and Theorem 2.6, we can obtain that $MK \stackrel{cs}{\hookrightarrow} A$ in N and MK is coclosed in N. It implies that MK is a coclosure of A in N. On the other hand, $K \subseteq L$ implies $MK \subseteq ML$ and $L \stackrel{cs}{\hookrightarrow}$ Hom(M, A) in Hom(M, N) implies that $ML \stackrel{cs}{\hookrightarrow} A$ in N. Hence N is a UCC-module.

(2) \Rightarrow (1) Let ${}_{SI} \subset \operatorname{Hom}(M, N)$. Then, by Proposition 2.5 (2), $I = \operatorname{Hom}(M, MI)$ and MI is a submodule of N. Since N is a UCC-module, there exists a coclosure K of MI in N such that $K \subset L$ whenever $L \stackrel{cs}{\hookrightarrow} MI$ in N. Since K is a coclosure of MI in N, we have $K \stackrel{cs}{\hookrightarrow} MI$ in N and K is coclosed in N. By Proposition 2.5 (4) and Theorem 2.6, we can obtain that $MK \stackrel{cs}{\hookrightarrow} \operatorname{Hom}(M, MI) = I$ in $\operatorname{Hom}(M, N)$ and $\operatorname{Hom}(M, K)$ is coclosed in $\operatorname{Hom}(M, N)$. They imply that $\operatorname{Hom}(M, K)$ is a coclosure of I in $\operatorname{Hom}(M, N)$. On the other hand, $K \subset L$ implies that $\operatorname{Hom}(M, KI) = I$ in $\operatorname{Hom}(M, MI) \subset \operatorname{Hom}(M, L)$ and $L \stackrel{cs}{\hookrightarrow} MI$ in N implies that $ML \stackrel{cs}{\to} \operatorname{Hom}(M, MI) = I$ in $\operatorname{Hom}(M, N)$ by Proposition 2.5 (4). Hence $\operatorname{Hom}(M, N)$ is a UCC module. \Box

3. The substructure $\nabla(M, N)$

In this section, we study the concept of the substructure $\nabla(M, N)$.

Theorem 3.1. Let M be a finitely generated, self-projective left R-module and $N \in Gen(M)$. If Hom(M, N) is supplemented as a left E_M -module, then $Hom(M, N)/\nabla(M, N)$ is semisimple as a left E_M -module.

Proof. Let $\overline{A} = A/\nabla(M, N) \leq \text{Hom}(M, N)/\nabla(M, N)$. There exists $B \leq \text{Hom}(M, N)$ such that Hom(M, N) = A + B and $A \cap B \ll B$. Then

$$\operatorname{Hom}(M,N)/\nabla(M,N) = A/\nabla(M,N) + (B + \nabla(M,N))/\nabla(M,N).$$

For any $f \in A \cap B$, we note that $E_M f \leq A \cap B$ and so $E_M f \ll \text{Hom}(M, N)$. Now we show that $f \in \nabla(M, N)$. Let $H \leq N$ with N = Imf + H. By Proposition 2.5 (1), we can obtain that

$$\operatorname{Hom}(M, N) = \operatorname{Hom}(M, f(M)) + \operatorname{Hom}(M, H).$$

It follows that $E_M f + \text{Hom}(M, H) = \text{Hom}(M, N)$ and hence Hom(M, H) = Hom(M, N). On the other hand, $N = M\text{Hom}(M, N) = M\text{Hom}(M, H) \leq H$ since $N \in Gen(M)$. Therefore N = H, i.e. $Imf \ll N$. Hence $f \in \nabla(M, N)$. Thus

$$\operatorname{Hom}(M,N)/\nabla(M,N) = A/\nabla(M,N) \oplus (B + \nabla(M,N))/\nabla(M,N),$$

 \square

as desired.

Recall that;

- (D2) For any submodule A of M for which M/A is isomorphic to a direct summand of M, then A is a direct summand of M.
- (GD2) For any submodule A of M for which M/A is isomorphic to M, then A is a direct summand of M.

A module M is called *discrete* (respectively, *generalized discrete*) if M satisfies (D1) and (D2) (respectively, (D1) and (GD2)). Let p be a prime number. Then $M_{\mathbb{Z}} = \mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$ is generalized discrete but not discrete.

Lemma 3.2. ([9, Lemma 3.1]) Let M and N be R-modules. If N satisfies (GD2), then $\nabla(M, N) \subset J[M, N]$.

Proof. Let $\beta \in \nabla(M, N)$ and $f \in \text{Hom}(N, M)$. Then

$$Im\beta + Im(1_N - \beta f) = N.$$

Let $\eta := 1_N - \beta f$. Since $Im\beta \ll N$, we have $Im(\eta) = N$. It follows that $N \cong N/Ker(\eta)$. By (GD2), we have $Ker(\eta)$ is a direct summand of N. Since $Ker(\eta) \leq Im(\beta)$, we can obtain that $Ker(\eta) \ll N$. Hence $Ker(\eta) = 0$. Now η is an isomorphism. Thus $\beta \in J[M, N]$.

The next result extends Mohammed and Müller [14, Theorem 5.4].

Corollary 3.3. Let M be a finitely generated, self-projective left R-module and $N \in Gen(M)$. If Hom(M, N) is supplemented and N satisfies GD2then Hom(M, N)/J[M, N] is semisimple as a left E_M -module.

Proof. It is clear from Theorem 3.1 and Lemma 3.2.

Acknowledgment. The authors would like to give their special thanks to the referee for his/her valuable suggestions that have improved the quality of the presentation of this paper. Also it is a pleasure to thank Prof. G.F. Birkenmeier for his helpful comments.

SUPPLEMENTED MORPHISMS

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, (Second Edition, GTM 13, Springer-Verlag, New York, 1992.)
- [2] K. I. Beidar and F. Kasch, Good conditions for the total, *International Symposium on Ring Theory* (Kyongju, 1999), Trends Mathematics. Boston, MA: Birkhser, pp. 435(2001).
- [3] G.F. Birkenmeier ,F.T. Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, Goldie*supplemented modules, *Glasgow Math. J.*, **52A** (2010), 41-52.
- [4] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting modules. Supplements and Projectivity in Module Theory*, (Frontiers inMathematics, Birkhäuser, Basel, 2006.)
- [5] S. Crivei, H. Inankıl, and G. Olteanu, Correspondences of coclosed submodules, Commun. Algebra, 41 (2013), no 10, 3635-3647.
- [6] P. Fleury, Hollow modules and local endomorphism rings, *Pacific J. Math.*, Vol. 53(2) (1974), 379-385.
- [7] L.Ganesan and N. Vanaja, Modules for which every submodule has a unique coclosure, *Commum. Alg.*, **30**(5) (2002), 2355-2377.
- [8] A. Harmanci, D. Keskin and P.F. Smith, On ⊕-supplemented modules, Acta Math. Hungar., 83(1-2) (1999), 161-169.
- [9] M. T. Koşan and T. C. Quynh, On (semi)regular morphisms, Commun. Algebra, 41 (2013), no. 8, 2933-2947.
- [10] D. Keskin, On Lifting Modules, Commum. Alg., 28(7) (2000), 3427-3440.
- [11] F. Kasch and A. Mader, Regularity and Substructures of Hom, (Frontiers in Mathematics (2009)).
- [12] T.K. Lee and Y. Zhou, Substructure of Hom, J. Algebra Appl. 10(1) (2011), 119-127.
- [13] T.K. Lee and Y. Zhou, On (strong) lifting of idempotents and semiregular endomorphism rings, *Colloq. Math.*, **125**(1)(2011), 99-113.
- [14] S.H. Mohammed S.H. and B.J. Müller, Continuous and Discrete Modules, (London Math.Soc., LN 147, Cambridge Univ.Press, 1990.)
- [15] W.K. Nicholson, Y. Zhou, Semiregular morphism, Comm. Algebra, 34 (2006) 219-233.
- [16] P.F. Smith, Modules for which every submodule has a unique closure, Proceedings of the Biennial Ohio State-Denision Conference, (1992), 302-313.
- [17] R. Wisbauer, Foundations of Module and Ring Theory, (Gordon and Breach, Reading, 1991).
- [18] Y. Zhou, On (semi)regularity and the total of rings and modules, J. Algebra, 322(2009), 562-578.

Arda Kör Department of Mathematics, Gebze Institute of Technology, Gebze- Kocaeli, 41400 Turkey

Truong Cong Quynh Department of Mathematics Danang University VietNam

e-mail address: tcquynh@dce.udn.vn

SERAP Şahınkaya Department of Mathematics, Gebze Institute of Technology, Gebze- Kocaeli, 41400 Turkey

M. TAMER KOŞAN DEPARTMENT OF MATHEMATICS, GEBZE INSTITUTE OF TECHNOLOGY, GEBZE- KOCAELI, 41400 TURKEY

> (Received December 6, 2012) (Revised May 8, 2013)